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Existence and nonexistence of solution to the discrete
fourth-order boundary value problem with parameters
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Abstract. In this paper, we consider the discrete fourth order boundary value problems with
three parameters. We apply the direct method of calculus variational and the mountain pass

theorem in order to establish the existence of at least one and three nontrivial solutions, also
we study the nonexistence of nontrivial solution.
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1. Introduction

Let T > 2 be a positive integer and [2, T ]Z be the discrete interval given by {2, 3, 4....., T}.
We consider the discrete nonlinear fourth order boundary value problems as follows:{

∆4u(k − 2)− α∆2u(k − 1) + βu(k) = λf(k, u(k)), k ∈ [2, T ]Z

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0
(1)

where ∆ denotes the forward difference operator defined by ∆u(k) = u(k+ 1)− u(k)
and ∆i+1u(k) = ∆(∆iu(k)), f : [2, T ]Z×R −→ R is a continuous function and α, β, λ
are parameters satisfying the conditions, λ > 0 and

(C) : 1 + (T − 1)Tα− + T (T − 1)3β− > 0

where : α− = min(α, 0) and β− = min(β, 0).
The theory of nonlinear difference equations has been widely used to study discrete

models in many fields such as computer science, economics, neural network, ecology,
cybernetics, etc. In recent years, a great deal of work has been done in the study of the
existence and multiplicity of solutions for discrete boundary value problem. For the
background and recent results, we refer the reader to the monographs [1, 2, 3, 4, 5, 17]
and the references therein.

We note that problem (1) is the discrete variant of a kind of the problem u(4)(t)− αu(2)(t) + βu(t) = λf(t, u(t)), t ∈ (0, 1)

u(0) = u′(0) = u′(1) = u(3)(0) = u(3)(1) = 0.
(2)

The special case of (2) has been studied by many authors using various approaches
[10, 11, 20].
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In [1, 5, 7, 18, 19], the authors have been investigated the existence and multiplicity
of solutions for nonlinear discrete boundary value problems with parameters using
variational methods. However, it seems that no similar results in the literatture on
the existence and nonexistence of nontrivial solutions for (1) have been obtained.

Motivated by [8, 9], the aim of this work is to give the existence, nonexistence,
and multiplicity of nontrivial solutions of (1) by using some basic theorems in critical
point theory and variational methods under some conditions imposed on the nonlinear
function f.

The rest of this paper is organized as follows, in section 2, we present some pre-
liminary theorems about the critical point theory. In section 3, we introduce the
corresponding variational framework of (1) and In section 4, we give the mains re-
sults and thier proofs in terms of different values of λ.

2. Preliminaries

In this section, we state some definitions and theorems that will be used below, we
can refer to ([6, 12, 13, 14, 15, 16]) for more details.

Definition 2.1. Let E be a real Banach space, D an open subset of E. Suppose that
a functional ϕ : D −→ R is Fréchet differentiable on D. If u0 ∈ D and the Fréchet
derivative satisfies ϕ′(u0) = 0, then we say that u0 is a critical point of the functional
ϕ and ϕ(u0) is a critical value of ϕ.

Let C1(E,R) denote the set of functionals that are Fréchet differentiable and their
Fréchet derivatives are continuous on E.

Definition 2.2. Let E be a real Banach space and ϕ ∈ C1(E,R). We say that ϕ
satisfies the Palais-Smale condition ((PS) condition for short) if for every sequence
(un) ∈ E such that ϕ(un) is bounded and ϕ′(un) −→ 0 as n −→ ∞ , there exists a
subsequence of (un) which is convergent in E.

Theorem 2.1. Let E be a real Banach space and ϕ : E −→ R. If ϕ is weakly lower
semi-continuous and coercive, i.e. lim

‖x‖→+∞
ϕ(x) = +∞, then there exists x0 ∈ E such

that
inf
x∈E

ϕ(x) = ϕ(x0).

Moreover, f ϕ ∈ C1(E,R), then x0 is a critical point of ϕ i.e. ϕ′(x0) = 0.

Theorem 2.2 (Mountain Pass Lemma). Let E be a real Banach space and ϕ ∈
C1(E,R) satisfying the (PS) condition with ϕ(0) = 0. Suppose that

(i) There exists ρ > 0 and α such that ϕ(u) ≥ α for all u ∈ E, with ‖u‖ = ρ.
(ii) There exists u0 ∈ E with ‖u‖ ≥ ρ such that ϕ(u0) < 0.

Then ϕ has a critical value c ≥ α and c = inf
h∈Γ

max
s∈[0,1]

ϕ(h(s)), where

Γ = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = u0}.

Theorem 2.3. Let E be a reflexive real Banach space and ϕ : E → R be a contin-
uously Gâteaux differentiable, coercive and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on E∗, ψ : E → R be
a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact
and ϕ(0) = ψ(0) = 0.
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Assume that there exist r ∈ R and ū ∈ E with 0 < r < ϕ(ū) such that

(i)

sup
u∈ϕ−1(]−∞,r])

ψ(u)

r
<
ψ(ū)

ϕ(ū)
,

(ii) for each λ ∈ Λ =

ϕ(ū)

ψ(ū)
,

r

sup
u∈ϕ−1(]−∞,r])

ψ(u)

, Iλ = ϕ− λψ is coercive.

Then, for each λ ∈ Λ, the Iλ has at least three distinct critical points in E.

Proposition 2.4. Let E be a real reflexive Banach space and E∗ be the dual space
of E. Suppose that T : E → E∗ is a continuous operator and there exists ω > 0 such
that

(Tu− Tv, u− v) ≥ ω‖u− v‖2 forall u, v ∈ E.

Then T : E → E∗ is a homeomorphism between E and E∗.

3. Variational framework for the problem (1)

In this section, we introduce the corresponding variational framework for (1). The
solutions of BVP (1.1) will be investigated in a space

E = {u : [0, T + 2]Z → R : u(0) = ∆u(0) = ∆u(T ) = 0 = ∆3u(0) = ∆3u(T − 1)},

which is a (T-1)-dimensional Hilbert space, see [18] with the inner product

(u, v) =

k=T∑
k=2

u(k)v(k).

The associated norm is defined by

‖u‖ =

(
k=T∑
k=2

|u(k)|2
) 1

2

.

We will need some preliminary lemmas in order to prove our main results.

Lemma 3.1. For any u, v ∈ E, we have,

k=T∑
k=2

∆4u(k − 2)v(k) =

k=T+1∑
k=2

∆2u(k − 2)∆2v(k − 2), (3)

and
k=T∑
k=2

∆u(k − 1)∆v(k − 1) = −
k=T∑
k=2

∆2u(k − 1)v(k) (4)

Proof. First, we prove (3).For any u, v ∈ E, by the summation by parts formula and
the fact that ∆v(0) = ∆v(T ) = 0, it follows that
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T+1∑
k=2

∆2u(k − 2)∆2v(k − 2) = ∆2u(T )∆v(T )−∆2u(0)∆v(0)−
T+1∑
k=2

∆3u(k − 2)∆v(k − 1)

= −
T+1∑
k=2

∆3u(k − 2)∆v(k − 1)

= −
T∑
k=2

∆3u(k − 2)∆v(k − 1),

on the other hand, by the summation by parts formula and the fact that ∆3u(0) =
∆3u(T − 1) = 0, we have

T∑
k=2

∆3u(k − 2)∆v(k − 1) = ∆3u(T − 1)v(T )−∆3u(0)v(1)−
T∑
k=2

∆4u(k − 2)v(k),

So
T∑
k=2

∆4u(k − 2)v(k) =

T+1∑
k=2

∆2u(k − 2)∆2v(k − 2),

i.e.(3) holds.
Next, we show (4). Again, by the summation by parts formula and the fact that

∆u(T ) = 0 and v(1) = 0, we have

T∑
k=2

∆u(k − 1)∆v(k − 1) = ∆u(T )v(T )−∆u(1)v(1)−
T∑
k=2

∆2u(k − 1)v(k)

= −
T∑
k=2

∆2u(k − 1)v(k).

This completes the proof of the lemma. �

Definition 3.1. We say that u ∈ E is a weak solution of problem (1), if for any
v ∈ E, we have

T∑
k=2

∆4u(k − 2)v(k)− α
T∑
k=2

∆2u(k − 1)v(k) + β

T∑
k=2

u(k)v(k) = λ

T∑
k=2

f(k, u(k))v(k)

We define the energy functional corresponding to (1) by, for u ∈ E
Iλ(u) = Φ(u)− λΨ(u), (5)

where

Ψ(u) =

T∑
k=2

F (k, u(k)), (6)

F (k, x) =

∫ x

0

f(k, t)dt, k ∈ [2, T ]Z,

and

Φ(u) =
1

2

(
T+1∑
k=2

|∆2u(k − 2)|2 + α

T∑
k=2

|∆u(k − 1)|2 + β

T∑
k=2

|u(k)|2
)
. (7)
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Standard argument assure that, with any fixed λ > 0 the functional Iλ is Fréchet
differentiable and the Fréchet derivative of Iλ is given by

(I ′λ(u), v) = (Φ′(u), v)− λ(Ψ ′(u), v), (8)

for any u, v ∈ E, where

(Ψ ′(u), v) =

T∑
k=2

f(k, u(k))v(k) (9)

and

(Φ′(u), v) =

T+1∑
k=2

∆2u(k − 2)∆2v(k − 2) + α

T∑
k=2

∆u(k − 1)∆v(k − 1) + β

T∑
k=2

u(k)v(k).

(10)
According to the Definition 3.1 and from equalities (8 - 10), finding solutions to the
problem (1) is like looking for the critical points of the functional Iλ, indeed

Lemma 3.2. If u ∈ E is a critical point of the functional Iλ then u is a solution of
problem (1).

Proof. Let u ∈ E is a critical point of the functional Iλ then

(I ′λ(u), v) = 0, ∀v ∈ E,

so from (8 - 10) and Lemma 3.1, we deduce that

T∑
k=2

∆4u(k−2)v(k)−α
T∑
k=2

∆2u(k−1)v(k)+β

T∑
k=2

u(k)v(k)−λ
T∑
k=2

f(k, u(k))v(k) = 0,

∀v ∈ E thus by the arbitrariness of v ∈ E, we have

∆4u(k − 2)− α∆2u(k − 1) + βu(k) = λf(k, u(k)),

then u ∈ E is a solution of the problem (1). �

Lemma 3.3. For any u ∈ E, we have Φ(u) ≥ 0 and

Φ(u) ≥ 1

2
µ‖u‖2, (11)

where

µ = T−1(T − 1)−3(1 + T (T − 1)α− + T (T − 1)3β−)

Proof. Let u ∈ E and k ∈ [2, T ]Z, note that

∆u(k − 1) = ∆u(0) +

k∑
i=2

∆2u(i− 2),

in fact that ∆u(0) = 0, then by Hölder’s inequality, we have

|∆u(k − 1)| ≤
k∑
i=2

|∆2u(i− 2)| ≤
T+1∑
i=2

|∆2u(i− 2)|

≤
√
T (

T+1∑
i=2

|∆2u(i− 2)|2)
1
2 ,
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so
T∑
k=2

|∆u(k − 1)|2 ≤ T (T − 1)

T+1∑
k=2

|∆2u(k − 2)|2.

Similarly, for any u ∈ E and k ∈ [2, T ]Z, note that

u(k) = u(1) +

k∑
i=2

∆u(i− 1),

in fact that u(1) = 0, then by Hölder’s inequality, we have

|u(k)| ≤
k∑
i=2

|∆u(i− 1)| ≤
T∑
i=2

|∆u(i− 1)|

≤
√
T − 1(

T∑
i=2

|∆u(i− 1)|2)
1
2 ,

then
T∑
k=2

|u(k)|2 ≤ (T − 1)2
T∑
k=2

|∆u(k − 1)|2,

so
T∑
k=2

|u(k)|2 ≤ T (T − 1)3
T+1∑
k=2

|∆2u(k − 2)|2,

therefore, from (7) and by summation the parts inequalities, we deduce that

Φ(u) ≥1

2
(1 + T (T − 1)α− + T (T − 1)3β−)

T+1∑
k=2

|∆2u(k − 2)|2

≥1

2
(1 + T (T − 1)α− + T (T − 1)3β−)T−1(T − 1)−3

T∑
k=2

|u(k)|2

≥1

2
(1 + T (T − 1)α− + T (T − 1)3β−)T−1(T − 1)−3‖u‖2,

then by (1), we deduce that

Φ(u) ≥ 0 and Φ(u) ≥ 1

2
µ‖u‖2.

The proof of lemma is completed. �

Lemma 3.4. For any u ∈ E, we have

Φ(u) ≤ 1

2
θ‖u‖2, (12)

where

θ = 20 + 4.α+ + β+, α+ = max(0, α) and β+ = max(0, β).

Proof. Firstly, for any u ∈ E, we have

T∑
k=2

|∆u(k − 1)|2 =

T∑
k=2

(|u(k)|2 + |u(k − 1)|2 − 2u(k)u(k − 1)),
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then, the fact that u(1) = 0 and by Hölder’s inequality, we have

T∑
k=2

|∆u(k − 1)|2 ≤ ‖u‖2 + ‖u‖2 + 2‖u‖2 = 4‖u‖2,

Next, note that
∆2u(k − 2) = u(k)− 2u(k − 1) + u(k − 2),

then
T+1∑
k=2

|∆2u(k − 2)|2 ≤
T+1∑
k=2

(|u(k)|2 + 4|u(k − 1)|2 + |u(k − 2)|2 − 4u(k)u(k − 1)

+2u(k)u(k − 2)− 4u(k − 1)u(k − 2))

≤
T+1∑
k=2

(|u(k)|2 + 4|u(k − 1)|2 + |u(k − 2)|2 + 4|u(k)||u(k − 1)|

+2|u(k)||u(k − 2)|+ 4|u(k − 1)||u(k − 2)|),
the fact that u(1) = 0, u(T + 1) = u(T ) and by Hölder’s inequality we deduce that

T+1∑
k=2

|∆2u(k − 2)|2 ≤ ‖u‖2 + |u(T )|2 + 4‖u‖2 + ‖u‖2

−|u(T )|2 + 8‖u‖2 + 4‖u‖2 + 2‖u‖2 = 20‖u‖2,
finally, for any u ∈ E, we have

Φ(u) ≤ 1

2
(20 + 4α+ + β+)‖u‖2 =

1

2
θ‖u‖2,

i.e (12) holds. �

4. Main results and proofs

In this section, we will use the critical point theory to study the existence, nonex-
istence and multiplicity of nontrivial solutions for the problem (1).

Theorem 4.1. Assume that the following conditions holds:
(H0) f(k, 0) 6= 0 for at least one k ∈ [2, T ]Z.

(H1) There exists C > 0 such that : max
k∈[2,T ]Z

lim sup
|x|→∞

F (k, x)

x2
< C.

Then for each λ ∈]0, µ
2C [ the problem (1) has at least one nontrivial solution.

Proof. To prove the theorem, we will use the Theorem 2.1. From (H1), there exist
R > 0 such that for any k ∈ [2, T ]Z, we have

F (k, x) ≤ Cx2, ∀|x| > R.

Since x 7→ F (k, x) − Cx2 is continuous on [−R,R] for any k ∈ [2, T ]Z, there exists
C ′ > 0 such that

F (k, x) ≤ Cx2 + C ′, ∀x ∈ R.
Therefore, by Lemma 3.3 and from (5), we deduce that for any u ∈ E, we have

Iλ(u) ≥ 1

2
µ‖u‖2 − λC

T∑
k=2

|u(k)|2 − (T − 1)λC ′,
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so

Iλ(u) ≥ (
1

2
µ− λC)‖u‖2 − (T − 1)λC ′,

then for all λ ∈
]
0, µ

2C

[
, we have lim

‖u‖−→∞
Iλ(u) = +∞, this prove that Iλ is coercive.

Since Iλ is Gâteaux differentiable and continuous, it has by Theorem 2.1 there exist
ũ ∈ E such that I ′λ(ũ) = 0, and by Lemma 3.2, ũ is a solution of (1). From (H0), it
is easy to see that ũ 6= 0. The proof is complete. �

Theorem 4.2. Assume that the following assumptions holds

(H2) f0 = max
k∈[2,T ]Z

lim sup
x→0

f(k, x)

x
∈ [0,+∞).

(H3) Suppose that there exists M > 0 such that

f∞ = min
k∈[2,T ]Z

lim inf
|x|→∞

f(k, x)

x
∈ (M,+∞).

(H4)
θ

M
<

µ

f0
.

Then for each λ ∈
]
θ
M , µf0

[
the (1) has at least one nontrivial solution.

Proof. We will check that the functional Iλ satisfies all the assumptions of theorem
2.2. Obviously, Iλ(0) = 0 where Iλ is given by (5).

First, we prove that Iλ satisfies the Palais-Smale conditions. Let {un} be a (PS)
sequence of Iλ, that is, Iλ(un) is bounded and I ′λ(un)→ 0 as n→∞.

We fixed λ ∈] θM , µf0 [. From (H3), there exist R > 0 such that for any k ∈ [2, T ]Z

f(k, x)

x
≥M, ∀|x| > R,

then, we have

(∀x > R) : f(k, x) ≥Mx and (∀x < −R) : f(k, x) ≤Mx.

This, together with the continuity of x 7→ f(k, x)−Mx, on [−R,R] for any k ∈ [2, T ]Z,
implies that there exist M ′ > 0 such that

f(k, x) ≤Mx+M ′, ∀x ∈ (−∞, 0], k ∈ [2, T ]Z,

and

f(k, x) ≥Mx−M ′, ∀x ∈ [0,+∞) , k ∈ [2, T ]Z.

Hence, for k ∈ [2, T ]Z, we have

∀x ≥ 0 : F (k, x) =

∫ x

0

f(k, t)dt ≥ 1

2
Mx2 −M ′x,

and

∀x ≤ 0 : F (k, x) = −
∫ 0

x

f(k, t)dt ≥ 1

2
Mx2 +M ′x =

1

2
Mx2 −M ′|x|.

Then for x ∈ R and k ∈ [2, T ]Z, we have

F (k, x) ≥ 1

2
Mx2 −M ′|x|.
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Therefore, by Lemma 3.4 and from (5), we have for u ∈ E

Iλ(un) ≤ 1

2
θ‖un‖2 −

1

2
λM‖un‖2 + λM ′

√
T − 1‖un‖,

so

Iλ(un) ≤ 1

2
(θ − λM)‖un‖2 + λM ′

√
T − 1‖un‖, (13)

since λ >
θ

M
and Iλ(un) is bounded then {un} is bounded. In view of the fact that

E is a finite dimension space, we deduce that Iλ satisfies the (PS) condition.

In the other hand, since λ ∈
]
θ

M
,
µ

f0

[
and from (H2), ∃ρ > 0, such that for |x| < ρ

and k ∈ [2, T ]Z

|f(k, x)| ≤ µ

λ
(1− ν)|x|

where ν =
λρ

µ
∈ (0, 1), so for |x| < ρ and k ∈ [2, T ]Z, we have

F (k, x) ≤ µ

2λ
(1− ν)ρ2.

Let

Bρ = {u ∈ E, ‖u‖ < ρ} and η =
1

2
µνρ2,

then for u ∈ ∂Bρ = {u ∈ E, ‖u‖ = ρ}, we have

Iλ(u) ≥ 1

2
µ‖u‖2 − 1

2
µ(1− ν)ρ2 =

1

2
µρ2 − 1

2
µ(1− ν)ρ2 = η,

this implies that the condition (I1) of Theorem 2.2 is satisfied.
Next, using (13) then for u ∈ E, we have

Iλ(u) ≤ 1

2
(θ − λM)‖u‖2 + λM ′

√
T − 1‖u‖.

Put ū = { ¯u(k)} ∈ E such that ū(k) = (
√
T − 1)−1, then for any t > 0, we have

Iλ(tū) ≤ 1

2
(θ − λM)t2‖ū‖2 + λM ′

√
T − 1‖ū‖ =

1

2
(θ − λM)t2 + λM ′(T − 1),

since λ >
θ

M
, then Iλ(tū) −→ −∞ as t −→ +∞, consequently there exists a suffi-

ciently large t0 > ρ such that u0 = t0ū /∈ B̄ρ and Iλ(u0) < 0. This implies that the
condition (I2) of Theorem 2.2 is satisfied. Therefore, the functional Iλ has a critical
value c∗ > 0, that is, ∃u∗ ∈ E such that I ′λ(u∗) = 0 and Iλ(u∗) = c∗ > 0. Since
Iλ(0) = 0 then u∗ 6= 0. �

Example 4.1. We consider the problem (1) with α = 1, β = 1 and T = 10. For
k ∈ [2, 10]Z and x ∈ R, let

f(k, x) = p(k)
x2

1 + x2
+ (10−2µ− θ − 1)

x

1 + |x|
+ (θ + 1)x,

where p(k) : [2, 10]Z −→ R is one polynomial and µ, θ are given by (11) and (12)
respectively.
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It is easy to verify that f∞ = θ+1 ∈ (M,+∞), with M = θ, f0 = 10−2µ ∈ [0,+∞)

and
θ

M
= 1 <

µ

f0
= 100. Hence by Theorem 4.2, when λ ∈ (1, 100) the problem (1)

has at least one nontrivial solution.

Theorem 4.3. Assume that there exists a > 0 and b > 0 with a < b
√
T − 1 and the

following conditions hold,
(H5) ∀x ∈ R and k ∈ [2, T ]Z : F (k, x) ≤ 1 + |x|.

(H6)
T∑
k=2

F (k, b) > 0.

(H7)
µa2

b2γ

T∑
k=2

F (k, b) > (T − 1) max
(k,x)∈[2,T ]Z×[−a,a]

F (k, x).

Where : γ = 10 + 3α+ + (T − 1)β+

Then for each λ ∈ Λ =

 γb2

2

T∑
k=2

F (k, b)

, µa2

(T−1) max
(k,x)∈[2,T ]Z×[−a,a]

F (k, x)

 the problem

(1) has at least three distinct solutions in E.

Proof. The functional Φ given by (7) is continuously Gâteaux differentiable and by
Lemma 3.3, we deduce that Φ is coercive, also we have the regularity assumptions
required on Φ and Ψ.

Firstly, we put r =
1

2
µa2 and pick ū ∈ E defined as for k ∈ [2, T ]Z : ū(k) = b.

Using Lemma 3.3 with u = ū and a < b
√
T − 1, we obtain

Φ(ū) ≥ 1

2
µ‖ū‖2 =

1

2
µ(T − 1)b2 >

1

2
µa2 = r.

Taking into the fact that, for any k ∈ [2, T ]Z,

|u(k)| ≤ ‖u‖ ≤

√
2.Φ(u)

µ
,

we have
Φ−1

((−∞,r]) ⊆ {u ∈ E : |u(k)| ≤ a, k ∈ [2, T ]Z},
then

sup
u∈Φ−1

((−∞,r])

Ψ(u) = sup
u∈Φ−1

((−∞,r])

T∑
k=2

F (k, u(k)) ≤ (T − 1) max
(k,x)∈[2,T ]Z×[−a,a]

F (k, x).

Therefore, from (H7), we have

sup
u∈Φ−1

((−∞,r])

Ψ(u) <

µa2

T∑
k=2

F (k, b)

b2γ
= r

2Ψ(ū)

γb2

it is easy to verify that

Φ(ū) =
1

2
(10 + 3α+ (T − 1)β)b2 ≤ 1

2
γb2.
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Then
sup

u∈Φ−1
((−∞,r])

Ψ(u)

r
<

Ψ(ū)

Φ(ū)
,

this implies that the assumption (i) of Theorem 2.3 is verified.
In other hand from (H5), (5) and by Lemma 3.3, we deduce that for any u ∈ E,

Iλ(u) ≥ 1

2
µ‖u‖2 − λ

T∑
k=2

(1 + |u(k)|) ≥ 1

2
µ‖u‖2 − λ(T − 1)− λ‖u‖

√
T − 1,

then Iλ is coercive, this imply that the assumption (ii) of Theorem 2.3 is verified.
It is clear that φ(0) = ψ(0) = 0, therefore the problem (1) has at least three distinct

solutions in E. �

Theorem 4.4. Assume that there exists B > 0 such that
(H8) max

k∈[2,T ]Z
(f0(k), f∞(k)) < B, where

f0(k) = lim
x→0

f(k, x)

x
and f∞(k) = lim

|x|→+∞

f(k, x)

x
.

Then there exist λ0 > 0 such that for any λ ∈]0, λ0[ the problem (1) has no nontrivial
solution.

Proof. From (H8), there exists R > r > 0 such that for any k ∈ [2, T ]Z, we have

xf(k, x) ≤ Bx2, |x| < r or |x| > R,

since for any k ∈ [2, T ]Z , x 7→ f(k, x)

x
, is continuous on [−R,−r] ∪ [r,R] then there

exist B′ > 0 such that

xf(k, x) ≤ B′x2, ∀x ∈ [−R,−r] ∪ [r,R], k ∈ [2, T ]Z.

So for B0 = max(B,B′), k ∈ [2, T ]Z and x ∈ R, we have

xf(k, x) ≤ B0x
2.

Therefore for any u ∈ E, we prove that

(Ψ′(u), u) ≤ B0‖u‖2.

In the other hand, for u ∈ E, we have (Φ′(u), u) = 2Φ(u) then by (7) we obtain u ∈ E

(I ′λ(u), u) ≥ µ‖u‖2 − λB0‖u‖2 = (µ− λB0)‖u‖2, ∀u ∈ E.

Pick λ0 =
µ

B0
> 0 then we deduce that, for all λ ∈]0, λ0[ and u ∈ E, u 6= 0

(I ′λ(u), u) > 0,

which implies that I ′λ(u) 6= 0 for u ∈ E, u 6= 0. Then the functional Iλ does not admit
critical point u 6= 0, this complete the proof. �

Remark 4.1. It is easy to see that, if for (k, x) ∈ [2, T ]Z × R : xf(k, x) ≤ 0 the
problem (1) has no nontrivial solution for any λ ∈]0,+∞[.
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