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Boundary value problem for nonlinear fractional differential
equations involving Erdélyi–Kober derivative on unbounded
domain
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Abstract. In this paper, we establish sufficient conditions for the existence of bounded so-

lution for a class of boundary value problem for nonlinear fractional differential equations in-

volving the Erdélyi–Kober differential operator on unbounded domain. Our results are based
on a fixed point theorem of Schauder combined with the diagonalization argument method in

a special Banach space. To that end, an example is presented to illustrate the usefulness of

our main results.
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Erdélyi–Kober derivative, Fixed point theorems, diagonalization argument.

1. Introduction

Differential equations of fractional-order have recently been proved to be valuable
tools in the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications in physics, chemistry, biology, economics,
control theory, signal and image processing, biophysics, blood flow phenomena, aero-
dynamics, fitting of experimental data, etc. More details are available, for instance,
in the books Das 2008 [9], Diethelm 2010 [10], Kilbas et al. 2006 [17], Mathai and
Haubold 2018 [20], Polubny 1999 [22], Sabatier et al. 2007 [23], and Samko et al.
1993 [24]. Among the various definitions of fractional differentiation. the Riemann-
Liouville and Caputo fractional derivatives are widely used in the literature. Be-
sides these integrals, there is another kind of integral operator, introduced by Arthur
Erdélyi and Hermann Kober [11] in 1940, which is known as Erdélyi–Kober fractional
integral operator. For details and applications of the Erdélyi–Kober fractional in-
tegrals, we refer the reader to a series of papers and texts [11, 15, 17, 18, 25, 27].
For some recent contributions on fractional boundary value problems on unbounded
domain, see([1], [3], [12], [21]) and the references therein. Very recently, in [2], the
authors considered the following boundary value problem on the semi-infinite interval:{

y
′′

+ φ (t) f (t, y, y′) = 0, 0 < t <∞,
y (0) = 0, y bounded on [0,∞) ,

where f : [0,∞)× [0,∞)× [0,∞)→ [0,∞) is continuous that satisfies an appropriate
condition. Then, the technique they used to established the existence of the solution
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is based on (i) establishing new results (see [4] also) on the finite interval [0, n] for
each n ∈ N∗ and (ii) a diagonalisation argument.

In [6], Arara et al. studied the existence solutions of fractional differential problem
of the form: {

cDαy (t) = f (t, y (t)) , t ∈ [0,∞) ,
y (0) = y0, y is bounded on [0,∞) ,

by using the fixed point theorem of Schauder combined with the diagonalization
method. Where, 1 < α ≤ 2 and cDα denotes the Caputo fractional derivative,
f : [0,∞)× R→ R is a continuous function and y0 ∈ R.

In [13], Agarwal et al. considered the following fractional boundary value problems:{
Dαy (t) = f (t, y (t)) , t ∈ [0,∞) , 1 < α ≤ 2,

y (0) = 0, y is bounded on [0,∞) ,

where, Dα is the Riemann-Liouville fractional derivative and f : [0,∞)×R→ R is a
given function. They used the nonlinear alternative of Leary-Schouder type combined
with the diagonalisation method.

The aim of this paper is to study the existence of bounded solution for the boundary
value problem of nonlinear fractional differential equation involving Erdélyi–Kober
differential operator on unbounded domain

Dγ,δβ u (t) + f (t, u (t)) = 0, t ∈ J = (0,∞) (1)

with the boundary conditions

lim
t→0

tβ(1+γ) dk

dt(k)
Iγ+δ,m−δu(t) = 0, with k = 0, m− 2, u (t) bounded on J, (2)

where Dγ,δβ denotes the Erdélyi–Kober fractional derivative operator of order δ and

Iδ+γ,m−δ is the Erdélyi–Kober fractional integral of order m−δ, with m−1 < δ ≤ m,
−m < γ < 1 −m,m ∈ N,m ≥ 2, β > 0 and f is a given function required to satisfy
the following conditions:

(H1) f : J × R −→ [0,∞) is continuous.
(H2) There exist ψ(t) : (0,∞) → (0,∞) continuous and in L1 (0,∞) and ω(t) ∈

((0,∞) , (0,∞)) and non-decreasing such that∣∣∣tβ(1+γ)−1f (t, u)
∣∣∣ ≤ ψ(t)ω(|u|) on (0,∞)× R.

In the rest of the paper, we describe some preliminary concepts related to the
proposed study in Section 2, while the main existence results are established in Sec-
tion 3 by applying Schauder’s fixed point theorem combined with the diagonalization
argument method. Finally we present an example for illustration of our main results.

2. Preliminaries

In this section, we present the necessary definitions and lemmas from fractional cal-
culus theory that will be used to derive our main results.

Definition 2.1 ([19]). The space of functions Cnα , α ∈ R, n ∈ N, consists of all
functions f (t) , t > 0, that can be represented in the form f (t) = tpf1 (t) with p > α
and f1 ∈ Cn ([0,∞)) .
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Definition 2.2 (Erdélyi–Kober fractional integral [19]). The right-hand Erdélyi–
Kober fractional integral of the order δ of the function u ∈ Cα is defined by(
Iγ,δβ u

)
(t) =

β

Γ (δ)
t−β(γ+δ)

∫ t

0

(
tβ − sβ

)δ−1
sβ(γ+1)−1u (s) ds, δ, β > 0, γ ∈ R, (3)

where Γ is the Euler gamma function.

Definition 2.3 (Erdélyi–Kober fractional derivative [19]). Let n−1 < δ ≤ n, n ∈ N∗.
The right-hand Erdélyi–Kober fractional derivative of the order δ of the function
u ∈ Cnα is defined by(

Dγ,δβ u
)

(t) =

n∏
j=1

(
γ + j +

1

β
t
d

dt

)(
Iγ+δ,n−δ
β u

)
(t) , (4)

where
n∏
j=1

(
γ + j +

1

β
t
d

dt

)(
Iγ+δ,n−δ
β u

)
=

(
γ + 1 +

1

β
t
d

dt

)
...

(
γ + n+

1

β
t
d

dt

)(
Iγ+δ,n−δ
β u

)
.

Lemma 2.1 ([19]). Let δ, β > 0, γ ∈ R, and u ∈ Cα. The Erdélyi–Kober fractional
integral defined by (3) has the following properties:(

Iγ,δβ xλβu
)

(t) = xλβ
(
Iγ+λ,δ
β u

)
(t) ,(

Iγ,δβ I
γ+δ,α
β u

)
(t) =

(
Iγ,δ+αβ u

)
(t) ,(

Iγ,δβ I
α,η
β u

)
(t) =

(
Iα,ηβ I

γ,δ
β u

)
(t) .

Lemma 2.2 ([19]). Let n − 1 < δ < n, n ∈ N∗, α ≥ −β (γ + 1) , and u ∈ Cnα .
Then, the following relationship between the E–K fractional derivative and the E–K
fractional integral of order δ is given by(

Iγ,δβ D
γ,δ
β u

)
(t) = u (t)−

n−1∑
k=0

ckt
−β(1+γ+k),

where,

ck =
Γ (n− k)

Γ (δ − k)
lim
t→0

tβ(1+γ+k)
n−1∏
i=k+1

(
1 + γ + i+

1

β
t
d

dt

)(
Iγ+δ,n−δ
β u

)
(t) . (5)

Definition 2.4 (Equicontinuous). Let E be a Banach space; a subset P in C (E) is
called equicontinuous if

∀ε > 0, ∃δ > 0, ∀u, v ∈ E, ∀A ∈ P, ‖u− v‖ < δ ⇒ |A (u)−A (v)| < ε.

Theorem 2.3 (Ascoli–Arzela). Let E be a compact space. If P is an equicontinuous,
bounded subset of C (E) , then P is relatively compact.

Definition 2.5 (Relatively compact subset). A subset P of a topological space E is
a relatively compact if and only if any sequence in P has sub-sequence convergent in
E.

Definition 2.6 (Completely continuous). Let E be a Banach space; we say that A :
E → E is completely continuous if for any bounded subset P of E, the set A (P ) is
relatively compact.
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Theorem 2.4 (Schauder’s fixed point [5]). Let E be a Banach space and let P be a
closed, convex and nonempty subset of E. Let A : P → P be a continuous mapping
such that:
A (P ) is a relatively compact subset of E. Then A has at least one fixed point in P.

3. Main results

In this section, we assume that Tn ∈ J, n ∈ N∗, such that 0 < T1 < T2 < ... < Tn < ...
with Tn →∞ as n→∞. In the sequel we set Jn = (0, Tn] . In this paper, we use the
space Cl (0,∞) to study the problem (1)-(2) , which is denoted by

Cl (0,∞) =

{
u

∣∣∣∣ u is a continuous function on (0,+∞) such that
limt→0 u(t) and limt→+∞ u(t) exist

}
,

from [8],[28], Cl (0,∞) is a Banach space with the norm

‖u‖Cl(0,∞) = sup
t∈(0,∞)

|u(t)| ,

furthermore

Cl (0, Tn] =

{
u

∣∣∣∣ u is a continuous function on (0, Tn] such that
limt→0 u(t) exists

}
.

It is easily seen that Cl (0, Tn] is a Banach space with the norm

‖u‖Cl(0,Tn] = sup
0<t≤Tn

|u(t)| .

3.1. Finite Interval Problem. To present existence theory for the problem (1) -(2)
we begin with the following existence principle for the problem on the finite interval.
Fix n ∈ N∗, for m = {2, 3, . . .} , with m − 1 < δ ≤ m, −m < γ < 1 −m, β > 0, we
consider the following boundary value problem

Dγ,δβ u (t) + f(t, u (t)) = 0, t ∈ Jn,
limt→0 t

β(1+γ) dk

dt(k) I
γ+δ,m−δu(t) = 0, with k = 0,m− 2,

u(Tn) = 0.

(6)

Based on the previous lemma, we will define the integral solution of the finite
interval problem (6).

Lemma 3.1. Let m − 1 < δ ≤ m, −m < γ < 1 −m, m ≥ 2, β > 0 and y ∈ C2
α,

then the fractional differential equation:

Dγ,δβ u (t) + y(t) = 0, t ∈ Jn, (7)

with the conditions

lim
t→0

tβ(1+γ) dk

dt(k)
Iγ+δ,m−δu(t) = 0, with k = 0,m− 2, (8)

u(Tn) = 0, n ∈ N∗ is fixed. (9)

has a unique solution given by

u (t) =

∫ Tn

0

Gn (t, s) sβ(γ+1)−1y (s) ds, (10)
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where

Gn (t, s) =


β

Γ(δ)

[
t−β(γ+1)

(
1−

(
s
Tn

)β)δ−1

− t−β(δ+γ)
(
tβ − sβ

)δ−1

]
, 0 < s ≤ t ≤ Tn,

β
Γ(δ) t

−β(γ+1)

(
1−

(
s
Tn

)β)δ−1

, 0 < t ≤ s ≤ Tn,

(11)
is called the Green function of boundary value problem (7)-(8)-(9).

Proof. Let m − 1 < δ ≤ m, with −m < γ < 1 −m, and β > 0; it is easy to prove

that the operator Iγ,δβ has the linearity property for all δ > 0. By applying Iγ,δβ to

equation (7) we obtain

Iγ,δβ Dγ,δβ u (t) + Iγ,δβ y(t) = 0. (12)

By using Lemma 2.2, for m− 1 < δ ≤ m, we can easily find that

Iγ,δβ Dγ,δβ u (t) = u(t)− c0t−β(1+γ) + c1t
−β(2+γ) + · · ·+ cm−1t

−β(m+γ),

for some constants c0, c1, · · · cm−1 ∈ R. Thus, (12) gives

u(t)− c0t−β(1+γ) − c1t−β(2+γ) + · · ·+ cm−1t
−β(m+γ) + Iγ,δβ y(t) = 0,

which means that

u (t) = c0t
−β(1+γ) + c1t

−β(2+γ) + · · ·+ cm−1t
−β(m+γ) − Iγ,δβ y(t). (13)

From the formula (5) of Lemma 2.2, it follows that

c0 = lim
t→0

tβ(1+γ)
m−1∏
i=1

(
1 + γ + i+

1

β
t
d

dt

)(
Iδ+γ,m−δu

)
(t)

= lim
t→0

tβ(1+γ)


(2 + γ) (3 + γ) · · · (m+ γ)

(
Iδ+γ,m−δu

)
(t)

+ξ1 (n, γ) 1
β t

d
dt

(
Iδ+γ,m−δu

)
(t) + · · ·

+ξm−2 (m, γ) 1
βm−2 t

m−2 d(m−2)

dt(m−2)

(
Iδ+γ,m−δu

)
(t)

+ 1
βm−1 t

m−1 d(m−1)

dt(m−1)

(
Iδ+γ,m−δu

)
(t) ,

with, ξ1, · · · , ξm−2 ∈ R


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c1 = lim
t→0

tβ(2+γ)
m−1∏
i=2

(
1 + γ + i+

1

β
t
d

dt

)(
Iδ+γ,m−δu

)
(t)

= lim
t→0

tβ(2+γ)


(3 + γ) · · · (m+ γ)

(
Iδ+γ,m−δu

)
(t)

+ξ1 (m, γ) 1
β t

d
dt

(
Iδ+γ,m−δu

)
(t) + · · ·

+ξm−3 (m, γ) 1
βm−3 t

m−3 d(m−3)

dt(m−3)

(
Iδ+γ,m−δu

)
(t)

+ 1
βm−2 t

m−2 d(m−2)

dt(m−2)

(
Iδ+γ,m−δu

)
(t) ,

with, ξ1, · · · , ξm−3 ∈ R

 ;

...

cm−2 = lim
t→0

tβ(m−1+γ)
m−1∏
i=m−1

(
1 + γ + i+

1

β
t
d

dt

)(
Iδ+γ,m−δu

)
(t)

= lim
t→0

tβ(m−1+γ)

[
(m+ γ)

(
Iδ+γ,m−δu

)
(t) +

1

β
t
d

dt

(
Iδ+γ,m−δu

)
(t)

]
;

cm−1 = lim
t→0

tβ(m+γ)
m−1∏
i=m

(
1 + γ + i+

1

β
t
d

dt

)(
Iδ+γ,m−δu

)
(t)

= lim
t→0

tβ(m+γ)
(
Iδ+γ,m−δu

)
(t) .

The boundary condition (8) implies that cm−1 = cm−2 = · · · = c1 = 0, which
means that we can rewrite the integral equation (13) as

u (t) = c0t
−β(1+γ) − Iγ,δβ y(t).

In view of the boundary condition (9) we conclude that

c0T
−β(1+γ)
n − Iγ,δβ y(Tn) = 0.

Consequently, we find that

c0 =
βT
−β(γ+δ)
n

Γ (δ)T
−β(1+γ)
n

∫ Tn

0

(
T βn − sβ

)δ−1
sβ(γ+1)−1y(s)ds

=
β

Γ (δ)

∫ Tn

0

T−β(δ−1)
n

(
T βn − sβ

)δ−1
sβ(γ+1)−1y(s)ds

=
β

Γ (δ)

∫ Tn

0

(
1−

(
s

Tn

)β)δ−1

sβ(γ+1)−1y(s)ds,

and therefore, the unique solution of the problem (7)-(8)-(9) is given by

u(t) =
β

Γ (δ)

 t−β(1+γ)
∫ Tn

0

(
1−

(
s
Tn

)β)δ−1

sβ(γ+1)−1y(s)ds

−t−β(γ+δ)
∫ t

0

(
tβ − sβ

)δ−1
sβ(γ+1)−1y (s) ds


=

∫ Tn

0

Gn (t, s) sβ(γ+1)−1y(s)ds.

�
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Now, we present some properties of Green function that form the basis of our main
work.

Remark 3.1. For m − 1 < δ ≤ m, −m < γ < 1 − m, and β > 0 the following
conditions is hold:

1. For all ∀t, s ∈ (0,∞) , the function Gn (t, s) ≥ 0.

2. For each n > 0, the function t ∈ Jn →
∫ Tn

0
|Gn (t, s)| ds is continuous and

bounded on Jn.

We now turn to the question of existence for the problem (6) .
Define an integral operator A : Cl (0, Tn]→ Cl (0, Tn] by

Au(t) =

∫ Tn

0

Gn (t, s) sβ(1+γ)−1f(s, u(s))ds, t ∈ Jn, (14)

where Gn(t, s) defined by (11) .
Clearly, from Lemma 3.1, the fixed points of the operator A coincide with the

solutions of the problem (6) .
We put

G̃n = sup

{∫ Tn

0

|Gn (t, s)| ds, t ∈ Jn

}
. ψ∗n = sup {ψ (s) , s ∈ Jn} .

Lemma 3.2. If (H1)-(H2) hold, Then A : Cl (0, Tn] → Cl (0, Tn] is completely con-
tinuous.

Proof. First, for u ∈ Cl (0, Tn] we have

‖Au (t)‖Cl(0,Tn] = sup
0<t≤Tn

|Au (t)| = sup
0<t≤Tn

∣∣∣∣∣
∫ Tn

0

Gn (t, s) sβ(γ+1)−1f(s, u(s))ds

∣∣∣∣∣
≤ sup

0<t≤Tn

∫ Tn

0

|Gn (t, s)|
∣∣∣sβ(γ+1)−1f(s, u(s))ds

∣∣∣ .
Together with conditions (H1) and (H2), it then follows that

sup
0<t≤Tn

∫ Tn

0

|Gn (t, s)|
∣∣∣sβ(γ+1)−1f(s, u(s))ds

∣∣∣
≤ sup

0<t≤Tn

∫ Tn

0

|Gn (t, s)|ψ(s)ω (|u(s)|) ds

≤ ψ∗nω
(
‖u‖Cl(0,Tn]

)∫ Tn

0

|Gn (t, s)| ds

≤ ψ∗nω
(
‖u‖Cl(0,Tn]

)
G̃n <∞.

Hence, A : Cl (0, Tn]→ Cl (0, Tn] is well-defined.
Choose

M ≥ ψ∗nω (M) G̃n, (15)

and let

Ω =
{
u ∈ Cl (0, Tn] , ‖u‖Cl(0,Tn] ≤M, M > 0

}
.

In what follows we divide the proof into several steps.
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Step 1: A : Ω→ Cl (0, Tn] is continuous.
Let (uq)q∈N ∈ Ω be a convergent sequence to u in Ω, from Lemma 3.1 we obtain

that

‖Auq −Au‖Cl(0,Tn] = sup
0<t≤Tn

∣∣∣∣∣
∫ Tn

0

Gn (t, s) sβ(γ+1)−1 [f(s, uq(s))− f(s, u(s))] ds

∣∣∣∣∣
≤ sup

0<t≤Tn

∣∣∣∣∣∣ β

Γ (δ)
t−β(γ+1)

∫ Tn

0

(
1−

(
s

Tn

)β)δ−1

sβ(γ+1)−1

× [f(s, uq(s))− f(s, u(s))] ds|

≤ sup
0<t≤Tn

β

Γ (δ)
t−β(γ+1)

∣∣∣∣∣∣
∫ Tn

0

(
1−

(
s

Tn

)β)δ−1

sβ(γ+1)−1

×f(s, uq(s))ds−
∫ Tn

0

(
1−

(
s

Tn

)β)δ−1

sβ(γ+1)−1f(s, u(s))ds

∣∣∣∣∣∣ .
Due to the condition (H2), we get∣∣∣∣∣∣
(

1−
(
s

Tn

)β)δ−1

sβ(γ+1)−1f(s, u(s))

∣∣∣∣∣∣ ≤
(

1−
(
s

Tn

)β)δ−1

ψ(s)ω (|u(s)|)

≤

(
1−

(
s

Tn

)β)δ−1

ψ(s)ω
(
‖u‖Cl(0,Tn]

)

≤ ω (M)

(
1−

(
s

Tn

)β)δ−1

ψ(s).

Since the right hand side of the above inequality is in L1 (0,∞) and the function(
1−

(
s
Tn

)β)δ−1

sβ(γ+1)−1f(s, u(s)) is continuous, it follows that the Lebesgue dom-

inated convergence theorem (theorem 12.12, page 199 in [7]) yields

u→
∫ Tn

0

(
1−

(
s
Tn

)β)δ−1

sβ(γ+1)−1f(s, u(s))ds is continuous. Hence, it holds that

∫ Tn

0

(
1−

(
s

Tn

)β)δ−1

sβ(γ+1)−1f(s, uq(s))ds

→
∫ Tn

0

(
1−

(
s

Tn

)β)δ−1

sβ(γ+1)−1f(s, u(s))ds as q →∞.

Therefore, ‖Auq −Au‖Cl(0,Tn] → 0, as q →∞.
Step 2: A (Ω) is relatively compact.
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First, we show that A (Ω) is uniformly bounded. Let u ∈ Ω, by the condition (H2),
we obtain

‖Au (t)‖Cl(0,Tn] = sup
0<t≤Tn

|Au (t)| = sup
0<t≤Tn

∣∣∣∣∣
∫ Tn

0

Gn (t, s) sβ(γ+1)−1f(s, u(s))ds

∣∣∣∣∣
≤ sup

0<t≤Tn

∫ Tn

0

|Gn (t, s)|
∣∣∣sβ(γ+1)−1f(s, u(s))ds

∣∣∣
≤ ψ∗nω

(
‖u‖Cl(0,Tn]

)∫ Tn

0

|Gn (t, s)| ds

≤ ψ∗nω (M) G̃n,

hence, A (Ω) is uniformly bounded.
Next, we show that A (Ω) is equicontinuous on Jn.

For all u ∈ Ω, t1, t2 ∈ Jn and t1 ≤ t2, we can find

|Au (t2)−Au (t1)| ≤
∫ Tn

0

|Gn (t2, s)−Gn (t1, s)|
∣∣∣sβ(γ+1)−1f(s, u(s))

∣∣∣ ds
≤ ψ∗nω (M)

∫ Tn

0

|Gn (t2, s)−Gn (t1, s)| ds→ 0,

uniformly as t1 → t2 for all u ∈ Ω.
Hence, A (Ω) is locally equicontinuous on Jn. Consequently, A (Ω) is relatively com-
pact.

Therefore, A : Cl (0, Tn]→ Cl (0, Tn] is completely continuous. �

Now, to prove the existence result for the problem (6) , we use the fixed point
theorem of Schauder.

Theorem 3.3. Assume that the hypotheses (H1)-(H2) hold, and that there exists
M ∈ R satisfying (15) . Then the fractional boundary value problem (6) has at least
one solution u ∈ Ω.

Proof. From the proof of Lemma 3.2, we know that A is a completely continuous
operator.

Also we have A (Ω) ⊂ Ω because of

‖Au (t)‖Cl(0,Tn] = sup
0<t≤Tn

|Au (t)| = sup
0<t≤Tn

∣∣∣∣∣
∫ Tn

0

Gn (t, s) sβ(γ+1)−1f(s, u(s))ds

∣∣∣∣∣
≤ sup

0<t≤Tn

∫ Tn

0

|Gn (t, s)|
∣∣∣sβ(γ+1)−1f(s, u(s))ds

∣∣∣
≤ ψ∗nω

(
‖u‖Cl(0,Tn]

)∫ Tn

0

|Gn (t, s)| ds

≤ ψ∗nω (M) G̃n ≤M.

Hence, by Theorem 2.4 the boundary value problem (6) has at least one solution u
in Ω such that

|u (t)| ≤M, for each t ∈ Jn.
�



BVP FOR NONLINEAR FDE INVOLVING ERDÉLYI–KOBER DERIVATIVE 27

3.2. Semi-infinite Interval Problem. The ideas in the previous part together
with a diagonalization argument enable us to treat the problem (1)-(2) defined on
semi-infinite interval.

Theorem 3.4. Assume that the hypotheses (H1)-(H2) hold, and that there exists
M ∈ R satisfying (15) . Then the fractional boundary value problem (1)-(2) has at
least one solution u on (0,∞) .

Proof. The proof will be given in tow parts.
Part 1: From Theorem 3.3, for all n ∈ N∗ we show that the following boundary value
problems 

Dγ,δβ u (t) + f(t, u (t)) = 0, t ∈ Jn,
limt→0 t

β(1+γ) dk

dt(k) I
γ+δ,m−δu(t) = 0, with k = 0,m− 2,

u(Tn) = 0.

have a solution un ∈ Cl (Jn,R) verifies that for each t ∈ Jn, |un (t)| ≤M, with

un (t) =

∫ Tn

0

Gn (t, s) sβ(γ+1)−1f(s, u(s))ds,

where, Gn(t, s) defined by (11) .
Part 2: Diagonalization argument

Define

vn(t) =

{
un (t) , t ∈ (0, Tn] ,

0, t ∈ [Tn,∞) .

Then vn is in Cl (0,∞) with ‖vn(t)‖Cl(0,∞) ≤M, t ∈ (0,∞).

Let S =
{

(vn)n∈N∗
}
. For t ∈ (0, T1] , we have

|vn(t)| ≤ |un (t)| ≤M, ∀n ∈ N∗,

which means that, for all t ∈ (0, T1] ; (vn)n∈N∗ is bounded. Furthermore for all
t1, t2 ∈ (0, T1] , ∀n ∈ N∗, we have

|vn(t2)− vn(t1)| ≤ |un(t2)− un(t1)|

≤
∫ T1

0

|G1 (t2, s)−G1 (t1, s)|
∣∣∣sβ(γ+1)−1f(s, u(s))

∣∣∣ ds
≤ ψ∗1ω (M)

∫ T1

0

|G1 (t2, s)−G1 (t1, s)| ds→ 0 for t1 → t2.

It holds that, for all t ∈ (0, T1] , (vn)n∈N∗ is equicontinous. Thus, S =
{

(vn)n∈N∗
}

is

relatively compact on (0, T1] . Let N1 = N∗ − {1} . For all (vn)n∈N∗ ∈ S, the Arzela-
Ascoli Theorem 2.3, guarantees that there is a sub-sequence (vn)n∈N1 and a function
z1 in Cl (0, T1] such that (vn)n∈N1 → z1 uniformly on (0, T1] as n→∞.

Let S1 =
{

(vn)n∈N1

}
. For t ∈ (0, T2] , we have

|vn(t)| ≤ |un (t)| ≤M, ∀n ∈ N1,
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which means that for all t ∈ (0, T2] , (vn)n∈N1 is bounded. Furthermore for all t1, t2 ∈
(0, T2] , n ∈ N∗, we have

|vn(t2)− vn(t1)| ≤ |un(t2)− un(t1)|

≤
∫ T2

0

|G2 (t2, s)−G2 (t1, s)|
∣∣∣sβ(γ+1)−1f(s, u(s))

∣∣∣ ds
≤ ψ∗2ω (M)

∫ T2

0

|G2 (t2, s)−G2 (t1, s)| ds→ 0 for t1 → t2.

It holds that, for all t ∈ (0, T2] , (vn)n∈N1 is equicontinous. Thus, S1 =
{

(vn)n∈N1

}
is

relatively compact on (0, T2] .
Let N2=N1 − {2} . For all (vn)n∈N1 ∈ S, the Arzela-Ascoli Theorem 2.3, guaran-
tees that there is a sub-sequence (vn)n∈N2 and a function z2 in Cl (0, T2] such that
(vn)n∈N2 → z2 uniformly on (0, T2] as n → ∞. Note that z2 = z1 on (0, T1] since

N2 ⊂ N1. Proceed inductively to obtain for q ∈ {3, 4, · · · } there is a sub-sequence
(vn)n∈Nq with Nq ⊂ N∗ and Nq ⊂ Nq−1 and a function zq in Cl (0, Tq] such that
(vn)n∈Nq → zq as n→∞. Also zq = zq−1 on (0, Tq−1] .

Define a function u as follows

u (t) =

{
zq (t) , t ∈ (0, Tq] ,
0, t ∈ [Tq,∞) .

Then u ∈ Cl (0,∞) , limt→0 t
β(1+γ) dk

dt(k) I
γ+δ,n−δu(t) = 0, with k = 0,m− 2, m ≥ 2,

and |u (t)| ≤M, for t ∈ (0,∞) . Again fix t ∈ (0,∞) and let q ∈ N∗ with t ≤ Tq. Then
for n ∈ Nq, we have

vn (t) =

∫ Tq

0

Gq (t, s) sβ(γ+1)−1f(s, vn(s))ds.

Passing to limit, as n→∞ (using [14], p. 38 or [16], p. 35), we obtain

zq (t) =

∫ Tq

0

Gq (t, s) sβ(γ+1)−1f(s, zq(s))ds,

Thus

u (t) =

∫ Tq

0

Gq (t, s) sβ(γ+1)−1f(s, u(s))ds,

which implies limt→0 t
β(1+γ) dk

dt(k) I
γ+δ,n−δu(t) = 0, with k = 0,m− 2, u ∈ Cl (0,∞)

and

Dγ,δβ u (t) + f (t, u (t)) = 0, t ∈ J = (0,∞) .

�

4. An example

Consider the following boundary value problem: D
− 3

2 ,
3
2

1 u (t) + t
3
2

√∣∣∣∣ u

1+t
1
2

∣∣∣∣e−t = 0, t > 0,

limt→0 t
− 1

2
dk

dt(k) I
0,m− 1

2
1 u (t) = 0, with k = 0,m− 2, u (t) bounded on J.

(16)
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Here, f(t, u) = t
3
2

√∣∣∣∣ u

1+t
1
2

∣∣∣∣e−t, δ = 3
2 , γ = − 3

2 and β = 1.

(H1) Clearly, the function f is continuous for any (t, u) ∈ (0,∞)× R.
(H2) From the expression of the function f , it follows that

tβ(1+γ)−1f (t, u) =
√
|u|e−t.

If we choose ω (u) =
√
u, ψ (t) = e−t, then we obtain

|F (t, u)| ≤ ψ(t)ω(|u|), on (0,∞)× R,

with ω ∈ C ((0,∞) , (0,∞)) non-decreasing and ψ(t) : (0,∞) → (0,∞) continuous
and in L1 (0,∞) . Then, the condition (H2) holds.
On the other hand, we show that
i) ψ∗n = supt∈(0,Tn] ψ(t) = 1.

ii) G̃n = supt∈(0,Tn]

∫ Tn

0
|Gn (t, s)| ds, we have to consider two cases.

Case 1: for s ≤ t, we have

G̃n = sup
t∈(0,Tn]

β

Γ (δ)

∫ Tn

0

∣∣∣∣∣∣t−β(γ+1)

(
1−

(
s

Tn

)β)δ−1

−t−β(δ+γ)
(
tβ − sβ

)δ−1
∣∣∣ ds

= sup
t∈(0,Tn]

∫ Tn

0

∣∣∣∣∣t 1
2

(
1− s

Tn

) 1
2

− (t− s)
1
2

∣∣∣∣∣ ds
≤ sup

t∈(0,Tn]

t
1
2

∫ Tn

0

∣∣∣∣∣
(

1− s

Tn

) 1
2

∣∣∣∣∣ ds+ sup
t∈(0,Tn]

∫ Tn

0

∣∣∣(t− s) 1
2

∣∣∣ ds
≤ sup

t∈(0,Tn]

t
1
2

∫ Tn

0

(
1− s

Tn

) 1
2

ds+ sup
t∈(0,Tn]

∫ Tn

0

(t− s)
1
2 ds

≤ sup
t∈(0,Tn]

[
2

3
t
1
2Tn −

2

3
(t− Tn)

3
2 +

2

3
t
3
2

]
≤ sup

t∈(0,Tn]

2

3
t
1
2Tn − inf

t∈(0,Tn]

2

3
(t− Tn)

3
2 + sup

t∈(0,Tn]

2

3
t
3
2

≤ 2T
3
2
n .

Case 2: for t ≤ s, we have

G̃n = sup
t∈(0,Tn]

β

Γ (δ)

∫ Tn

0

∣∣∣∣∣∣t−β(γ+1)

(
1−

(
s

Tn

)β)δ−1
∣∣∣∣∣∣ ds

= sup
t∈(0,Tn]

t
1
2

∫ Tn

0

(
1− s

Tn

) 1
2

ds

= sup
t∈(0,Tn]

2

3
t
1
2Tn

=
2

3
T

3
2
n

≤ 2T
3
2
n .
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Now, If we choose M ≥ 4T 3
n , then we get

ψ∗nω (M) G̃n = 2T
3
2
n

√
M ≤M.

therefore, (15) is satisfied. Hence, all the conditions of Theorem 3.4 hold, which means
that the boundary value problem (16) has at least one solution.

5. Conclusion

In this work, the existence of bounded solution for the nonlinear fractional differential
equations with initial conditions comprising the Erdélyi–Kober fractional derivative
on unbounded domain have been discussed in a special Banach space Cl (0,∞). For
our discussion, we have used the fixed point theorem of Schauder combined with di-
agonalization argument.
The fractional differential operator used in this paper is the Erdélyi–Kober fractional
derivative which is generalization of the Rieman-Lioville fractional derivative. Fu-
ture work will be directed toward fractional coupled systems of differential equations
involving Erdélyi–Kober derivatives.
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