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Multigrid method for a fully nonlinear Black-Scholes equation

Aicha Driouch and Hassan Al Moatassime

Abstract. In this work, we present a multigrid approach for a fully nonlinear Black-Scholes

equation arising in the modeling of markets frictions resulting from transaction costs. We
consider a V-cycle method in order to minimize the computational cost of the numerical

solution. The purpose of this paper is to show the effectiveness of multigrid approach for

solving a fully nonlinear Black-Scholes problem.
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1. Introduction

The celebrated Black-Scholes model gives us an estimate of a European option price.
The authors assumed in [5] that the stock value S(t) follows a geometric Brownian
motion modelled by

dS(t) = µS(t) + σS(t)dB(t). (1)

Here, µ and σ are the expected instantaneous rate of return and volatility respectively
and assumed to be constants, B(t) is the standard Brownian motion. The pricing of
derivative products such as options is extremely interesting since they can be used
as an insurance from stock fluctuations. Using the non arbitrage principle and Itô’s
formula we can obtain the Black-Scholes partial differential equation that describes
the dynamics of a European option

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, S > 0, t ∈ (0, T ), (2)

with the terminal value

V (S, T ) = (S −K)+. (3)

Where K is the strike price and the unknown V is the European Call option, S is
the underlying asset, T is the expiration date of the option and r ≥ 0 is the risk-free
interest rate.
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Figure 1. The terminal condition of the option price V (Payoff).

Although the Black-Scholes is a very successful pricing model, it is based on unre-
alistic conditions [2], like the absence of transaction costs in financial markets which
is not true in the real world. In fact, in this case the perfect hedging no longer exists
[16]. H. Leland [13] had given in his work a discrete approach of frequent revision of
the portfolio for option pricing under transaction costs, his approach was later stud-
ied numerically in [3, 15]. Another well known model was proposed by G. Barles and
H.M. Soner in [4], in their paper, they suggested a nonlinear Black-Scholes extension
with a modified volatility to illustrate the impact of transaction costs on the option
price. In this work we focus our attention on the Barles’ and Soner’s model, where
the volatility is a function of time, the stock and the second derivative of the option
price
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Here σ̃ is the modified volatility proposed in the Barles’ and Soner’s model, σ is the
volatility introduced in the Black-Scholes model, a is a nonnegative parameter that
represents transaction costs and Ψ denotes the solution to the nonlinear ordinary
differential equation
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Ψ(x) + 1

2
√
xΨ(x)− x

, x 6= 0,

Ψ(0) = 0.

(5)

In Figure 2 we represent the solution of ODE (5) using a fourth order Runge-Kutta
method.

This paper is organized as follows. In Section 2, we review the nonlinear deter-
ministic equation for the Barles’ and Soner’s model. We then give in Section 3 the
discrete scheme and boundary conditions. We present the multigrid V-cycle technique
for nonlinear problems in Section 4 then numerical results are given in the section
thereafter. Finally a conclusion is in order

2. The nonlinear deterministic Black-Scholes equation

One of the successful nonlinear Black-Scholes extensions given in the case when
transaction costs occur is the Barles’ and Soner’s equation [4] which is a fully nonlinear
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Figure 2. Solution Ψ to (5).

equation that reads
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− rV = 0, S > 0, t ∈ (0, T ), (6)

with the terminal condition

V (S, T ) = (S −K)+, (7)

Equation (6) is supplemented with the boundary conditions{
V (t, 0) = 0, t ∈ (0, T ),
V (t, S) ∼∞ S −Ke−r(T−t), (S → +∞).

(8)

Equation (6) has been studied theoretically using the stochastic optimal control theory
[9]. G. Barles and H.M. Soner have shown the existence and uniqueness of a viscosity
solution to (6)-(7)-(8). Another theoretical study for Equation (6) was given by D.
Ševčovič in [17] by transforming it into a quasilinear parabolic equation. Recently, a
theoretical constructive approach for the Barles’ and Soner’s equation was given in
[1]. Since an exact solution to Equation (6) does not exist many authors studied (6)
numerically (see for instance [15, 3, 14, 12, 18, 19]).

2.1. Numerical analysis. Due to the absence of general analytical solution to non-
linear Black-Scholes equations, there are various numerical methods for solving non-
linear equations for European call options; in our work we use the finite difference
technique, we perform the following variable transformation in order to have a forward
parabolic equation (see [3, 7])

x = ln

(
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K

)
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1

2
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V (S, t)

K
.

Plugging these transformations in (6), we get

uτ − (1 + Ψ(e(Dτ+x) a2K(ux + uxx))(ux + uxx)−Dux = 0, (9)
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where D =
2r

σ2
, x ∈ R and 0 ≤ τ ≤ σ2T

2
. With the initial and boundary conditions

u(x, 0) = max(1− e−x, 0) (x ∈ R), (10)

u(x, τ) = 0 (x→ −∞), (11)

u(x, τ) ∼ 1− e−Dτ−x (x→ +∞). (12)

2.2. Finite difference discretization. Black-Scholes equations are defined on an
infinite domain [0,+∞[ that becomes R using the change of variable described above.
Therefore, in order to solve it numerically it is necessary to have a bounded domain.
Through rigorous error estimates, an optimal size of the domain can be given [11].
Note that artificial boundary conditions can also be introduced for the treatment of
the unbounded spatial boundaries of the domain of (9) (see for instance, [8]). Let

x ∈ [−R,R], R > 0 and set τ ∈ [0,
σ2T

2
]. We denote by dx and dt the spatial and

the time step respectively. We set i ∈ [−N,N ] and n ∈ [0,M ] such that R = Ndx,

−R = −Ndx and T̃ =
σ2T

2
= Mdt. Finally we set Uni as an approximation of

u(xi, τn) where xi = idx and τn = ndt. We discretize the initial and the boundary
conditions as follows  U0

i = max(1− e−idx, 0),
Un−N = 0,
UnN = 1− e−Dndt−Ndx .

(13)

The problem (9)-(10)-(11)-(12) was studied numerically in [3] using different dis-
cretization schemes. In the following, we use a classical difference finite Crank-
Nicolson scheme. Replacing all the derivatives in (9) we get,
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Where sni denotes the discretized nonlinear volatility correction, which is given ex-
plicitely in time,

sni = Ψ(e(Dndt+xi) a2K(
Uni−1 − 2Uni + Uni+1

dx2
+
Uni+1 − Uni−1

2dx
)). (14)

3. Multigrid approach

The aim of this paper is to improve the convergence of the numerical scheme
for the Barles’ and Soner’s model by reducing the CPU time using the multigrid
technique introduced by Brandt in [6]. The main idea is to accelerate the convergence
of iterative methods by recognizing that low frequencies components of the error
become high frequencies on coarser grids, therefore, we can accelerate the convergence
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of the solution of a fine grid problem by eliminating the high frequencies on coarser
grids and then interpolating the corrections back to the fine grid problem [6, 10].
Operators allowing the passage from a fine grid to a coarse grid are called restriction
operators and are given by

f2hj =
1

4
(fh2j−1 + 2fh2j + fh2j+1), 1 ≤ j ≤ N

2
− 1,

where fhj and N are the approximation of the solution and the number of elements
on the fine grid respectively. Conversely, in order to pass from the coarse grid to the
fine grid we use the prolongation operator which is a linear interpolation that is given
by 

fh2j = f2hj

fh2j+1 = 1
2 (f2hj + f2hj+1).

, 1 ≤ j ≤ N

2
− 1.

3.1. The V-Cycle. There are several multigrid techniques. The 3 main types are
the V-cycle, W-cycle and full multigrid cycle. In the following we use the V-cycle
method, which consists on solving a system of equations on a sequence of grids of
various levels from the finest to the coarsest.

Figure 3. Illustration of a V-Cycle.

3.2. The full approximation storage algorithm. Let us suppose that on every
grid (Ωk) 1 ≤ k ≤ n we have an iterative method (Gauss Seidel, Jacobi..) noted Gk
for solving the problem Ak(Uk) = fk where Ak is the nonlinear operator. Let Ωn
be the finest grid and Ω1 the coarsest. We denote Gνkk (Uk, fk) the final result after
νk iterations. In the following, we use the full approximation storage algortihm [10]
since it is well established as a fast solver to nonlinear problems.
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Algorithm 1 Full Approximation Storage

Presmoothing
Perform nonlinear smoothing on the fine grid problem νn times to obtain Un, k := n
Coarse grid correction
(a) Compute Uk = Gνkk (Uk, fk) νk times on Ωk.
(b) Restrict Uk and the residual fk −Ak(Uk).
(c) Compute the right hand side fk−1 = Rkk−1(fk −Ak(Uk)) +Ak−1(Rkk−1(Uk)))

and set Uk−1 = Rkk−1(Uk), (here Rkk−1 is the restriction operator).
k := k − 1.
if k > 1 we go to (a), otherwise we are on Ω1 and we compute then
U1 = Gν1k (U1, f1) ν1 times.

(d) Compute the correction ek = Uk −Rk+1
k (Uk+1).

(e) Correct the solution with the prolongation of ek: Uk+1 = Uk+1 + Pk+1
k (ek),

(here Pkk−1 is the prolongation operator).
k := k + 1.
(f) Compute Uk = Gµk

k (Uk, fk) µk times on Ωk.
if k < n we go to (d), otherwise we are on Ωn.
Postsmoothing
Post-smooth µn times and perform a convergence test.

The following algorithm computes the price of a European Call option in the pres-
ence of transaction costs using the finite difference scheme described in Section 2.

Algorithm 2 Computation of a European option using the Barles’ and Soner’s model

Input: Smax, σ, K, r, a, T .
-Calculate the volatility correction by solving the ODE (5) using a fourth order

Runge-Kutta method.
-Interpolate the solution of (5) using a cubic spline method.

For n=0,. . . , T:
-Initialise V n and compute the nonlinear volatility correction.
-Compute V n+1 using Algorithm 1.
-Copy V n+1 in V n.

end for.

4. Numerical results

4.1. The V-cycle. We start our numerical simulations with a presentation of the
efficiency of the multigrid method. All the numerical experiments are performed on
uniform grids. We used the following parameters r = 0.1, σ = 0.2, K = 100, T =
1 (one year), dx = 0.1, dt = 10−3. We used a V-cycle with 4 levels, we set ν1 = 2
for pre and post smoothing and ν2 = 3 for coarse grid corrections. We have com-
pared the total CPU time elapsed with and without using the V-cycle approach. All
the numerical experiments were implemented in Mac OS X, 2.7GHz Intel core i5
processor.
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Figure 4. Comparison of rate of convergence for the V-cycle method
(multigrid) and monogrid using 4 different meshes (128, 256, 512 and
1024) in the linear case.
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Figure 5. Comparison of rate of convergence for the V-cycle method
(multigrid) and monogrid using 4 different meshes (128, 256, 512 and
1024) in the case of the Barles and Soner’s model.

Figures 4 and 5 represent a comparison of rate of convergence for both the V-
cycle and monogrid (standard Gauss-Seidel method) in the linear and nonlinear case
respectively. In Figure 4 the error reaches the tolerance 10−11 after 100 iterations
for N = 512 and 430 iterations for N = 1024 for the standard Gauss-Seidel method
in contrast to the multigrid method where the error reaches 10−12 after only 19 V-
cycle iterations for N = 512 and 64 iterations for N = 1024. In figure 5 the error
reaches 10−10 after more than 420 iteration in monogrid for N = 1024, while it took
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only 63 iterations for the error to reach 10−11 using the V-cycle for the same mesh
(N = 1024). Table 1 shows the time elapsed by the monogrid (standard Gauss-Seidel

Table 1. Comparison of the elapsed CPU time for the multigrid
method for different discretization steps for both the linear case and
the Barles’ and Soner’s model.

Mesh size Linear case Barles’ and Soner’s model
one grid Multigrid one grid Multigrid

N = 512 9 1 9 1
N = 1024 15.9 1 11.2 1
N = 2048 26 1 22.3 1

method) and the multigrid method for different discretization steps. It is apparent
that multigrid method gives better results. We scale the CPU time with the multigrid
method. Here 1 represents the calculation time needed for the multigrid method.

4.2. Back to the Barles’ and Soner’s equation. We end our numerical results
with an analysis of the effect of transaction costs on the option price. In Figure 6
we show the influence of transaction costs on the numerical solution, we observe that
the option price increases by increasing the parameter a. Note that the choice of the
constant a has a significant impact on the stability of the Crank-Nicolson scheme, in
fact, for a = 0.5, adjusting the time step was needed to overcome the instability of
the scheme.
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Figure 7. Value of the European option in the linear and nonlinear cases.

Figure (7) represents the value of the option price in the case of the Barles’ and
Soner’s model (a = 0.02) and in the linear case. As we can notice, there is a price
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Figure 6. Comparison of the difference between the linear and the
nonlinear case for differents transaction costs parameters a.

deviation between the linear and the nonlinear model. This is an expected result, in
fact, the option price when transaction costs occur is more expensive than the option
price in the linear case since it implies additional costs.

5. Conclusion

In this paper, we examined the effectiveness of the multigrid method on a fully
nonlinear Black-Scholes model. The numerical results showed a substantially im-
provement of the computational cost of the numerical solution in contrast to the
standard iterative method on a fine grid.
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