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Identification of parameters of Richards equation using Grey
Wolf Optimizer algorithm

W. O. Sawadogo, O. Selt, P. O. F Ouédraogo, K. Somé, and B. Somé

Abstract. In this paper, it is a question of identification of the parameters in the equation of

Richards modelling the flow in unsaturated porous medium. The mixed formulation pressure
head-moisture content has been used. The direct problem was solved by the finite difference

method. The equation being strongly non-linear, we will use the Picard’s method. The

function cost used is built by using the infiltration. The optimization method used is a meta-
heuristic called Grey Wolf Optimizer Algorithm (GWO). A test on experimental data has been

carried. A comparison with genetic algorithm show that the GWO is a powerful algorithm for

identifying parameters of the Richards equation.
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1. Introduction

The fluid movement in unsaturated porous is governed by the Richards equation [3, 4]
which contains parameters that take into account type of the considered soil. The
calculation of the water balance on a soil-scale requires knowledge of infiltration that
is obtained by solving the unsaturated flow equation. However the hydrodynamic
parameters of the soils involved in the equation are, in most cases, badly known. The
values given in the literature are not precise values but intervals, hence the importance
of the inverse modeling.

There exist many methods to solve the inverse problems [1, 2]. Most computing
softwares in hydrogeology use deterministic methods. However most of these methods
require a good knowledge of the solution. Indeed, these algorithms can not detect
a global optimum and can stop with a local optimum. Moreover, these algorithms
require a certain regularity of the functions to be optimized. However, this regularity
is not always checked.

Meta-heuristic optimization techniques are adapted better to the problems of opti-
mization in which the size of the space of research is important, where the parameters
interact in a complex way and where very little information on the function to be opti-
mized is available [6, 7]. They do not require a particular assumption on the regularity
of the function objective. Meta-heuristic algorithms do not use in particular the suc-
cessive derivative of the functions to be optimized; no assumption on continuity is
necessary. The function to be optimized can thus be the result of a simulation. These
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algorithms are often much more robust in their capacity to identify the total optimum
with less sensitivity to the initial condition.

Grey Wolf Optimizer (GWO) algorithm is a meta-heuristic proposed by S. Mirjalili
et al [7]. This algorithm is inspired by grey wolves. He mimics the leadership hierarchy
and hunting mechanism of grey wolves in nature. Tests were successfully performed
on test functions [7]. In this work we use it for identifying parameters of the Richards
equation. The rest of the paper is organized as follows: the second part is devoted
to the equation of Richards in one dimension and his resolution by finite differences
method; in the third part, we present the problem inverse to solve; the fourth part
is devoted to the identification of the parameters of the equation of Richards GWO
algorithm; the fifth section present the results and discussions.

2. Direct problem

2.1. Mathematical model. There exist several formulations of the equation of
Richards which models the flow in unsaturated porous medium but in this work,
we use the mixed formulation pressure head-moisture content because the numerical
solutions obtained with his mixed formulation are more precise [4, 5, 8].
In one dimension, the mixed formulation is given by :

∂θ
∂t −

∂
∂z [K(h)(∂h∂z − 1) = f in [0, Z]× [0, T ]
h(z, 0) = h0(z) in [0, Z]
h(0, t) = hsup(t) in [0, T ] (top limit)
h(Z, t) = hinf (t) in [0, T ] (bottom limit)

(1)

where
• z denotes the vertical dimension;
• h[L] is the pressure head;
• θ[L3/L3] is the moisture content given by:

θ(h) =
θs − θr

(1 + (α|h|)n)m
+ θr, (2)

where θr is the moisture content to saturation (L3.L−3), θs is the residual mois-
ture content (L3.L−3), α is a parameter of form related to the mean size of the
pores (L−1), n is a parameter related to the distribution of the sizes of pores
(−). According to Mualem [11], we have m = 1− 1/n;

• K(h) is the insaturated hydraulic conductivity [L/T ]. We use the relation of
Van Genuchten [3] given by

K(Se) = KsS
1/2
e (1− (1− S1/m

e )m)2, (3)

where KS is the effective saturated hydraulic conductivity [L/T ], Se is the effec-
tive saturation given by:

Se =

{
θ−θr
θs−θr if h < 0,

1 if h ≥ 0,
(4)

h and θ are related by the moisture capacity function C(h)[1/L] defined by

C(h) =
∂θ

∂h
, (5)
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which gives

C(h) = −αn(θr − θs)sign(h)(
1

n
− 1)(α|h|)n−1(1 + (α|h|)n)1/n−2. (6)

To solve the problem (1), the five parameters should be known: α, θS , θr, n and KS .

2.2. Numerical resolution. In this part, we present the numerical resolution of
equation (1). We will use the finite differences method for the space discretization.
A implicit scheme of Euler will be used for the temporal discretization. The equation
being strongly non-linear, we will use the method of Picard to linearize its.

To discretize [0, Z]× [0, T ], we introduce a step of space ∆z = Z
Nz+1 (Nz an integer

stricly positive) and a step of time ∆t = T
M (M an integer stricly positive), and we

define the nodes of a regular meshing:

(zi, tj) = (i∆z, j∆t) for (i, j) ∈ {0, 1, . . . , Nz + 1} × {0, 1, . . . ,M}

we denote hji ≈ h(xi, tj), θ
j
i ≈ θ(xi, tj). The discretization of (1) by an implicit

scheme is given by

θj+1
i − θji

∆t
=

1

∆z

[
Kj+1

i+ 1
2

(
hj+1
i+1 − h

j+1
i

∆z
− 1

)
−Kj+1

i− 1
2

(
hj+1
i − hj+1

i−1

∆z
− 1

)]
+ f j+1

i

i = 1, . . . , Nz, j = 0, . . . ,M − 1 (7)

Ki− 1
2

=
√
K(hj+1

i )×K(hj+1
i−1 ),Ki+ 1

2
=
√
K(hj+1

i )×K(hj+1
i+1 ) and f j+1

i = f(xi, tj+1).

By applying the method of Picard the equation (7) is written:

θj+1,k+1
i − θji

∆t
=

1

∆z
Kj+1,k

i+ 1
2

(
hj+1,k+1
i+1 − hj+1,k+1

i

∆z
− 1

)

− 1

∆z
Kj+1,k

i− 1
2

(
hj+1,k+1
i − hj+1,k+1

i−1

∆z
− 1

)
+ f j+1

i , (8)

where i = 1, . . . , Nz, j = 0, . . . ,M − 1 and k is the indice of iteration of the Picard’s
method.

We pose hj = (hj1, . . . , h
j
Nz

) and θj = (θj1, . . . , θ
j
Nz

), the developpement in Taylor

series of θ respect h at point hj+1,k gives [4]

θj+1,k+1 = θj+1,k +
dθ

dh
|j+1,k(hj+1,k+1 − hj+1,k) + 0(δ2),

where hj+1,k+1 and θj+1,k+1 represent respectively the vector of pressure and the
vector of the moisture content to the step of j + 1 and the iteration k + 1.
By truncating and by using the relation (5), we have :

θj+1,k+1 ≈ θj+1,k + Cj+1,k(hj+1,k+1 − hj+1,k).
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The equation (7) becomes:

Cj+1,k
i

(
hj+1,k+1
i − hj+1,k

i

∆t

)
− 1

∆z2
Kj+1,k

i+ 1
2

.hj+1,k+1
i+1

− 1

∆z2

[(
Kj+1,k

i+ 1
2

+Kj+1,k

i− 1
2

)
hj+1,k+1
i +Kj+1,k

i− 1
2

.hj+1,k+1
i−1

]
= − (θj+1,k

i − θji )
∆t

− 1

∆z

(
Kj+1,k

i+ 1
2

+Kj+1,k

i− 1
2

)
+ f j+1

i . (9)

Posing δki = hj+1,k+1
i − hj+1,k

i , the system (9) becomes:

Cj+1,k
i

δki
∆t
− 1

(∆z)2

[
Kj+1,k

i+ 1
2

(
δki+1 − δki

)
−Kj+1,k

i− 1
2

(
δki − δki−1

)]
=

1

(∆z)2

[
Kj+1,k

i+ 1
2

(
hki+1 − hki

)
−Kj+1,k

i− 1
2

(
hki − hki−1

)]
− (θj+1,k

i − θji )
∆t

+
1

∆z

(
Kj+1,k

i+ 1
2

+Kj+1,k

i− 1
2

)
+ f j+1

i . (10)

By regrouping we have:

Kj+1,k

i− 1
2

(∆z)2
δki−1 +

Cj+1,k
i

∆t
−

Kj+1,k

i+ 1
2

+Kj+1,k

i− 1
2

(∆z)2

 δki − Kj+1,k

i+ 1
2

(∆z)2
δki+1

=
1

(∆z)2

[
Kj+1,k

i+ 1
2

(
hki+1 − hki

)
−Kj+1,k

i− 1
2

(
hki − hki−1

)]
− (θj+1,k

i − θji )
∆t

+
1

∆z

(
Kj+1,k

i+ 1
2

+Kj+1,k

i− 1
2

)
+ f j+1

i , (11)

which is written in matrix form, with each iteration k of Picard k

Akδk = Rk, (12)

where Ak is a tridiagonal matrix of size Nz ×Nz, and Rk is a vector of size Nz. We
have

Aki,i =
Cj+1,k
i

∆t
−

Kj+1,k

i+ 1
2

+Kj+1,k

i− 1
2

(∆z)2

 , i = 1, . . . , Nz

Aki−1,i =
Kj+1,k

i− 1
2

(∆z)2
, i = 2, . . . , Nz

Aki,i+1 =
Kj+1,k

i− 1
2

(∆z)2
, i = 1, . . . , Nz − 1

and

Rki =
1

(∆z)2

[
Kj+1,k

i+ 1
2

(
hki+1 − hki

)
−Kj+1,k

i− 1
2

(
hki − hki−1

)]
− (θj+1,k

i − θji )
∆t

+
1

∆z

(
Kj+1,k

i+ 1
2

+Kj+1,k

i− 1
2

)
+ f j+1

i , i = 1, . . . , Nz.

In summary the resolution by the iterative method of Picard is given by the algorithm
1.
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Algorithm 1

At iteration j + 1 of time, to do
1- Initialize hj+1,0 = hj(pressure at j )
2- k = 0
3- to do

i- to build the system (12)
ii- To solve the system (12)
iii- To build the new solution: hj+1,k+1 = δj+1,k + hj+1,k

iv- k = k + 1
v- while |δj+1,k| < ε, ε is the tolerance
vi- if not convergence and k > Im (maximal number of the iteration of Picard),

to change the step of time and to return (1)

3. Inverse problem

3.1. Calculation of infiltration. One of the objectives of the modeling of the
flow in unsaturated porous medium is the estimate of the quantity of water which
infiltrates to reach the saturated zone. The infiltration describes the process of water
penetrating in the ground starting from its surface. In a general way, for a variable
initial condition θ(0, z), the cumulative infiltration Icum is defined by:

Icum(t) =

∫ Z

0

q(t, z)dz,

where q(z, t) is the rate of infiltration and Z is the depth of the ground considered.
If the initial condition θinit is constant, we have:

Icum(t) =

∫ Z

0

(θ(t, z)− θini)dz, (13)

where θ(t, z) is the moisture content. In discrete form Icum(tj) is obtained by making
an approximation of (13) by the formula of the trapezoids:

Icum(tj) = ∆z

[
1

2
(θsup − 2θini + θinf ) +

Nz∑
i=1

(
θji − θini

)]
, (14)

where θinf is the moisture content at the bottom and θsup is the moisture content at
the top.

3.2. Function cost. Let thus M observations of values of infiltration Iobs(tj) at the
moments tj , j = 1, . . . ,M . Let thus J the functional defined by

J(U) =
∆t

2

M∑
j=1

(Icum(tj)− Iobs(tj))2

=
∆t

2

2∑
j=1

(∆z

[
1

2
(θsup − 2θini + θinf ) +

Nz∑
i=1

(θji − θini)

]
− Iobs(tj))2,(15)

where U is the vector of parameters to determinate (α, n, θr, θs,Ks).
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The inverse problem consists in solving

min
U⊂D

J(U), (16)

where D is a bounded subset of R5.

4. Problem solving by Grey Wolf Optimizer (GWO) algorithm

4.1. Grey Wolf Optimizer algorithm description. In this section, we present
GWO algorithm used to solve the problem (16).

The GWO algorithm is a meta-heuristic which mimics the leadership hierarchy
and hunting mecanism of grey wolwes in nature. This algorithm has been proposed
by S. Mirjalili et al [7]. Four types of grey wolves are employed for the simulating the
leadership hierarchy (see figure 1):
• the leader of the group called alpha (α) which is mostly responsible for making

decisions about hunting, sleeping place, time to wake, and so on;
• the leader alpha is assisted by the beta (β) that help the alpha in decision-making

or other pack activities;
• the third level in the hierarchy is delta (δ). Delta wolves have to submit to alphas

and betas, but they dominates the omega (ω) wolves that occupy the last level;
• the omega wolves always have to submit to all the other dominant wolves. This

assists satisfying the entire pack and maintaining the dominance structure.

Figure 1. Hierarchy of grey wolf [7].

To model mathematically the hunting mechanism of grey wolves, three steps were
considered:
• Tracking, chassing and approaching the prey;
• Pursuing, encircling and harassing the prey until it stops moving;
• Attacking the prey.

To respect the hierarchy, the best solution is alpha, the second solution is beta and
the third delta. The optimum being the position of the prey.

The grey wolves encircle prey during the hunt. The mathematical model is given:{
~D = |~C. ~Xp(t)− ~X(t)|,
~X(t+ 1) = ~Xp(t)− ~A. ~D,

(17)

where t indicates the current iteration, ~A = 2a.~r1, ~C = 2. ~r1; ~a are linearly decreased

from 2 to 0 over the course of iterations and ~r1, ~r2 are random vectors in [0, 1]. ~Xp is

the position vector of the prey, and ~X indicates the position vector of a grey wolf.
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For better exploration of candidate solutions which tend to diverge when | ~A| > 1

and to converge when | ~A| < 1.
Grey wolves have the ability to recognize the location of prey and encircle them.

Over the course of iterations, the first three fittest solutions we obtain so far are
considered as α, β and δ respectively, which guide the optimization processus (the
hunting) and are assumed to take the position of the optimum (the prey). To model
this procssus, we adapt the positions of population using the following formula:

~Dα = | ~C1. ~Xα − ~X|,
~Dβ = | ~C2. ~Xβ − ~X|,
~Dδ = | ~C3. ~Xδ − ~X|,

(18)

where:
• ~C1,~C2 and ~C3 are random vectors;

• ~Xα, ~Xα and ~Xδ, the positions of alpha, beta and delta respectively;

• ~X the position of prey( current solution).
The next position of the best solution is given by:

~X(t+ 1) =
~X1 + ~X2 + ~X3

3
, (19)

where 
~X1 = ~Xα − ~A1. ~Dα,
~X2 = ~Xβ − ~A2. ~Dβ ,
~X3 = ~Xδ − ~A3. ~Dδ,

(20)

~A1, ~A2 and ~A3 are random vectors.
To accelerate convergence, we take

~X(t+ 1) = 0.7× ~X1 + 0.2× ~X2 + 0.1× ~X3. (21)

The possible updated positions of a grey wolf in 2D and 3D space are depicted in
figure 2.

Figure 2. 2D and 3D position vectors and their possible next loca-
tions [7].
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4.2. Problem solving algorithm. In summary the resolution of our problem by
GWO algorithm is given by the algorithm below:

Algorithm 2

Initialize the input parameters for GWO (N, d, lb, ub,Maxiter)
Initialize Alpha, Beta and Delta Position and Score.
Initialize the random position of search agents.
k ← 0
while k < Maxiter do

for i=1 to N do
solving direct problem (1)
evaluate the score of each search agent using objective function (15)
if fitness < AlphaScore then

Update alpha
end if
if fitness > AlphaScore and fitness < BetaScore then

Update beta
end if
if fitness > AlphaScore and fitness > BetaScore and fitness <
DeltaScore then

Update delta
end if

end for
for i=1 to N do

Update the Position of search agents including omegas using equation (18-20)
Update the position of prey using equation(21)

end for
l← l + 1

end while
Return the position of α as the fittest optimum

5. Results and discussions

5.1. Application 1. Either an unsaturated medium represented by a domain Ω =
[0, 20] and a simulation time interval [0, 600]. Dirichlet conditions were imposed.
According to [9], an analytical solution of the problem (1) is given by:

h(z, t) = 20.4 tanh(0.5(z + t/12− 15))− 41.5. (22)

The source term f is chosen using the analytical solution.
We used the analytical solution to generate data that we will use as observations.

The use of these analytical data allows us to see the ability of our algorithm to
reconstruct the parameters used.
The simulation conditions and the results are given below:
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Figure 3. Application 1: Curves of infiltration observed and simulated.

Parameters Range used values identified values
θs [0; 4] 0.368 0.376
θr [0; 4] 0.102 0.105
α [0; 1] 0.0335 0.0302
n [0; 10] 2 2.15
Ks [0; 15]× 10−3 9.22× 10−3 8.95× 10−3

Value of objective function: 1.25× 10−4.
Figure 3 shows that the infiltration curve identified well coincides with the curve

of analytical data.

5.2. Application 2. In this second application, we use data used in [10]. These
were measured on a clay soil on a column of 1m long. The values of the infiltration
were recorded all the 5 mn during 2 hours.

Parameters Interval Genitic algorithm GWO algorithm
θs [0; 1] 0.0238 0.0205
θr [0; 2] 0.379 0.392
α [0; 1] 0.0879 0.0858
n [0; 3] 1.1359 1.141
Ks [0; 3]× 10−5 1.75× 10−5 1.62× 10−5

The values of the function cost are:
Genetic algorithm: 0.0027.
GWO algorithm: 0.00018.
Figure 4 shows the curves of infiltration obverved and simulated. These curves show
good concordance between observed infiltration and simulated infiltration. This trans-
lates the quality of parameter estimation.
Figures 5 and 6 represent the curve of pressure and the curve of moisture content
respectively.
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Figure 4. Application 2: Curves of infiltration observed and simulated.

Figure 5. Curve of pressure head.

Figure 6. Curve of moisture content.
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As in [10], the values of the infiltrations observed at the moments t = 30mn, t = 1h
and t = 1h30mn were not used in the process of identifications. They were used like
values test. The Table 1 presents the results. This table shows that the GWO
algorithm is better than the genetic algorithm which is confirmed by the convergence
curve in Figure 7.

Times Observed Calculated (Genitic alg.) Error Calculated (GWO alg.) Error

30mn 1.5943 1.5732 0.0211 1.5917 0.0026

1h 2.322 2.2901 0.0319 2.3285 0.0065

1h30mn 2.8143 2.7939 0.0204 2.8224 0.0081

Table 1. Comparison to test points

Figure 7. Curves of convergence.

6. Conclusion

In this article, the equation simulating the pressure and water content in the un-
saturated medium has been reversed. We used Grey Wolves Optimizer (GWO) al-
gorithm to determine parameters of Richards equation using synthetic data and real
data. Comparison with the genetic algorithm showed that the GWO algorithm was
more effective in identifying parameters involved in the Richards equation.
However, the GWO algorithm despite its effectiveness remains slow. In the future,
we intend to propose a parallel version of this algorithm.
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