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New generalization of Hermite-Hadamard type inequalities
via generalized fractional integrals
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Abstract. In this paper we obtain new generalization of Hermite-Hadamard inequalities via

generalized fractional integrals defined by Sarikaya and Ertuğral. We establish some midpoint
and trapezoid type inequalities for functions whose first derivatives in absolute value are convex

involving generalized fractional integrals.
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1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are considerable significant in the literature (see, e.g.,[6], [11], [24, p.137]). These
inequalities state that if f : I → R is a convex function on the interval I of real
numbers and a, b ∈ I with a < b, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
. (1)

Both inequalities hold in the reversed direction if f is concave. We note that
Hadamard’s inequality may be regarded as a refinement of the concept of convexity
and it follows easily from Jensen’s inequality.

The Hermite-Hadamard inequality, which is the first fundamental result for convex
mappings with a natural geometrical interpretation and many applications, has drawn
attention much interest in elementary mathematics. A number of mathematicians
have devoted their efforts to generalise, refine, counterpart and extend it for different
classes of functions such as using convex mappings.

The overall structure of the study takes the form of six sections including intro-
duction. The remainder of this work is organized as follows: we first mention some
works which focus on Hermite-Hadamard inequality. In Section 2, we summarize the
generalized fractional integrals defined by Sarikaya and Ertuğral along with the very
first results. In section 3 new Hermite-Hadamard type inequalities for generalized
fractional integrals are proved. In Section 4 and Section 5 midpoint and trapezoid
type inequalities for functions whose first derivatives in absolute value are convex
via generalized fractional integrals are presented, respectively. Some conclusions and
further directions of research are discussed in Section 6.
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In [7], Dragomir and Agarwal establish the following identity and using this iden-
tity, present some bounds for the right hand side of the inequality (1).

Lemma 1.1. Let f : I∗ → R be differentiable function on I∗, a, b ∈ I∗ (I∗ is interior
of I) with a < b. If f ′ ∈ L [a, b] , then we following equality holds:

f(a) + f(b)

2
− 1

b− a

b∫
a

f(t)dt =
b− a

2

 1∫
0

(1− 2t)f ′(ta+ (1− t)b)dt

 . (2)

In [21], U. S. Kırmacı give the following identity and using this identity, obtain
some bounds for the left hand side of the inequality (1).

Lemma 1.2. Let f : I∗ → R be differentiable function on I∗, a, b ∈ I∗ (I∗ is interior
of I) with a < b. If f ′ ∈ L [a, b] , then we have

1

b− a

b∫
a

f(t)dt− f
(
a+ b

2

)

= (b− a)


1
2∫

0

tf ′(ta+ (1− t)b)dt+

1∫
1
2

(1− t) f ′(ta+ (1− t)b)dt

 . (3)

Over the last twenty years, the numerous studies have focused on to obtain new
bound for left hand side and right and side of the inequality (1). For some examples,
please refer to ([1], [3], [4], [6], [26]-[28], [34]).

On the other hand, Sarikaya et al. obtain the Hermite-Hadamard inequality for
the Riemann-Lioville fractional integrals in [31]. Sarıkaya and Yıldırım also give
the following Hermite-Hadamard type inequality for the Riemann-Lioville fractional
integrals in [30].

Theorem 1.3. Let f : [a, b]→ R be a positive function with a < b and f ∈ L1 [a, b] . If
f is a convex function on [a, b] , then the following inequalities for fractional integrals
hold:

f

(
a+ b

2

)
≤ 2α−1Γ(α+ 1)

(b− a)
α

[
Jα
( a+b2 )

+f(b) + Jα
( a+b2 )

−f(a)

]
≤ f(a) + f(b)

2
. (4)

Whereupon Sarikaya et al. obtain the Hermite-Hadamard inequality for Riemann-
Lioville fractional integrals, many authors have studied to generalize this inequal-
ity and establish Hermite-Hadamard inequality other fractional integrals such as k-
fractional integral, Hadamard fractional integrals, Katugampola fractional integrals,
Conformable fractional integrals, etc. For some of them, please see ([2], [5], [8], [9],
[12], [13], [14]-[17], [23], [25], [32], [33], [35]-[38]). For more information about fraction
calculus please refer to ([10], [20]).

In this paper, we obtain the new generalized Hermite-Hadamard type inequality
for the generalized fractional integrals mentioned in next section.

2. New Generalized Fractional Integral Operators

In this section we summarize the generalized fractional integrals defined by Sarikaya
and Ertuğral in [29].
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Let’s define a function ϕ : [0,∞)→ [0,∞) satisfying the following conditions :∫ 1

0

ϕ (t)

t
dt <∞.

We define the following left-sided and right-sided generalized fractional integral oper-
ators, respectively, as follows:

a+Iϕf(x) =

∫ x

a

ϕ (x− t)
x− t

f(t)dt, x > a, (5)

b−Iϕf(x) =

∫ b

x

ϕ (t− x)

t− x
f(t)dt, x < b. (6)

The most important feature of generalized fractional integrals is that they general-
ize some types of fractional integrals such as Riemann-Liouville fractional integral, k-
Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable
fractional integral, Hadamard fractional integrals, etc. These important special cases
of the integral operators (5) and (6) are mentioned below.

i) If we take ϕ (t) = t, the operator (5) and (6) reduce to the Riemann integral as
follows:

I
a+
f(x) =

∫ x

a

f(t)dt, x > a,

Ib−f(x) =

∫ b

x

f(t)dt, x < b.

ii) If we take ϕ (t) = tα

Γ(α) , the operator (5) and (6) reduce to the Riemann-Liouville

fractional integral as follows:

Iα
a+
f(x) =

1

Γ (α)

∫ x

a

(x− t)α−1
f(t)dt, x > a,

Iαb−f(x) =
1

Γ (α)

∫ b

x

(t− x)
α−1

f(t)dt, x < b.

iii) If we take ϕ (t) = 1
kΓk(α) t

α
k , the operator (5) and (6) reduce to the k-Riemann-

Liouville fractional integral as follows:

Iα
a+,k

f(x) =
1

kΓk (α)

∫ x

a

(x− t)
α
k−1

f(t)dt, x > a,

Iαb−,kf(x) =
1

kΓk (α)

∫ b

x

(t− x)
α
k−1

f(t)dt, x < b

where

Γk (α) =

∫ ∞
0

tα−1e−
tk

k dt, R(α) > 0

and

Γk (α) = k
α
k−1Γ

(α
k

)
, R(α) > 0; k > 0

are given by Mubeen and Habibullah in [22].
iv) If we take

ϕ (t) =
1

Γ (α)
t (x− t)s

(
xs+1 − ts+1

)α−1
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and

ϕ (t) =
1

Γ (α)
t (t− x)

s (
ts+1 − xs+1

)α−1
,

in the operators (5) and (6), respectively, then the (5) and (6) reduce to the Katugam-
pola fractional operators as follows for α > 0 and s 6= −1 is a real numbers:

Iα
a+,s

f(x) =
(s+ 1)

1−α

Γ (α)

∫ x

a

(
xs+1 − ts+1

)α−1
tsf(t)dt, x > a,

Iαb−,sf(x) =
(s+ 1)

1−α

Γ (α)

∫ b

x

(
xs+1 − ts+1

)α−1
tsf(t)dt, , x < b

are given by Katugampola in [18].

v) If we take ϕ (t) = t (x− t)α−1
, the operator (5) reduces to the conformable

fractional operators as follows:

Iα
a
f(x) =

∫ x

a

tα−1f(t)dt =

∫ x

a

f(t)dαt, x > a, α ∈ (0, 1)

is given by Khalil et.al in [19].
Sarıkaya and Ertuğral also establish the following Hermite-Hadamard inequality

for the generalized fractional integral operators:

Theorem 2.1. Let f : [a, b] → R be a convex function on [a, b] with a < b, then the
following inequalities for fractional integral operators hold

f

(
a+ b

2

)
≤ 1

2Λ(1)
[a+Iϕf(b) +b− Iϕf(a)] ≤ f(a) + f(b)

2
(7)

where the mapping Λ : [0, 1]→ R is defined by

Λ(x) =

x∫
0

ϕ ((b− a) t)

t
dt.

3. Hermite-Hadamard Type Inequalities for Generalized Fractional Inte-
gral Operators

In this section, we will present a theorem for Hermite-Hadamard type inequalities
with generalized fractional integral operators which is the generalization of previous
work.

Theorem 3.1. Let f : [a, b] → R be a function with a < b and f ∈ L1 [a, b] . If f
is a convex function on [a, b] , then we have the following inequalities for generalized
fractional integral operators:

f

(
a+ b

2

)
≤ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
≤ f(a) + f(b)

2
(8)

where the mapping Ψ : [0, 1]→ R is defined by

Ψ(x) =

x∫
0

ϕ
(
b−a

2 t
)

t
dt.
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Proof. Since f is a convex function on [a, b] , we have for x, y ∈ [a, b]

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

For x = t
2a+ 2−t

2 b and y = 2−t
2 a+ t

2b, we obtain

2f

(
a+ b

2

)
≤ f

(
t

2
a+

2− t
2

b

)
+ f

(
2− t

2
a+

t

2
b

)
. (9)

Multiplying both sides of (9) by
ϕ( b−a2 t)

t , then integrating the resulting inequality
with respect to t over [0, 1] , we get

2f

(
a+ b

2

) 1∫
0

ϕ
(
b−a

2 t
)

t
dt

≤
1∫

0

ϕ
(
b−a

2 t
)

t
f

(
t

2
a+

2− t
2

b

)
dt+

1∫
0

ϕ
(
b−a

2 t
)

t
f

(
2− t

2
a+

t

2
b

)
dt.

For u = t
2a+ 2−t

2 b and v = 2−t
2 a+ t

2b, we obtain

2f

(
a+ b

2

)
Ψ(1)dt ≤

b∫
a+b
2

ϕ (b− u)

b− u
f (u) du+

a+b
2∫
a

ϕ (v − a)

v − a
f (v) dv

=
[
( a+b2 )+Iϕf(b) + ( a+b2 )−Iϕf(a)

]
and the first inequality is proved.

For the proof of the second inequality (8), we first note that if f is a convex function,
it yields

f

(
t

2
a+

2− t
2

b

)
≤ t

2
f(a) +

2− t
2

f(b)

and

f

(
2− t

2
a+

t

2
b

)
≤ 2− t

2
f(a) +

t

2
f(b).

By adding these inequalities together, one has the following inequality:

f

(
t

2
a+

2− t
2

b

)
+ f

(
2− t

2
a+

t

2
b

)
≤ f(a) + f(b). (10)

Then multiplying both sides of (10) by
ϕ( b−a2 t)

t and integrating the resulting inequality
with respect to t over [0, 1] , we obtain

1∫
0

ϕ
(
b−a

2 t
)

t
f

(
t

2
a+

2− t
2

b

)
dt+

1∫
0

ϕ
(
b−a

2 t
)

t
f

(
2− t

2
a+

t

2
b

)
dt

≤ [f(a) + f(b)]

1∫
0

ϕ
(
b−a

2 t
)

t
dt.
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That is, [
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
≤ Ψ(1) [f(a) + f(b)] .

Hence, the proof is completed. �

Remark 3.1. Under assumption of Theorem 3.1 with ϕ (t) = t, then inequalities 8
reduce to the inequalities (1).

Remark 3.2. Under assumption of Theorem 3.1 with ϕ (t) = tα

Γ(α) , then inequalities

8 reduce to the inequalities (4).

Remark 3.3. Under assumption of Theorem 3.1 with ϕ (t) = t
α
k

kΓk(α) , then Theorem

3.1 reduces to Theorem 1.1 in [8].

4. Midpoint Type Inequalities for Differentiable Functions with General-
ized Fractional Integral Operators

In this section, firstly we need to give a lemma for differentiable functions which
will help us to prove our main theorems. Then, we present some midpoint type
inequalities which are the generalization of those given in earlier works.

Lemma 4.1. Let f : [a, b] → R be differentiable function on (a, b) with a < b. If
f ′ ∈ L [a, b] , then we have the following identity for generalized fractional integral
operators:

1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)

=
b− a
4Ψ(1)

 1∫
0

Ψ(t)f ′
(
t

2
a+

2− t
2

b

)
dt−

1∫
0

Ψ(t)f ′
(

2− t
2

a+
t

2
b

)
dt

 (11)

where the mapping Ψ(t) is defined as in Theorem 3.1.

Proof. Integrating by parts gives

I1 =

1∫
0

Ψ(t)f ′
(
t

2
a+

2− t
2

b

)
dt

= − 2

b− a
Ψ(t)f

(
t

2
a+

2− t
2

b

)∣∣∣∣1
0

+
2

b− a

1∫
0

ϕ
(
b−a

2 t
)

t
f

(
t

2
a+

2− t
2

b

)
dt

= − 2

b− a
Ψ(1)f

(
a+ b

2

)
+

2

b− a ( a+b2 )+Iϕf(b) (12)

and similarly we get

I2 =

1∫
0

Ψ(t)f ′
(

2− t
2

a+
t

2
b

)
dt =

2

b− a
Ψ(1)f

(
a+ b

2

)
− 2

b− a ( a+b2 )−Iϕf(a).

(13)
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By subtracting equation (13) from (12), we have

b− a
4Ψ(1)

(I1 − I2) = −Ψ(1)f

(
a+ b

2

)
+

1

2Ψ(1)

[
( a+b2 )+Iϕf(b) + ( a+b2 )−Iϕf(a)

]
.

By re-arranging the last equality above, we get the desired result. �

Remark 4.1. Under assumption of Lemma 4.1 with ϕ (t) = t, then the equality (11)
reduces to the equality (3).

Remark 4.2. Under assumption of Lemma 4.1 with ϕ (t) = tα

Γ(α) , then Lemma 4.1

reduces to Lemma 3 in [30].

Remark 4.3. Under assumption of Lemma 4.1 with ϕ (t) = t
α
k

kΓk(α) , then Lemma 4.1

reduces to Lemma 3.1 in [8].

Theorem 4.2. Let f : [a, b] → R be differentiable function on (a, b) with a < b. If
|f ′| is convex function, then we have the following inequality for generalized fractional
integral operators:∣∣∣∣ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Ψ(t)| dt

 [|f ′ (a)|+ |f ′ (b)|]

where the mapping Ψ(t) is defined as in Theorem 3.1.

Proof. From Lemma 4.1, by using the convexity of |f ′|, we have∣∣∣∣ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Ψ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

1∫
0

|Ψ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt


≤ b− a
4Ψ(1)

 1∫
0

|Ψ(t)|
[
t

2
|f ′ (a)|+ 2− t

2
|f ′ (b)|

]
dt

+

1∫
0

|Ψ(t)|
[

2− t
2
|f ′ (a)|+ t

2
|f ′ (b)|

]
dt


=

b− a
4Ψ(1)

 1∫
0

|Ψ(t)| dt

 [|f ′ (a)|+ |f ′ (b)|] .

This completes the proof. �

Remark 4.4. Under assumption of Theorem 4.2 with ϕ (t) = t, then Theorem 4.2
reduces to Theorem 2.2 in [21].

Remark 4.5. Under assumption of Theorem 4.2 with ϕ (t) = tα

Γ(α) , then Theorem

4.2 reduces to Theorem 5 (for q = 1) in [30].



376 H. BUDAK, F. ERTUĞRA, AND M. Z. SARIKAYA

Remark 4.6. Under assumption of Theorem 4.2 with ϕ (t) = t
α
k

kΓk(α) , then Theorem

4.2 reduces to Theorem 3.1 (for q = 1) in [8].

Corollary 4.3. Under assumption of Theorem 4.2 with ϕ (t) = t
α exp

(
− 1−α

α t
)
, then

for A = 1−α
α

b−a
2 we have the following inequality∣∣∣∣ 1− α

2 [1− exp {−A}]

[
Iα( a+b2 )+

f(b) + Iα( a+b2 )−f(a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

2

A+ exp {−A} − 1

A (1− exp {−A})

[
|f ′ (a)|+ |f ′ (b)|

2

]
.

Theorem 4.4. Let f : [a, b] → R be differentiable function on (a, b) with a < b. If
|f ′|q , q > 1, is convex function, then we have the following inequality for generalized
fractional integral operators:∣∣∣∣ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Ψ(t)|p dt


1
p [(

|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

+

(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

]

≤ b− a
2

2
q Ψ(1)

 1∫
0

|Ψ(t)|p dt


1
p

[|f ′ (a)|+ |f ′ (b)|] (14)

where 1
p + 1

q = 1 and the mapping Ψ is defined as in Theorem 3.1.

Proof. Taking modulus of (11) and using the well-known Hölder inequality, we obtain∣∣∣∣ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Ψ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

1∫
0

|Ψ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt


≤ b− a
4Ψ(1)

 1∫
0

|Ψ(t)|p dt


1
p

×


 1∫

0

∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣q dt


1
q

+

 1∫
0

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣q dt


1
q

 . (15)

Since |f ′|q , q > 1, is convex, we have

1∫
0

∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣q dt ≤
1∫

0

[
t

2
|f ′ (a)|q +

2− t
2
|f ′ (b)|q

]
dt =

|f ′ (a)|q + 3 |f ′ (b)|q

4

(16)
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and similarly
1∫

0

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣q dt ≤ 3 |f ′ (a)|q + |f ′ (b)|q

4
. (17)

By substituting inequalities (16) and (17) into (15), we obtain the first inequalty in
(14).

For the proof of second inequality, let a1 = |f ′ (a)|q , b1 = 3 |f ′ (b)|q , a2 = 3 |f ′ (a)|q
and b2 = |f ′ (b)|q . Using the fact that

n∑
k=1

(ak + bk)
s ≤

n∑
k=1

ask +

n∑
k=1

bsk, 0 ≤ s < 1 (18)

and 1 + 3
1
q ≤ 4 then the desired result can be obtained straightforwardly. �

Remark 4.7. Under assumption of Theorem 4.4 with ϕ (t) = t, then Theorem 4.4
reduces to combining of Theorem 2.3 and Theorem 2.4 in [21].

Remark 4.8. Under assumption of Theorem 4.4 with ϕ (t) = tα

Γ(α) , then Theorem

4.4 reduces to Theorem 6 in [30].

Remark 4.9. Under assumption of Theorem 4.4 with ϕ (t) = t
α
k

kΓk(α) , then Theorem

4.4 reduces to Theorem 3.2 in [8].

Corollary 4.5. Under assumption of Theorem 4.4 with ϕ (t) = t
α exp

(
− 1−α

α t
)
, then

for A = 1−α
α

b−a
2 we have the following inequality for the fractional integrals with

exponential kernel∣∣∣∣ 1− α
2 [1− exp {−A}]

[
Iα( a+b2 )+

f(b) + Iα( a+b2 )−f(a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4 [1− exp {−A}]

 1∫
0

(1− exp {−At})p dt


1
p

×

[(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

+

(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

]

≤ b− a
2

2
q [1− exp {−A}]

 1∫
0

(1− exp {−At})p dt


1
p

[|f ′ (a)|+ |f ′ (b)|] .

Theorem 4.6. Let f : [a, b] → R be differentiable function on (a, b) with a < b. If
|f ′|q , q ≥ 1, is a convex function, then we have the following inequality for generalized
fractional integral operators:∣∣∣∣ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

22+ 1
q Ψ(1)

 1∫
0

|Ψ(t)| dt

1− 1
q[(
B1 |f ′ (a)|q +B2 |f ′ (b)|

q) 1
q +

(
B2 |f ′ (a)|q +B1 |f ′ (b)|

q) 1
q

]
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where the mapping Ψ(t) is defined as in Theorem 3.1 and the constants B1 and B2

are defined by

B1 =

1∫
0

|Ψ(t)| tdt and B2 =

1∫
0

|Ψ(t)| (2− t) dt.

Proof. The case of q = 1 is obvious from Theorem 4.2.
For q > 1 we proceed as follows. Taking modulus of (11) and using well-known

power mean inequality, we obtain∣∣∣∣ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Ψ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

1∫
0

|Ψ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt


≤ b− a
4Ψ(1)

 1∫
0

|Ψ(t)| dt

1− 1
q


 1∫

0

|Ψ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣q dt


1
q

+

 1∫
0

|Ψ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣q dt


1
q

 .
Since |f ′|q is convex, we have∣∣∣∣ 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Ψ(t)| dt

1− 1
q


 1∫

0

|Ψ(t))|
[
t

2
|f ′ (a)|q +

2− t
2
|f ′ (b)|q

]
dt


1
q

+

 1∫
0

|Ψ(t)|
[

2− t
2
|f ′ (a)|q +

t

2
|f ′ (b)|q

]
dt


1
q


=

b− a
22+ 1

q Ψ(1)

 1∫
0

|Ψ(t)| dt

1− 1
q[(
B1 |f ′ (a)|q +B2 |f ′ (b)|

q) 1
q +

(
B2 |f ′ (a)|q +B1 |f ′ (b)|

q) 1
q

]
which completes the proof. �

Remark 4.10. Under assumption of Theorem 4.6 with ϕ (t) = t, then we have the
inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f(t)dt− f
(
a+ b

2

)∣∣∣∣∣∣ ≤ b− a
8

[(
|f ′ (a)|q + 2 |f ′ (b)|q

3

) 1
q

+

(
2 |f ′ (a)|q + |f ′ (b)|q

3

) 1
q

]

≤ 31− 1
q

8
(b− a) [|f ′ (a)|+ |f ′ (b)|] . (19)
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Proof. The proof of the second inequality is obvious from the inequality (18) a1 =
|f ′ (a)|q , b1 = 2 |f ′ (b)|q , a2 = 2 |f ′ (a)|q and b2 = |f ′ (b)|q. �

Remark 4.11. Under assumption of Theorem 4.6 with ϕ (t) = tα

Γ(α) , then Theorem

4.6 reduces to Theorem 5 in [30].

Remark 4.12. Under assumption of Theorem 4.6 with ϕ (t) = t
α
k

kΓk(α) , then Theorem

4.6 reduces to Theorem 3.1 in [8].

5. Trapezoid Type Inequalities for Differentiable Functions with General-
ized Fractional Integral Operators

In this section, firstly we need to give a lemma for differentiable functions which
will help us to prove our main theorems. Then, we present some trapezoid type
inequalities which are the generalization of those given in earlier studies.

Lemma 5.1. Let f : [a, b] → R be differentiable function on (a, b) with a < b. If
f ′ ∈ L [a, b] , then we have the following identity for generalized fractional integral
operators:

f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]
=

b− a
4Ψ(1)

 1∫
0

Φ(t)f ′
(
t

2
a+

2− t
2

b

)
dt−

1∫
0

Φ(t)f ′
(

2− t
2

a+
t

2
b

)
dt

 . (20)

where the mapping Φ(t) is defined by

Φ(t) =

1∫
t

ϕ
(
b−a

2 u
)

u
du,

with Φ(0) = Ψ(1).

Proof. Integrating by parts, we have

I3 =

1∫
0

Φ(t)f ′
(
t

2
a+

2− t
2

b

)
dt

= − 2

b− a
Φ(t)f

(
t

2
a+

2− t
2

b

)∣∣∣∣1
0

− 2

b− a

1∫
0

ϕ
(
b−a

2 t
)

t
f

(
t

2
a+

2− t
2

b

)
dt

=
2

b− a
Ψ(1)f (b)− 2

b− a ( a+b2 )+Iϕf(b) (21)

and similarly we get

I4 =

1∫
0

Φ(t)f ′
(

2− t
2

a+
t

2
b

)
dt = − 2

b− a
Ψ(1)f (a) +

2

b− a ( a+b2 )−Iϕf(a). (22)



380 H. BUDAK, F. ERTUĞRA, AND M. Z. SARIKAYA

Thus, we have

b− a
4Ψ(1)

(I3 − I4) =
f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) + ( a+b2 )−Iϕf(a)

]
.

This completes the proof. �

Remark 5.1. Under assumption of Lemma 5.1 with ϕ (t) = t, then the identity (20)
reduces to the identity (2).

Remark 5.2. Under assumption of Lemma 5.1 with ϕ (t) = tα

Γ(α) , then Lemma 5.1

reduces to Lemma 2 (for x = a+b
2 ) in [25].

Corollary 5.2. Under assumption of Lemma 5.1 with ϕ (t) = t
α
k

kΓk(α) , then we have

the following important identity for k-fractional integrals

f(a) + f(b)

2
− 2

α
k−1Γk(α+ k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−

f(a)

]

=
b− a

4

 1∫
0

(
1− tαk

)
f ′
(
t

2
a+

2− t
2

b

)
dt−

1∫
0

(
1− tαk

)
f ′
(

2− t
2

a+
t

2
b

)
dt

 .
Theorem 5.3. Let f : [a, b]→ R be differentiable function on (a, b) with a < b. If |f ′|
is a convex function, then we have the following inequality for generalized fractional
integral operators:∣∣∣∣f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Φ(t)| dt

 [|f ′ (a)|+ |f ′ (b)|] .

Proof. From Lemma 5.1, by the using convexity of |f ′| , we have∣∣∣∣f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Φ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

1∫
0

|Φ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt


≤ b− a
4Ψ(1)

 1∫
0

|Φ(t)|
[
t

2
|f ′ (a)|+ 2− t

2
|f ′ (b)|

]
dt+

1∫
0

|Φ(t)|
[

2− t
2
|f ′ (a)|+ t

2
|f ′ (b)|

]
dt


=

b− a
4Ψ(1)

 1∫
0

|Φ(t)| dt

 [|f ′ (a)|+ |f ′ (b)|]

which completes the proof. �

Remark 5.3. Under assumption of Theorem 5.3 with ϕ (t) = t, then Theorem 5.3
reduce to Theorem 2.3 in [7].
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Corollary 5.4. Under assumption of Theorem 5.3 with ϕ (t) = tα

Γ(α) , then we have

the following important fractional inequality related to right-hand side of the inequality
4, ∣∣∣∣f(a) + f(b)

2
− 2α−1Γ(α+ 1)

(b− a)
α

[
Jα
( a+b2 )

+f(b) + Jα
( a+b2 )

−f(a)

]∣∣∣∣
≤ b− a

2

α

α+ 1

[
|f ′ (a)|+ |f ′ (b)|

2

]
.

Remark 5.4. Under assumption of Theorem 5.3 with ϕ (t) = t
α
k

kΓk(α) ,then we have the

following important inequality related to right-hand side of the Hermite-Hadamard
inequality for k-fractional integrals,∣∣∣∣∣f(a) + f(b)

2
− 2

α
k−1Γk(α+ k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−

f(a)

]∣∣∣∣∣
≤ b− a

2

(
α+ 1− k
α+ 1

)[
|f ′ (a)|+ |f ′ (b)|

2

]
.

Theorem 5.5. Let f : [a, b] → R be differentiable function on (a, b) with a < b. If
|f ′|q , q > 1, is a convex function, then we have the following inequality for generalized
fractional integral operators:∣∣∣∣f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Φ(t)|p dt


1
p [(

|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

+

(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

]

≤ b− a
2

2
q Ψ(1)

 1∫
0

|Φ(t)|p dt


1
p

[|f ′ (a)|+ |f ′ (b)|] (23)

where 1
p + 1

q = 1 and the mappings Ψ and Φ are defined as above.

Proof. Similar to proof of Theorem 4.4, by using the well-known Hölder inequality
and convexity of |f ′|q, we obtain∣∣∣∣f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Φ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

1∫
0

|Φ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt


≤ b− a
4Ψ(1)

 1∫
0

|Φ(t)|p dt


1
p [(

|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

+

(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

]
.

This completes the proof of first inequality in (23)
The proof of second inequality in (23) is obvious from the inequality (18). �
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Remark 5.5. Under assumption of Theorem 5.5 with ϕ (t) = t, then we have∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣
≤ b− a

4

(
1

p+ 1

) 1
p

[(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

+

(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

]

≤ b− a
4

(
4

p+ 1

) 1
p

[|f ′ (a)|+ |f ′ (b)|] .

Corollary 5.6. Under assumption of Theorem 5.5 with ϕ (t) = tα

Γ(α) , then we have

the following important fractional inequality related to right-hand side of the inequality
4, ∣∣∣∣f(a) + f(b)

2
− 2α−1Γ(α+ 1)

(b− a)
α

[
Jα
( a+b2 )

+f(b) + Jα
( a+b2 )

−f(a)

]∣∣∣∣
≤ b− a

4

(
1

pα+ 1

) 1
p

[(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

+

(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

]

≤ b− a
4

(
4

pα+ 1

) 1
p

[|f ′ (a)|+ |f ′ (b)|] .

Corollary 5.7. Under assumption of Theorem 5.5 with ϕ (t) = t
α
k

kΓk(α) , then we have

the following important inequality related to right-hand side of the Hermite-Hadamard
inequality for k-fractional integrals,∣∣∣∣∣f(a) + f(b)

2
− 2

α
k−1Γk(α+ k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−

f(a)

]∣∣∣∣∣
≤ b− a

4

(
k

pα+ k

) 1
p

[(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

+

(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

]

≤ b− a
4

(
4k

pα+ k

) 1
p

[|f ′ (a)|+ |f ′ (b)|] .

Proof. Using the fact that |tw1 − tw2 | ≤ |t1 − t2|
w

for w ∈ (0, 1] and ∀ t1, t2 ∈ [0, 1], we
have

1∫
0

|Φ(t)|p dt =

[
1

Γk(α+ k)

(
b− a

2

)α
k

]p 1∫
0

(
1− tαk

)p
dt

≤

[
1

Γk(α+ k)

(
b− a

2

)α
k

]p 1∫
0

(1− t)
α
k p dt

=

[
1

Γk(α+ k)

(
b− a

2

)α
k

]p
k

pα+ k

which completes the proof. �



NEW GENERALIZATION OF HERMITE-HADAMARD TYPE INEQUALITIES ... 383

Theorem 5.8. Let f : [a, b] → R be differentiable function on (a, b) with a < b. If
|f ′|q , q ≥ 1, is convex function, then we have the following inequality for generalized
fractional integral operators:∣∣∣∣f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]∣∣∣∣
≤ b− a

22+ 1
q Ψ(1)

 1∫
0

|Φ(t)| dt

1− 1
q

×
[(
B5 |f ′ (a)|q +B6 |f ′ (b)|

q) 1
q +

(
B6 |f ′ (a)|q +B5 |f ′ (b)|

) 1
q

]
where the mappings Ψ and Φ as above and the constants B5 and B6 are defined by

B5 =

1∫
0

|Φ(t)| tdt and B6 =

1∫
0

|Φ(t)| (2− t) dt.

Proof. The case of the q = 1 is obvious from the Theorem 5.3.
For q > 1, using well-known power mean inequality in Lemma 5.1, we obtain∣∣∣∣f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Φ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

1∫
0

|Φ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt


≤ b− a
4Ψ(1)

 1∫
0

|Φ(t)|q dt

1− 1
q

×


 1∫

0

|Φ(t)|
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣q dt


1
q

+

 1∫
0

|Φ(t)|
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣q dt


1
q

 .
By the using convexity of |f ′|q, we have∣∣∣∣f(a) + f(b)

2
− 1

2Ψ(1)

[
( a+b2 )+Iϕf(b) +( a+b2 )− Iϕf(a)

]∣∣∣∣
≤ b− a

4Ψ(1)

 1∫
0

|Φ(t)|q dt

1− 1
q


 1∫

0

|Φ(t)|
[
t

2
|f ′ (a)|q +

2− t
2
|f ′ (b)|q

]
dt


1
q

+

 1∫
0

|Φ(t)|
[

2− t
2
|f ′ (a)|q + |f ′ (b)|q t

2

]
dt


1
q


=

b− a
22+ 1

q Ψ(1)

 1∫
0

|Φ(t)|q dt

1− 1
q[(
B5 |f ′ (a)|q +B6 |f ′ (b)|

q) 1
q +

(
B6 |f ′ (a)|q +B5 |f ′ (b)|

) 1
q

]
.
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The proof is completely completed. �

Remark 5.6. Under assumption of Theorem 5.8 with ϕ (t) = t, then we have the
following inequality∣∣∣∣∣∣f(a) + f(b)

2
−

b∫
a

f(t)dt

∣∣∣∣∣∣
≤ b− a

8

[(
|f ′ (a)|q + 5 |f ′ (b)|q

6

) 1
q

+

(
5 |f ′ (a)|q + 1 |f ′ (b)|q

6

) 1
q

]

≤ 61− 1
q

8
(b− a) [|f ′ (a)|+ |f ′ (b)|] (24)

Corollary 5.9. Under assumption of Theorem 5.8 with ϕ (t) = tα

Γ(α) , then we have

the following important fractional inequality related to right-hand side of the inequality
4, ∣∣∣∣f(a) + f(b)

2
− 2α−1Γ(α+ 1)

(b− a)
α

[
Jα
( a+b2 )

+f(b) + Jα
( a+b2 )

−f(a)

]∣∣∣∣
≤ b− a

22+ 1
q

α

α+ 1

[(
(α+ 1)

2 (α+ 2)
|f ′ (a)|q +

(3α+ 7)

2 (α+ 2)
|f ′ (b)|q

) 1
q

+

(
(3α+ 7)

2 (α+ 2)
|f ′ (a)|q +

(α+ 1)

2 (α+ 2)
|f ′ (b)|

) 1
q

]
.

Corollary 5.10. Under assumption of Theorem 5.8 with ϕ (t) = t
α
k

kΓk(α) , then we have

the following important inequality related to right-hand side of the Hermite-Hadamard
inequality for k-fractional integrals,∣∣∣∣∣f(a) + f(b)

2
− 2

α
k−1Γk(α+ k)

(b− a)
α
k

[
Iα,k
( a+b2 )+

f(b) + Iα,k
( a+b2 )−

f(a)

]∣∣∣∣∣
≤ b− a

22+ 1
q

(
α

α+ k

)[(
(α+ k)

2 (α+ 2k)
|f ′ (a)|q +

(3α+ 7k)

2 (α+ 2k)
|f ′ (b)|q

) 1
q

+

(
(3α+ 7k)

2 (α+ 2k)
|f ′ (a)|q +

(α+ k)

2 (α+ 2k)
|f ′ (b)|

) 1
q

]
Proof. The proof is similar the proof of Corollary 5.7. �

6. Concluding Remarks

In this study, we consider the Hermite-Hadamard for convex function involving
generalized fractional integrals defined by Sarikaya and Ertuğral. We also focus on
midpoint and trapezoid type inequalities for functions whose first derivatives in ab-
solute value are convex via generalized fractional integrals. The results presented in
this study would provide generalizations of those given in earlier works.
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