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Simulation of the transmission line equation by a high-order
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Abstract. This note deals with transmission lines equation. The frequency dependent pa-

rameters which are often considered constants to ease the numerical implementation, are actu-

ally taken for their real physical state. We aim to obtain a physical solution of the equation by
a high order scheme. The proposed scheme is an enhanced version of FDTD methods known

to be powerful tools for solving equations of this alike. In particular, the scheme is built to

deal with oscillations of the load voltage. The oscillations that are a result of the taking-over
of the hyperbolic characteristic of the equation are corrected by a high order relaxed FDTD

method and a regularizing effect of Runge Kutta. We validate our theoretical results by few

numerical simulations.
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Introduction

Below, we present the modelling system of the electrical transmission lines where
the mathematical theory grew out of the work of James Clerk Maxwell, Lord Kelvin
and Oliver Heaviside. It was in 1885 when Heaviside published the first papers that
described his analysis of information propagation in cables which is the modern form
of the transmission lines system (TLS) also known as telegraph equation [11].

The equation describes the variation of the voltage V and the current I along an
electric cable as a function of time and position. The resistance R and the inductance
L represent series impedance along the cable, while the capacitance C and the leakage
conductance G form the shunt admittance across the cable. The time-dependent
transmission lines governing the line voltages and currents are expressed as

∂V (z, t)

∂z
+ L

∂I(z, t)

∂t
+RI(z, t) = 0,

∂I(z, t)

∂z
+ C

∂V (z, t)

∂t
+GV (z, t) = 0,

V (0, t) = Vs(t), V (L, t) = Vl(t),
I(0, t) = Is(t), I(L, t) = Il(t),

(1)

where the axis Oz corresponds to the direction of the line and L is the load.
Generally, the solutions of TLS are analytically unattainable, so, attempts to obtain

concrete and reliable solutions must resort to numerical methods. Among which,
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asymptotic techniques are known to be very powerful. Yet, the generated solution
often fail to acquire properties of the physical phenomena that wraps the transmission
lines. Hence, we shall focus on Full Wave techniques known as common and strong
tools to simulate electromagnetic problems of this alike. We mention FDTD [14],
FEM [8, 20], MoM [7] and TDFD [16].

The parameters L, R, C, and G are often considered frequency-independent con-
stants which leads to a relatively simple implementation (see for instance [28, 24, 31]).
But, from a physics point of view, these parameters actually depend to varying de-
grees on the frequency of excitation of line w = 2πf , where f is the frequency. This
feature makes the implementation of any chosen method relativaly difficult as we are
brought to deal with a frequency-domain system instead of the standard time-domain.
A universal reference about the matter is the book of Clayton R. Paul [18]; It details
the how-about passage from frequency-domain to time-domain and the challenges
associated with this transform. We aim to construct efficient schemes to solve the
system while keeping in consideration the frequency-dependent parameters.

Through years, many powerful Full Wave techniques are used to simulate the
frequency-domain phenomena. In particular, the Finite Difference Time Domain
(FDTD) method is most used. It is arguably the simplest, both conceptually and
in terms of implementation. However, as with all numerical schemes, it has its share
of deficiencies. Once simulated, we immediately notice occurring oscillations at the
leading edge of each voltage transition (see Figure 3). A correction must be brought
to the method. Motivated by the arguably easy implementation, many researchers
invested in constructing enhanced versions of FDTD instead of working on different
schemes (see for example [32, 23, 29] and many related works). Likewise, we shall
present an effective approach to deal with these oscillations.

The approach is recentely proposed in [2] which is a fourth-order compact scheme
by coupling a relaxed FDTD with Runge-kutta of second order (β/RK2). The first
use of the approach included the homogeneous linear transmission line equation where
losses were neglected, i.e. R = G = 0 and L and C were considered constants. The
method succeeded in demolishing oscillations and keeping the physical aspects of the
obtained numerical results.

In this note, we extrapolate the method to the nonlinear TLS equation by taking
in consideration the frequency dependent parameters mentioned above. We will show
that the technique totally demolishes the oscillations that occurs at each leading edge.

To do so, we first incorporate the losses that are related to the electromagnetic
phenomena. This relies in studying the Frequency-Domain equation then extract
the equivalent Time-Domain form. We shall present a full review on the matter in
Section 1. We believe that this is crucial to understanding the following numerical
implementation. And while this paper is more interested in the mathematical aspect
of the problem, all that is related to the physical phenomena will be extracted from
physical refrences. In particular, we adapt the physical simulations in ([18]) and for
more visibility to the readers, we shall keep the same notations to ease the compar-
ison between standard FDTD simulated by the author and our proposed enhanced
technique.

The paper is organized as follows. In section 1, we give a full review on the
how-about passage from Frequency-Domain to Time-Domain equation. Section 2
casts the simulation of the Time-Domain lossy transmission line equation by the
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β/RK2 scheme. In the last section 3, we present numerical simulations to compare
the standard FDTD with the proposed method and we verify the correction brought
upon the FDTD.

1. Frequency-Domain to Time-Domain transmission line equation

1.1. Incorporation of losses. The real phenomena that wraps the transmission
lines is that losses occurs in the conductors and the surrounding medium of the lines.
These losses are frequency-dependent. That means that the parameters L, C, R
and G are not in fact constants, but depend to varying degrees on the frequency
of excitation of line, w = 2πf . For these imperfect conductors, the currents will
be uniformly distributed over the conductor cross sections at low frequencies, but
at higher frequencies will, because of skin effect, migrate toward the surfaces of the
conductors lying in a thickness on the order of a specific skin depth. Also, the medium
surrounding the conductors has an effective conductivity that is primarily due to
bound charge in the dielectric and is frequency dependent. Hence, the conductance
will be frequency dependent. We refere the readers to [10] for more details.

By Fourier’s transform, the frequency-domain form of equation (1) is then written

∂V̂

∂z
(z, ω) +R(ω) Î(z, ω) + iω L(ω) Î(z, ω) = 0,

∂Î

∂z
(z, ω) +G(ω) Î(z, ω) + iω C V̂ (z, ω) = 0.

The inductance L is defined as L(ω) = Le +Li(ω), where Le and Li are the external
and internal inductance of the conductor. Remark that Li depend on the frequency
while Le does not. It’s worth mentioning that Li is negligible compared to Le. We
denote for simplicity Le = L, and so the equation reads

∂V̂

∂z
(z, ω) =− ẑi(ω)Î(z, ω)− iωL Î(z, ω)

∂Î

∂z
(z, ω) =− ŷ(ω)V̂ (z, ω)

(2)

where the internal impedance and admittance of the conductors respectively are

ẑi(ω) = R(ω) + iωLi(ω)

ŷ(ω) = G(ω) + iωC

Whereas the main work of this article is more concentrated on the mathematical
aspect of the problem, all that is related to the physical phenomena will be extracted
from physics references as stated in the introduction. For the computation of the
internal impedance and admittance, we refere the readers to ([18], Chapter 2 and 4).
We have

ẑi(ω) =


rdc(1 + i

f

f0
) if f < f0

rdc

√
f

f0
(1 + i) if f > f0

, (3)
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ŷ(ω) =

N∑
i=1

(
Ki

1 + iωτi
)iωM + iωchf , (4)

where rdc is dc resistance, f0 the break frequency, chf the high-frequency capaci-
tance, τi, Ki and M are coefficient related to the meduim losses. In order to simplify
the computational process, we propose The Laplace transform of these equations by
replacing s with iω.

∂V̂

∂z
(z, s) = −ẑi(s)Î(z, s)− sLÎ(z, s)

∂Î

∂z
(z, s) = −ŷ(s)V̂ (z, s)

(5)

Applying Fourier’s inverse transformation, (5) gives convolutions

∂V

∂z
(z, t) = −zi(t) ∗ I(z, t)− L∂I

∂t
(z, t)

∂I

∂z
(z, t) = −y(t) ∗ V (z, t)

(6)

1.2. Time-Domain form of the Frequency-dependent parameters. The in-
clusion of the frequency-domain parameters is easily achieved. However, it presents
computational problems as we are brought to transform the frequency dependent pa-
rameters into time-domain’s and the computation of the required convolution can be
quite challenging.

Starting with the admittance, we introduce the first re-form of frequency-dependent
to time-domain’s.
• Admittance: We substitute iω by s and we convert to Laplace transform

ŷ(s) =

N∑
i=1

(
Ki

1 + sτi
)Ms+ chfs.

A simple inverse transform of 1
c+s reads exp(−c t) [6]. Hence, the expression of

the admittance in time-domain is easily given by

y(t) =

N∑
i=1

(
M
Ki

τi
exp(−t/τi)

)
∂

∂t
+ chf

∂

∂t
. (7)

• Internal impedance: It is defined as

ẑi(ω) =


rdc(1 + i

f

f0
) if f < f0

rdc

√
f

f0
(1 + i) if f > f0

, (8)

where ω = 2πf .
The challenge in this case is that the high-frequency internal impedance varies in
function of the square root of frequency. The known inverse Laplace transform
of the square root variable reads

1√
s
⇐⇒ 1√

πt
. (9)
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We have the following complex relation

2iω = (1 + i)2ω.

Hence

(1 + i)
√
πf = (1 + i)

√
ω

2

=
√
iω.

(10)

The two last equations give insight as how to go about obtaining the time-
domain functions. First, we need to write the frequency-domain parameter in
function of (1 + i)

√
f . Then, we transform the result to Laplace domain using

(10). We replace iω by s, and finally use (9) after multiplying the numerator
and denominator by

√
s. Another way of stating this is to write the internal

impedance in its Laplace-Domain form and make use of equation (9) as follows:

c1 + c2
√
s = c1 +

c2√
s
s⇐⇒ c1 +

c2√
πt

∂

∂t

The only required task here is to determine the Laplace-Domain form of the
impedance. This can be achieved for conductors by adding the dc and high-
frequency representations from (8) as

ẑi(ω) = rdc + rdc(1 + i)

√
f

f0
.

For more details on this phase, we refere the readers to [[18], Chapter 4]. And
so, converting to Laplace-domain reads

ẑi(s) = rdc + rdc

√
s

πf0

= rdc + rdc
1√
πf0

1√
s
s

Here c1 = rdc and c2 = rdc
1√
πf0

, hence the inverse transform is written

zi(t) = rdc + rdc
1

π
√
f0

1√
t

∂

∂t
. (11)

1.3. Time-Domain convolutions. The remaining challenge for converting from
frequency-domain to time-domain is the how-about inclusion of the convolutions in
(6). A valid approach for numerical implementation is needed.

1.3.1. Time-Domain admittance convolution with the voltage. According to what
precedes and by substituting (7) into the second line of (6), we define the concerned
convolution as

y(t) ∗ V (z, t) =

N∑
i=1

(
M
Ki

τi
exp(−t/τi)

)
∗ ∂V (z, t)

∂t
+ chf

∂V (z, t)

∂t

=

N∑
i=1

(
M
Ki

τi

∫ t

0

exp(−τ/τi)
∂V (z, t− τ)

∂(t− τ)
dτ

)
+ chf

∂V (z, t)

∂t
,
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where we denote k(t) = ∂V (z,t)
∂t . We divide the time axis into (n + 1)∆t on which k

considered a constant. And so, the discretized convolution can be approximated in
the following matter∫ t

0

exp(−τ/τi) k(t− τ) dτ =

∫ (n+1)∆t

0

exp(−τ/τi) k ((n+ 1)∆t− τ) dτ

'
n∑

m=0

k ((n+ 1−m)∆t)

∫ (m+1)∆t

m∆t

e−τ/τi dτ

' −
n∑

m=0

τi k
n+1−m

[
e−(m+1)∆t/τi − e−m∆t/τi

]
where we denote k(p∆t) as kp. The time-domain convolution is then written

y(t) ∗ V (t) = −
N∑
i=1

(
MKi

n∑
m=0

kn+1−m
[
e−(m+1)∆t/τi − e−m∆t/τi

])
+

+ chf
∂V (z, t)

∂t

(12)

Remark 1.1. The choice of n+ 1 segments was to ensure the maximum precision of
the integral approximation when substituted into equation (19). We make use of all
the past values of the voltage.

1.3.2. Time-Domain Internal-Impedance convolution with the current. By the time-
domain form of the internal impedance established in (11), we have

zi(t) ∗ I(z, t) = rdcI(z, t) + rdc
1

π
√
f0

1√
t
∗ ∂I(z, t)

∂t

= rdcI(z, t) +
rdc

π
√
f0

∫ t

0

1√
t

∂I(z, t− τ)

∂(t− τ)
dτ

Similarly, an approximation of the integral is required. We denote h(t) = ∂I(z,t)
∂t

which is also considered a constant over the (n + 1)∆t segments. The discretized
convolution can be approximated as∫ t

0

1√
τ
h(t− τ) dτ '

∫ (n+1)∆t

0

1√
τ
h ((n+ 1)∆t− τ) dτ

'
n∑

m=0

h ((n+ 1−m)∆t)

∫ (m+1)∆t

m∆t

1√
τ

dτ

'
√

∆t

n∑
m=0

h ((n+ 1−m)∆t)

∫ m+1

m

1√
τ

dτ

'
√

∆t

n∑
m=0

h ((n+ 1−m)∆t) 2
[√
m+ 1−

√
m
]

For simplicity, we write P (m) and hn+1−m instead of 2
[√
m+ 1−

√
m
]

and
h ((n+ 1−m)∆t). The convolution is then defined by

zi(t) ∗ I(z, t) = rdcI(z, t) +
rdc

π
√
f0

√
∆t

n∑
m=0

hn+1−m P (m) (13)
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2. Simulation by the β-method coupled with second order Runge Kutta

As with all finite difference methods, a grid in space and time has to be set up. The
grid is uniform. The position variable z is discretized as ∆z and the time variable t
is discretized as ∆t. The points on the grid can be designated as zk = (k − 1)∆z for
k = 1, 2, .., Nz + 1 and tn = (n− 1)∆t for n = 1, 2, .., Nt. Additional points are put in
place at half space and half time, they can be designated as zk+ 1

2
and tn+ 1

2
. We shall

compute V (z, t) at the points (zk, tn), and I(z, t) at (zk+ 1
2
, tn+ 1

2
) i.e. the voltage and

currents are computed at offset locations in time and space. We denote,

V nk = V (zk, tn)

Ink = I(zk+ 1
2
, tn+ 1

2
)

(14)

2.1. Computation of the Voltage at the source and load. The essential prob-
lem in incorporating the terminal conditions is that the FDTD voltages and currents
at each end of the line, V1, I1 and VNz+1, INz , are not collocated in space or time.
Whereas the terminal conditions relate the voltage and current at the same position
and at the same time. Take for example the source z = z1 (k = 1), the second line of
the system (1) by respecting the notation (14) is written

In1 − I(z1, tn+ 1
2
)

∆z
2

+ C
V n+1

1 − V n1
∆t

+GV (z1, tn+ 1
2
) = 0.

We average the voltage value about the discretization point in order to include the G
parameter by means of the trapezoidal rule [22]. Hence

In1 − I(z1, tn+ 1
2
)

∆z
2

+ C
V n+1

1 − V n1
∆t

+G
V n+1

1 + V n1
2

= 0.

Similarly the quantity I(z1, tn+ 1
2
) = I(0, tn+ 1

2
) = Is(tn+ 1

2
) is approached by averaging

the source Is in order to obtain a value located in time as the same time point In1 .
We obtain

In1 −
In+1
s +Ins

2
∆z
2

+ C
V n+1

1 − V n1
∆t

+G
V n+1

1 + V n1
2

= 0.

The equation is then equivalent to

(
C∆z

∆t
+
G∆z

2
)V n+1

1 = (
C∆z

∆t
− G∆z

2
)V n1 − 2In1 + In+1

s + Ins . (15)

In the case of resistive terminations, the terminal characterizations are written in
terms of generalized Thevenin’s equation as Is = Vs−V1

Rs
, where Rs is the source

resistance. And so the property yields

V n+1
1 = (

CRs
F

+
G∆zRs

2
+ 1)−1

[
(
CRs
F
− G∆zRs

2
− 1)V n1 − 2RsI

n
1 + V n+1

s + V ns

]
,

(16)
where F = ∆t

∆z . Similarly, with the terminal characterizations at the load defined

with Thevenin’s equation as Il =
VNz+1−Vl

RL
, we obtain the recursive equation for the



SIMULATION OF TLS BY A HIGH-ORDER FDTD METHOD 417

load voltage

V n+1
Nz+1 = (

C

F
+
G∆zRL

2
+1)−1

[
(
CRL
F
− G∆zRL

2
− 1)V nNz+1 + 2RLI

n
Nz

+ V n+1
L + V nL

]
.

(17)

2.2. β-method. The β-method is one of many forms of relaxation techniques. The
idea is that given a certain method, we contrive two or more of its different approaches
into a controllable scheme by introducing a variable denoted β. We refere the readers
to [9] for more details. In our case, the choice of the method is justified in the
introduction and shall be the FDTD.

By substituting (14), the discretization by the β-method yields

1

∆z

(
−β

4
(V n+1
k+2 − V

n+1
k−1 ) +

1 + β

2
(V n+1
k+1 − V

n+1
k )

)
+ rdc

In+1
k + Ink

2
+

+

√
∆t rdc

π
√
f0

n∑
m=0

In+1−m
k − In−mk

∆t
P (m) + L

In+1
k − Ink

∆t
= 0.

(18)

1

∆z

(
−β

4
(Ink+1 − Ink−2) +

1 + β

2
(Ink − Ink−1)

)
+ chf

V n+1
k − V nk

∆t
+

−M
n∑

m=0

N∑
i=1

Ki
V n+1−m
k − V n−mk

∆t

(
e−(m+1)∆t/τi − e−m∆t/τi

)
= 0.

(19)

Solving (18) and (19) gives the recursion relations for any 2 ≤ k ≤ Nz.

In+1
k =

[
F2I

n
k −

rdc∆z

π
√
f0∆t

n∑
m=1

(
In+1−m
k − In−mk

)
P (m)+

+

(
β

4
(V n+1
k+2 − V

n+1
k−1 )− 1 + β

2
(V n+1
k+1 − V

n+1
k )

)]
/F1 (20)

V n+1
k = V nk +

1

chf F3

[
M

n∑
m=1

N∑
i=1

Ki

(
V n+1−m
k − V n−mk

) (
e−(m+1)∆t/τi − e−m∆t/τi

)
−F

(
β

4
(In+1
k+1 − I

n+1
k−2 )− 1 + β

2
(In+1
k − In+1

k−1 )

)]
(21)

where

F1 =
L

F
+ rdc

∆z

2
+ 2

rdc∆z

π
√
f0∆t

,

F2 =
L

F
− rdc

∆z

2
+ 2

rdc∆z

π
√
f0∆t

,

F3 = 1− M

chf

N∑
i=1

Ki

(
e−∆t/τi − 1

)
.
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2.3. Recursive convolution. The current and voltage update equations in (20)
and (21) call for all the past values of the currents and voltages. A significant storage
problem is preventing the execution of the method. We are interested in the same
solution proposed by the author in [18], the recursive convolution. The justification
of our interest relies within on ”a see forward” comparison of our relaxed β-scheme
and the classic FDTD simulated by the same author. The recursive convolution relies
on the property ex+y = exey. We have the following expansion

n∑
m=1

N∑
i=1

Ki

(
V n+1−m
k − V n−mk

) (
e−(m+1)∆t/τi − e−m∆t/τi

)
=

N∑
i=1

Ki e
−∆t/τi

(
V nk − V n−1

k

) (
e−∆t/τi − 1

)
+

N∑
i=1

Ki e
−2∆t/τi

(
V n−1
k − V n−2

k

) (
e−∆t/τi − 1

)
+

N∑
i=1

Ki e
−3∆t/τi

(
V n−2
k − V n−3

k

) (
e−∆t/τi − 1

)
...

(22)

We define ϕni = Ki e
−∆t/τi

(
e−∆t/τi − 1

) (
V nk − V n−1

k

)
+ e−∆t/τiϕn−1

i ,

ϕ0
i = 0.

We can easily check that substituting ϕ into the equation (21) yields the β-scheme
for 2 ≤ k ≤ Nz,

V n+1
k = V nk +

1

chf F3

[
M

N∑
i=1

ϕni − F
(
β

4
(In+1
k+1 − I

n+1
k−2 )− 1 + β

2
(In+1
k − In+1

k−1 )

)]
.

(23)
Remark that only one additional past value In−1

k and V n−1
k must be retained in (23)

instead of n values in (21).
The convolution of current requires an additional effort. In equation (20), we can

notice the absence of the exponential property on which the recursive convolution is
based. A simple solution to this problem is to approximate the functional P (m) =
2
(√
m+ 1−

√
m
)

with exponential terms.
To do so, many methods are available. In particular, Prony ’s method [30], the

Matrix Pencil [13] and the work of G. Beylkin and L. Monzón [3] are often considered
strong and reliable techniques. We shall use Prony to ensure the same precision order
(fourth order) of the proposed scheme. More details are presented below.

2.4. Prony’s method. Prony’s method for representing a function P (m) approx-
imates it as the sum of N exponential functions. As explained above, we use this
method to make existence to the required exponential terms in the internal-impedance
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convolution with the current. The function P (m) is approached as follows

P (m) =

N∑
j=1

aj e
mbj . (24)

To respect the precision order of the scheme (see i ai bi
1 0.154602 -0.004705
2 0.153681 -0.042713
3 0.151819 -0.120744
4 0.149014 -0.243123
5 0.145335 -0.417252
6 0.140981 -0.655239
7 0.136386 -0.977444
8 0.132494 -1.420951
9 0.131724 -2.064312
10 0.143502 -3.131904
11 0.560456 -6.791631

Table 1. Prony’s coeffi-
cients for N = 11.

Proposition 2.1), no less than a fourth order approxi-
mation is acceptable. By fixing N to 11, an appropri-
ate approximation to P (m) is obtained (see figure 1).
In fact, for 100 samples, the error is of order 4. The
computed coefficients aj and bj in (24) can be found on
Table 1. We note that a different version from the stan-
dard in [30] was used. The factorization of a certain
system uses a modified Gram-Schmidt. This allows us
to achieve a fourth-order precision for 11 terms instead
of 17 terms for the standard QR factorization used in
the reference.
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Figure 1. P (m) vs Prony (11).

Using Prony’s, we update the β-scheme of the current including the frequency-
dependent parameters for 2 ≤ k ≤ Nz in a similar fashion as

In+1
k =

[
F2I

n
k −

rdc∆z

π
√
f0∆t

N∑
i=1

Ψn
i −

(
β

4
(V n+1
k+2 − V

n+1
k−1 )− 1 + β

2
(V n+1
k+1 − V

n+1
k )

)]
/F1,

(25)
where {

Ψn
i = aie

bi
(
Ink − In−1

k

)
+ ebiΨn−1

i ,

Ψ0
i = 0.
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2.5. Principal of the β-method coupled with second order Runge Kutta.
By introducing the classical β-method, we can ensure the stability and the high order
compact of the scheme. Yet, the β-scheme is a relaxation technique of the FDTD,
hence oscillations shall remain as we compute the load voltage at the near end of the
line. To eliminate the ringing, we take advantage of the regularizing effect of Runge
Kutta.

The proposed algorithm is obtained by applying second order Runge Kutta to the
equations (23) and (25). We start with incorporating the terminal conditions that
causes a problem; the voltages and currents at are not collocated in space or time at
each end of the line; (see Subsection 2.1). The second iteration of space (k = 2) is
approximated using the standard FDTD. The application of the proposed method is
narrowed to 3 ≤ k ≤ Nz.

• k = 1

V n+1
1 =

(
CRs
F

+
G∆zRs

2
+ 1

)−1 [
(
CRs
F
− G∆zRs

2
− 1)V n1 − 2RsI

n
1 + V n+1

s + V ns

]
In+1
1 =

(
L

F
+
R∆z

2

)−1(
(
L

F
− R∆z

2
)In1 − V n+1

1 + V n1

)

•• k = 2

V n+1
2 =

(
C

F
+
G∆z

2

)−1(
(
C

F
− G∆z

2
)V n2 − In+1

2 + In2

)
In+1
2 =

(
L

F
+
R∆z

2

)−1(
(
L

F
− R∆z

2
)In2 −

V n+1
2 − V n1

2

)
• • • k = 3 : Nz
• First phase RK2: Auxiliary values of voltage and current by β-scheme

(V nk )∗ = V nk +
1

chf F3

[
M

N∑
i=1

ϕni − F
(
β

8
(Ink+1 − Ink−2)− 1 + β

4
(Ink − Ink−1)

)]

(Ink )∗ =

[
F2I

n
k −

rdc∆z

π
√
f0∆t

n∑
m=1

Ψn
i +

(
β

8
((V nk+2)∗ − (V nk−1)∗ − 1 + β

4
((V nk+1)∗ − (V nk )∗)

)]
/F1

• Second Phase of RK2: voltage and current updates

V n+1
k = V nk +

1

chf F3

[
M

N∑
i=1

ϕni − F
(
β

4
((Ink+1)∗ − (Ink−2)∗)− 1 + β

2
((Ink )∗ − (Ink−1)∗)

)]

In+1
k =

[
F2I

n
k −

rdc∆z

π
√
f0∆t

n∑
m=1

Ψn
i +

(
β

4
(V n+1
k+2 − V

n+1
k−1 )− 1 + β

2
(V n+1
k+1 − V

n+1
k )

)]
/F1

• k=Nz+1:

V n+1
Nz+1 = (

C

F
+
G∆zRL

2
+ 1)−1

[
(
CRL
F
− G∆zRL

2
− 1)V nNz+1 + 2RLI

n
Nz

+ V n+1
L + V nL

]

2.6. A hint about stability & precision order. For the case of an ideal trans-
mission, that is when the leakage conductance G and the resistance R are neglected
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and the capacitance and inductance are considered frequency-independent parame-
ters, we have the following proposition concerning the stability and the precision of
the scheme.

Proposition 2.1. Stability and Order.
The scheme is stable under the CFL condition:

ν
∆t

∆z
≤ min
θ∈[0,2π]

4

| 2(1 + β)sin(θ)− βsin(2θ) |
,

where ν = 1√
LC

is the velocity of the propagation.

The order the β-scheme is always of order 2 in space and time. Moreover, if β < 1
3

and ∆t
∆z = 2

√
LC(1− 3β), the order increases to four in space and in time.

Proof. See [2]. �

The demonstration was conducted by the authors in [2] where they established the
CFL condition using Von Neumann’s property and a Matlab formal calculus. The
key to the fourth order are the following properties which are direct results of the
lossless transmission line equations

C
∂3V

∂3t
= − 1

LC

∂3I

∂3z
and L

∂3I

∂3t
= − 1

LC

∂3V

∂3z
.

For the case of lossy transmission lines and as explained in [18], the losses barely
affect the stability and precision of the scheme. In fact, by all simulated methods by
the author and many related works, the condition of stability for lossy and nonlossy
lines are always identical. This was also confirmed for our proposed method (see
Figures 4 and 5).

3. Numerical simulations

To simulate the case of losses and to compare the proposed method, we consider
an experiment conducted by [18]. A two-conductor line is specified by a total length
of L = 20cm with resistive loads Rs = RL = 50 Ω. The capacitance and inductance
are respectively C = 88.2488 pF/m and L = 0.805969µH/m. The line then has a
velocity of propagation ν = 1.18573 × 108m/s. The break frequency f0 is of value
393.06Mhz and the dc resistance is equal to 86.207 Ω/m. The source Vs is a ramp
function rising from 0 to 1 V with a rise time of t0 = 50 ps. The one-way transit time
is computed to be 1.6867ns. We divide the total line length L into Nz sections and
the final solution time Tf into Nt intervals where Tf = 10ns.

However, we note that dielectric losses were not included in this experiment,
which means the leakage conductance G was neglected.

Figure 2 illustrates the simulation by the FDTD of lossy and nonlossy lines where
lossy results are obtained using Prony’s coefficients presented in the table 24. The
stability condition for the nonlossy lines by FDTD is easily established by Von Neu-
mann’s as ∆t

∆z ≤
1
ν ([12]). It’s also worth mentioning that when applied to the nonlossy

lines, the FDTD is arguably the best. In fact, under the magic time step (mts) con-
dition ∆t = ∆z

ν , the FDTD acquires an infinite order precision hence generates a
solution with no approximation error. The existence of the mts is related to the

ideal transmission property ∂jI(z,t)

∂zj
= −L

j−1
2 C

j+1
2

∂jV (z,t)

∂tj
for all odd j.
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Figure 2. Simulation of the computation of load voltage by the
FDTD for lossy and nonlossy line.
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Figure 3. Leading edge of the load voltage by FDTD for nonlossy
line (A) and lossy line (B).

For nonlossy lines, we observe ringing on the leading edge of the first and second transi-
tions of the load voltage (Figure 3a). This is unexpected since the FDTD was supposed to
deliver a solution with no approximation error. The explanation to this, is that for Nz = 215,
the mts matches exactly Nt = Nz

L × Tf × ν = 1274, 65975. Hence, the approximation we
made by taking Nt = 1275 disturbs the infinite order precision. This shows how sensible the
FDTD is. As for the case of nonlossy lines, the oscillations in Figure 3b are natural since
the existence of mts is restricted to the ideal transmission lines. And without an infinite
precision, the hyperbolic characteristic of the equation takes over and yields approximation
errors in form of oscillations.

Figure 4 is the first tentative to enhance the FDTD. It is a comparison of the FDTD and

the β-method. For β = 1
3

(
1− (

Tf

2L ν )2
)

, Nz = 215 and Nt = 1275 the Proposition 2.1 is

ensured. Notice that the amplitude of oscillations has decreased due to the relatively high
precision of the β-method. The oscillations however are not entirely demolished.

Figure 5 illustrates the proposed method. We can see that the oscillations are entirely
demolished by the regularizing effect of Runge Kutta. A side effect however, is the deviation
of the load voltage around the rise time. This is clearly negligible since the generated solution
converges to the same limit as the FDTD.
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Figure 4. Illustration of the load voltage by FDTD and β-method
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Figure 5. Illustration of the load voltage by classic β and coupled
β/RK2 method.

Conclusion

By taking in consideration the physical phenomena that wraps the transmission lines
equation, we have proposed a recent approach to deal with oscillations that occurs at each
leading edge of the load voltage. Generally, FDTD methods are powerful tools to deal with
such equations. However, we have shown that it also has its share of deficiencies. The
proposed method, the β/RK2, was built to enhance the FDTD. It efficiently removed all
kind of ringing while generating a solution that converges to the desired value of the voltage.
We also recall that our investment in correcting the FDTD relies within the relative simplicity
of its numerical implementation.
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(M. Pierre) Laboratoire de Mathématiques et Applications UMR CNRS 7348, 11

Boulevard Marie et Pierre Curie, Téléport 2 - BP 30179, , 86962 Chasseneuil
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