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Fast growing solutions of linear differential equations with
analytic coefficients in the unit disc

Mohamed Abdelhak Kara and Benharrat Beläıdi

Abstract. In this paper, we investigate the growth of solutions of higher order linear dif-
ferential equations with analytic coefficients of ϕ-order in the unit disc. We introduce new

definitions of the lower ϕ-order and the lower ϕ-type related to the ϕ-order concepts in or-
der to generalise and extend previous results due to Chyzhykov-Semochko [6], Semochko [14],

Beläıdi [1, 2, 3], Hu-Zheng [12].
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1. Introduction and main results

Throughout all of this paper, we assume that the reader is familiar with the fun-
damental notions of Nevanlinna value distribution theory of meromorphic functions
in the whole complex plane C and in the unit disc ∆, where ∆ = {z ∈ C : |z| < 1} ,
(see [8, 13, 16]). For all r ∈ [0, 1), we define exp1 r = exp r = er and expp+1 r =

exp(expp r), p ∈ N = {1, 2, . . . }. Inductively, log+ r = max{0, log r}, log+
1 r = log+ r

and log+
p+1 r = log+(log+

p r), p ∈ N ∪ {0}. We also denote exp0 r = r = log+
0 r,

exp−1 r = log+
1 r and log+

−1 r = exp1 r. In addition, the sets F ⊂ [0, 1) (resp. E ⊂ [0, 1)
) are not necessarily the same at each occurrence, but they are always of finite log-
arithmic measure (resp. infinite logarithmic measure), that is

∫
F

dr
1−r < +∞ (resp.∫

E
dr
1−r = +∞). Furthermore, in this paper the phrasing “r, r → 1− ”when occurs is

simply a shorthand notation of “for all r ∈ (0, 1) sufficiently close to 1 ”.

Definition 1.1 ([4]). The iterated p-order of an analytic function f in ∆ is defined
by

ρ̃p(f) := lim sup
r−→1−

log+
p+1M(r, f)

− log(1− r)
, p ∈ N,

where M(r, f) = max{|f(z)| : |z| = r} is the maximum modulus of f . If f is
meromorphic in ∆, the iterated p-order is defined by

ρp(f) := lim sup
r−→1−

log+
p T (r, f)

− log(1− r)
, p ∈ N,

where T (r, f) is the Nevanlinna characteristic of f .
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Definition 1.2 ([11]). The iterated p-type of an analytic function f in ∆ with 0 <
ρ̃p(f) < +∞ is defined by

τ̃p(f) = lim sup
r−→1−

(1− r)ρ̃p(f) log+
p M(r, f).

Heittokangas et al. in [11] investigated the iterated p-order of solutions of the
complex linear differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0, (1)

where k ≥ 2 and the coefficients A0 6≡ 0, · · · , Ak−1 are analytic functions in the unit
disc ∆. They obtained the following result.

Theorem 1.1 ([11]). Let p ∈ N. If the coefficients A0, A1, . . . , Ak−1 are analytic
functions in ∆ such that ρ̃p(Aj) < ρ̃p(A0) for j = 1, · · · , k − 1, then all solutions
f 6≡ 0 of (1) satisfy ρ̃p+1(f) = ρ̃p(A0).

Observe that A0(z) is the only one dominant coefficient. In [7], Hamouda gave an
improvement of Theorem 1.1 by considering more than one dominant coefficient. He
proved the following theorem.

Theorem 1.2 ([7]). Let p ∈ N. If the coefficients A0, A1, . . . , Ak−1 are analytic
functions in ∆ such that ρ̃p(Aj) ≤ ρ̃p(A0) for j = 1, · · · , k − 1, and

max{τ̃p(Aj) : ρ̃p(Aj) = ρ̃p(A0)} < τ̃p(A0),

then all solutions f 6≡ 0 of (1) satisfy ρ̃p(f) = ρ̃p+1(A0).

There are many extensions of Theorem 1.1 and Theorem 1.2 by considering the
so called [p, q]-order (see some results in [1, 12]). Unfortunately, both of the iterated
p-order and the [p, q]-order do not cover an arbitrary growth, i.e., there exist functions
of infinite iterated p-order and [p, q]-order for an arbitrary p ∈ N as it was shown in
[6, Example 1.4]. To avoid this disadvantage, Chyzhykov and Semochko [6, 14] used
a more general scale to measure the growth of solutions of equation (1) called the
ϕ-order (cf. [15]).

Definition 1.3 ([14]). Let ϕ be an increasing unbounded function on (0,∞). The
ϕ-orders of an analytic function f in ∆ are defined by

ρ̃0ϕ(f) = lim sup
r−→1−

ϕ(M(r, f))

− log(1− r)
, ρ̃1ϕ(f) = lim sup

r−→1−

ϕ(logM(r, f))

− log(1− r)
.

If f is meromorphic in ∆, then the ϕ-orders are defined by

ρ0ϕ(f) = lim sup
r−→1−

ϕ(eT (r,f))

− log(1− r)
, ρ1ϕ(f) = lim sup

r−→1−

ϕ(T (r, f))

− log(1− r)
.

Note that for ϕ(r) = log+
p r, p ∈ N and if f is an analytic function in ∆, then

ρ̃1ϕ(f) = ρ̃p(f).

By Φ we define the class of positive unbounded increasing functions on (0,∞)

such that ϕ(et) is slowly growing, i.e., ∀c > 0 : lim
t→+∞

ϕ(ect)

ϕ(et)
= 1. One can see that

ϕ(r) = log+
p r, (p ≥ 2) belongs to the class Φ and ϕ(r) = log+ r /∈ Φ. We recall now

some basic properties of functions from the class Φ.
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Proposition 1.3 ([6]). If ϕ ∈ Φ, then

∀m > 0, ∀k ≥ 0 :
ϕ−1(log xm)

xk
−→ +∞, x −→ +∞, (2)

∀δ > 0 :
logϕ−1((1 + δ)x)

logϕ−1(x)
−→ +∞, x −→ +∞. (3)

Remark 1.1. By (3) and the definition of the limit, for all K > 0 and sufficiently
large x, we obtain

∀δ > 0 :
[
ϕ−1 (x)

]K ≤ ϕ−1 ((1 + δ)x) .

Remark 1.2 ([6]). One can show that (3) implies that

∀c > 0, ϕ(cx) ≤ ϕ(xc) ≤ (1 + o(1))ϕ(x), x −→ +∞. (4)

Proposition 1.4 ([14]). Let ϕ ∈ Φ and f be an analytic function in ∆. Then

ρ1ϕ(f) = ρ̃1ϕ(f).

Remark 1.3. For an analytic function f in ∆ and ϕ ∈ Φ, the equality ρ0ϕ(f) = ρ̃0ϕ(f)
is not verified when ϕ(.) = log2(.) = log log(.) which belongs to the class Φ and satisfies
ρ0log2

(f) = ρ1(f) and ρ̃0log2
(f) = ρ̃1(f). Since for an analytic function f at |z| = r < 1,

we have

T (r, f) ≤ log+M (r, f) ≤ 1 + 3r

1− r
T

(
1 + r

2
, f

)
(see [8, Theorem 1.6] or [13, Proposition 2.2.2]), then ρ0log2

(f) ≤ ρ̃0log2
(f) ≤ ρ0log2

(f) +

1. However, we have ρ0ϕ(f) = ρ̃0ϕ(f) if ϕ(.) = logp+1(.) = log(logp)(.), p ≥ 2.

The following theorem due to Semochko [14] used the concept of ϕ-order which
improves Theorem 1.1.

Theorem 1.5 ([14]). Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be analytic functions in ∆
such that max{ρ̃0ϕ(Aj), j = 1, . . . , k − 1} < ρ̃0ϕ(A0). Then, every solution f 6≡ 0 of (1)

satisfies ρ̃1ϕ(f) = ρ̃0ϕ(A0).

By analogous manner to Definition 1.3, we introduce the following quantities.

Definition 1.4. Let ϕ be an increasing unbounded function on (0,∞). The lower
ϕ-orders of an analytic function f in ∆ are defined by

µ̃0
ϕ(f) = lim inf

r−→1−

ϕ(M(r, f))

− log(1− r)
, µ̃1

ϕ(f) = lim inf
r−→1−

ϕ(logM(r, f))

− log(1− r)
.

If f is meromorphic in ∆, then the lower ϕ-orders are defined by

µ0
ϕ(f) = lim inf

r−→1−

ϕ(eT (r,f))

− log(1− r)
, µ1

ϕ(f) = lim inf
r−→1−

ϕ(T (r, f))

− log(1− r)
.

Using a similar proof as in [14, Proposition 1], one can show the following result.

Proposition 1.6. Let ϕ ∈ Φ and f be an analytic function in ∆. Then

µ1
ϕ(f) = µ̃1

ϕ(f).
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Definition 1.5. Let ϕ be an increasing unbounded function on (0,∞). We define the
ϕ-types of an analytic function f in ∆ with 0 < ρ̃iϕ(f) < +∞, (i = 0, 1) by

τ̃0ϕ(f) = lim sup
r−→1−

(1− r)ρ̃
0
ϕ(f) exp{ϕ(M(r, f))},

τ̃1ϕ(f) = lim sup
r−→1−

(1− r)ρ̃
1
ϕ(f) exp{ϕ(logM(r, f))}.

If f is meromorphic in ∆, then the ϕ-types with 0 < ρiϕ(f) < +∞, (i = 0, 1) are
defined by

τ0ϕ(f) = lim sup
r−→1−

(1− r)ρ
0
ϕ(f) exp{ϕ(eT (r,f))},

τ1ϕ(f) = lim sup
r−→1−

(1− r)ρ
1
ϕ(f) exp{ϕ(T (r, f))}.

Definition 1.6. Let ϕ be an increasing unbounded function on (0,∞). We define the
lower ϕ-types of an analytic function f in ∆ with 0 < µ̃iϕ(f) < +∞, (i = 0, 1) by

τ̃0ϕ(f) = lim inf
r−→1−

(1− r)µ̃
0
ϕ(f) exp{ϕ(M(r, f))},

τ̃1ϕ(f) = lim inf
r−→1−

(1− r)µ̃
1
ϕ(f) exp{ϕ(logM(r, f))}.

If f is meromorphic in ∆, then the lower ϕ-types with 0 < µiϕ(f) < +∞, (i = 0, 1)
are defined by

τ0ϕ(f) = lim inf
r−→1−

(1− r)µ
0
ϕ(f) exp{ϕ(eT (r,f))},

τ1ϕ(f) = lim inf
r−→1−

(1− r)µ
1
ϕ(f) exp{ϕ(T (r, f))}.

The main purpose of this paper is to generalise Theorems 1.1, 1.2 and 1.5 by
considering the concepts of the ϕ-orders and the ϕ-types. Our results are counterparts
of theorems listed in [2, 3, 6], where the coefficients Aj(z) in equation (1) are entire
functions.

Theorem 1.7. Let A0, · · · , Ak−1 be analytic functions in ∆, and let ϕ ∈ Φ. As-
sume that max

{
ρ̃0ϕ(Aj) : j = 1, · · · , k − 1

}
< µ̃0

ϕ(A0) ≤ ρ̃0ϕ(A0) < +∞. Then, every

solution f 6≡ 0 of (1) satisfies µ̃0
ϕ(A0) = µ̃1

ϕ(f) ≤ ρ̃1ϕ(f) = ρ̃0ϕ(A0).

Theorem 1.8. Let A0, · · · , Ak−1 be analytic functions in ∆, and let ϕ ∈ Φ. Assume
that max{ρ0ϕ (Aj) : j = 1, · · · , k − 1} ≤ µ0

ϕ (A0) < +∞ and

lim sup
r−→1−

k−1∑
j=1

m(r,Aj)

m(r,A0)
< 1.

Then, every solution f 6≡ 0 of (1) satisfies ρ0ϕ(A0) ≤ ρ1ϕ(f) = ρ̃1ϕ(f) ≤ ρ̃0ϕ(A0) and

µ0
ϕ(A0) ≤ µ1

ϕ(f) = µ̃1
ϕ(f) ≤ µ̃0

ϕ(A0).
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Theorem 1.9. Let A0, · · · , Ak−1 be analytic functions in ∆, and let ϕ ∈ Φ. Assume
that

max{ρ̃0ϕ(Aj) : j = 1, · · · , k − 1} ≤ ρ̃0ϕ(A0) = ρ0, (0 < ρ0 < +∞)

and

max{τ̃0ϕ(Aj) : ρ̃0ϕ(Aj) = ρ̃0ϕ(A0), j 6= 0} < τ̃0ϕ(A0) = τ0 (0 < τ0 < +∞) .

Then, every solution f 6≡ 0 of (1) satisfies ρ̃1ϕ(f) = ρ̃0ϕ(A0).

Theorem 1.10. Let A0, · · · , Ak−1 be analytic functions in ∆, and let ϕ ∈ Φ. Assume
that

max{ρ̃0ϕ(Aj) : j = 1, · · · , k − 1} ≤ µ̃0
ϕ(A0) = µ0, (0 < µ0 < +∞)

and

max{τ̃0ϕ(Aj) : ρ̃0ϕ(Aj) = µ̃0
ϕ(A0); j 6= 0} < τ̃0ϕ(A0) = τ0, (0 < τ0 < +∞) .

Then, every solution f 6≡ 0 of (1) satisfies ρ̃1ϕ(f) = ρ̃0ϕ(A0) ≥ µ̃1
ϕ(f) = µ̃0

ϕ(A0).

2. Preliminary Lemmas

Lemma 2.1 ([5]). Let f be a meromorphic function in ∆ such that f (j) does not
vanish identically. Let ε > 0 be a constant, k and j be integers satisfying 0 ≤ j < k,
F a set with finite logarithmic measure on [0, 1) and d ∈ (0, 1). Then, we have∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤
[(

1

1− |z|

)2+ε

max

{
log

1

1− |z|
;T (s(|z|), f)

}]k−j
, |z| /∈ F,

where s(|z|) = 1− d(1− |z|). Moreover, if ρ1(f) < +∞, then∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ ( 1

1− |z|

)(k−j)(2+ε+ρ1(f))

, |z| /∈ F.

Lemma 2.2 ([9]). Let f be a meromorphic function in ∆ and k ∈ N. Then, we have

m

(
r,
f (k)

f

)
= O

(
log+ T (r, f) + log

1

1− r

)
possibly outside of an exceptional set F ⊂ [0, 1) with

∫
F

dr
1−r < +∞. If ρ1(f) < +∞,

then

m

(
r,
f (k)

f

)
= O

(
log

1

1− r

)
.

Lemma 2.3. Let ϕ ∈ Φ and k ∈ N. Let f be a meromorphic function in ∆ of order
ρ1ϕ(f) =: ρ1. Then, for any given ε > 0, we have

m

(
r,
f (k)

f

)
= O

(
log+ ϕ−1

(
(ρ1 + ε) log

1

1− r

))
holds for all r → 1− outside of a set F ⊂ [0, 1) with

∫
F

dr
1−r < +∞.
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Proof. We proceed by mathematical induction. Firstly, for k = 1, the definition of
ρ1ϕ(f) =: ρ1 implies that for any ε > 0 and for all r, r → 1− we have

T (r, f) ≤ ϕ−1
(

(ρ1 + ε) log
1

1− r

)
. (5)

It follows from Lemma 2.2, (2) and (5) that

m

(
r,
f ′

f

)
= O

(
log+ ϕ−1

(
(ρ1 + ε) log

1

1− r

))
, r /∈ F, (6)

where F ⊂ [0, 1) with
∫
F

dr
1−r < +∞. Secondly, for ε > 0, we assume that

m

(
r,
f (k)

f

)
= O

(
log+ ϕ−1

(
(ρ1 + ε) log

1

1− r

))
, r /∈ F.

Since N(r, f (k)) ≤ (k + 1)N(r, f) and m(r, f (k)) ≤ m
(
r, f

(k)

f

)
+m(r, f), then

T (r, f (k)) = m(r, f (k)) +N(r, f (k))

≤ (k + 1)T (r, f) +O

(
log+ ϕ−1

(
(ρ1 + ε) log

1

1− r

))
= O

(
ϕ−1

(
(ρ1 + ε) log

1

1− r

))
, r /∈ F.

In view of (6), we get

m

(
r,
f (k+1)

f (k)

)
= O

(
log+ ϕ−1

(
(ρ1 + ε) log

1

1− r

))
, r /∈ F.

Thus, for r /∈ F we obtain

m

(
r,
f (k+1)

f

)
≤ m

(
r,
f (k+1)

f (k)

)
+m

(
r,
f (k)

f

)
= O

(
log+ ϕ−1

(
(ρ1 + ε) log

1

1− r

))
.

�

Lemma 2.4 ([10]). Let A0, A1, · · · , Ak−1 be analytic functions in ∆R = {z ∈ C :
|z| < R}, where 0 < R ≤ +∞ and f be a solution of (1) in ∆R, 1 ≤ p < +∞. Then,
for all 0 ≤ r < R we have

[mp(r, f)]
p ≤ C

1 +

k−1∑
j=0

∫ 2π

0

∫ r

0

∣∣Aj(seiθ)∣∣ 1
k−j ds dθ

 ,

where C > 0 is a constant depending on p and on the initial values of f(z) at the
point zθ, where Aj(zθ) 6= 0 for some j = 0, 1, · · · , k − 1 and where

[mp(r, f)]
p

=
1

2π

∫ 2π

0

[
log+

∣∣f(reiθ)
∣∣]p dθ.
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Lemma 2.5 ([10]). Let f be a solution of (1) in ∆R = {z ∈ C : |z| < R}, where
0 < R ≤ +∞. Let nc ∈ {1, 2, · · · , k} be the number of non-zero coefficients Aj(j =
0, 1, · · · , k − 1), and let θ ∈ [0, 2π] and ε > 0. If z0 = νeiθ ∈ ∆R is such that Aj 6= 0
for some j = 0, 1, · · · , k − 1, then for all ν ≤ r < R, we have

|f(reiθ)| ≤ C exp

(
nc

∫ r

ν

max
j=0,1,··· ,k−1

|Aj(teiθ)|
1

k−j dt

)
,

where C is a constant satisfying

C ≤ (1 + ε) max
j=0,1,··· ,k−1

 |f (j)(z0)|
njc max
n=0,1,··· ,k−1

|An(z0)|
j

k−n

 .

Lemma 2.6. Let ϕ ∈ Φ and f be a meromorphic function in ∆ with µ1
ϕ(f) < +∞.

Then, there exists a set E ⊂ [0, 1) with infinite logarithmic measure such that for all
r ∈ E, r → 1−, we have for any ε > 0

T (r, f) < ϕ−1
(

(µ1
ϕ(f) + ε) log

1

1− r

)
.

Proof. The definition of µ1
ϕ(f) implies that there exists a sequence {rn, n ≥ 1} tending

to 1− satisfying 1− d(1− rn) < rn+1, where d ∈ (0, 1) and

lim
rn→1−

ϕ(T (rn, f))

− log(1− rn)
= µ1

ϕ(f).

Then, for any ε > 0 there exists an integer number n1 such that for all n ≥ n1, we
have

T (rn, f) < ϕ−1
(

(µ1
ϕ(f) + ε) log

1

1− rn

)
.

Set E =
+∞
∪

n=n1

[
1− 1−rn

d , rn
]
, then for any r ∈ E ⊂ [0, 1), we get

T (r, f) ≤ T (rn, f) < ϕ−1
(

(µ1
ϕ(f) +

ε

2
) log

1

1− rn

)
≤ ϕ−1

(
(µ1
ϕ(f) +

ε

2
) log

1

d(1− r)

)
< ϕ−1

(
(µ1
ϕ(f) + ε) log

1

1− r

)
,

where ∫
E

dr

1− r
=

+∞∑
n=n1

rn∫
1− 1−rn

d

dt

1− t
=

+∞∑
n=n1

log
1

d
= +∞.

�

By a similar proof, one can easily prove the following lemma.

Lemma 2.7. Let ϕ ∈ Φ and f be an analytic function in ∆ with µ̃0
ϕ(f) < +∞. Then,

there exists a set E ⊂ [0, 1) with infinite logarithmic measure such that for all r ∈ E,
r → 1−, we have for any ε > 0

M(r, f) < ϕ−1
(

(µ̃0
ϕ(f) + ε) log

1

1− r

)
.



44 M. A. KARA AND B. BELAÏDI

Lemma 2.8. Let A0, · · · , Ak−1 be analytic functions in ∆, and let ϕ ∈ Φ. Assume
that max{ρ̃0ϕ (Aj) : j 6= s} ≤ µ̃0

ϕ (As) < +∞. If f 6≡ 0 is a solution of (1), then

µ̃1
ϕ(f) ≤ µ̃0

ϕ(As).

Proof. By Lemma 2.4, we have

T (r, f) = m(r, f) ≤ C

1 +

k−1∑
j=0

∫ 2π

0

∫ r

0

|Aj(seiθ)|
1

k−j dsdθ


≤ 2πC

1 +

k−1∑
j=0

rM(r,Aj)

 . (7)

Set α = max
{
ρ̃0ϕ(Aj) : j 6= s

}
. By the definition of ρ̃0ϕ(Aj), we have for any ε > 0

and r → 1−

M(r,Aj) ≤ ϕ−1
(

(α+
ε

2
) log

1

1− r

)
, (j 6= s) . (8)

By Lemma 2.7, there exists a set E ⊂ [0, 1) with
∫
E

dr
1−r = +∞ such that for r ∈ E,

r → 1−

M(r,As) < ϕ−1
(

(µ̃0
ϕ(As) +

ε

2
) log

1

1− r

)
. (9)

By (7)-(9), we have for r ∈ E, r → 1−

T (r, f) ≤ O
(
ϕ−1

(
(µ̃0
ϕ(As) + ε) log

1

1− r

))
. (10)

Then, it follows from (4), (10), by the arbitrariness of ε > 0 and the monotonicity of
ϕ−1 that µ̃1

ϕ(f) ≤ µ̃0
ϕ(As). �

Lemma 2.9. Let ϕ ∈ Φ and A0, · · · , Ak−1 be analytic functions in ∆. Then, every
non-zero solution f of (1) satisfies

ρ̃1ϕ(f) ≤ max{ρ̃0ϕ (Aj) : j = 0, 1, · · · , k − 1}.

Proof. Set β = max{ρ̃0ϕ (Aj) : j = 0, 1, · · · , k − 1}. By the definition of ρ̃0ϕ(Aj), we

have for any ε > 0 and r → 1−

M(r,Aj) ≤ ϕ−1
(

(β +
ε

2
) log

1

1− r

)
, j = 0, 1 · · · , k − 1. (11)

By (7) and (11), for any ε > 0 and r → 1−, we have

T (r, f) = m(r, f) ≤ O
(
ϕ−1

(
(β + ε) log

1

1− r

))
. (12)

It follows from (4), (12), by the arbitrariness of ε > 0 and the monotonicity of ϕ−1

that

ρ̃1ϕ(f) ≤ β = max{ρ̃0ϕ (Aj) : j = 0, 1, · · · , k − 1}.
�
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Lemma 2.10. Let ϕ ∈ Φ and f be an analytic function in ∆ satisfying 0 < ρ̃0ϕ(f) =

ρ0 < +∞ and 0 < τ̃0ϕ(f) = τ0 < +∞. Then, for any given 0 < β < τ̃0ϕ(f), there exists

a set E ⊂ [0, 1) with
∫
E

dr
1−r =∞ such that for all r ∈ E, we have

ϕ(M(r, f)) > log
β

(1− r)ρ0
.

Proof. The definition of τ̃0ϕ(f) implies that there exists a sequence {rn, n ≥ 1} tending

to 1− satisfying 1− (1− 1
n )(1− rn) < rn+1 and

lim
n→+∞

(1− rn)ρ0 exp{ϕ(M(rn, f))} = τ0.

Then, for any given ε > 0, there exists an integer n1 such that for all n ≥ n1, we have

exp{ϕ(M(rn, f))} > τ0 − ε
(1− rn)ρ0

. (13)

For any given β such that 0 < β < τ0 − ε, there exists an integer n2 such that for all
n ≥ n2, we have (

1− 1

n

)ρ0
>

β

τ0 − ε
. (14)

For all n ≥ n3 := max{n1, n2} and for any r ∈
[
rn, 1− (1− 1

n )(1− rn)
]
, it follows

from (13) and (14) that

exp{ϕ(M(r, f))} ≥ exp{ϕ(M(rn, f))} > τ0 − ε
(1− rn)ρ0

≥ τ0 − ε
(1− r)ρ0

(
1− 1

n

)ρ0
>

β

(1− r)ρ0
.

Thus

ϕ(M(r, f)) > log
β

(1− r)ρ0
.

Set E =
+∞
∪

n=n3

[
rn, 1− (1− 1

n )(1− rn)
]
, then E satisfies

∫
E

dr

1− r
=

+∞∑
n=n3

1−(1− 1
n )(1−rn)∫
rn

dr

1− r
=

+∞∑
n=n3

log
n

n− 1
= +∞.

�

Lemma 2.11 ([14]). Let ϕ ∈ Φ and f be an analytic function in ∆ satisfying 0 <
ρ0ϕ(f) = ρ0 < +∞. Then, for any given 0 < β < ρ0, there exists a set E ⊂ [0, 1) with∫
E

dr
1−r =∞ such that for all r ∈ E, we have

ϕ (eT (r,f)) > β log
1

1− r
.
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3. Proofs of main results

Proof of Theorem 1.7. Suppose that f 6≡ 0 is a solution of equation (1). From
Theorem 1.5 we have ρ̃1ϕ(f) = ρ̃0ϕ(A0). So, we only need to prove that µ̃1

ϕ(f) =

µ̃0
ϕ(A0). Firstly, we prove the inequality µ1 = µ̃1

ϕ(f) ≥ µ̃0
ϕ(A0) = µ0. Suppose that to

the contrary, µ1 = µ̃1
ϕ(f) < µ̃0

ϕ(A0) = µ0. Set max
{
ρ̃0ϕ(Aj) : j = 1, · · · , k − 1

}
= β.

We can suppose without reducing the generality that µ1 ≤ β < µ0. By equation (1),
we can write

|A0(z)| ≤
∣∣∣∣f (k)(z)f(z)

∣∣∣∣+ |Ak−1(z)|
∣∣∣∣f (k−1)(z)f(z)

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣ . (15)

For any given ε (0 < 3ε < µ0−β), we have from the definitions of µ̃0
ϕ(A0) and ρ̃0ϕ(Aj)

that for r → 1−

|A0(z)| ≥ ϕ−1
(

(µ0 − ε) log
1

1− r

)
(16)

and

|Aj(z)| ≤ ϕ−1
(

(β + ε) log
1

1− r

)
, j = 1, . . . , k − 1. (17)

By Lemma 2.1, for j = 1, · · · , k and |z| /∈ F, where F is a set of finite logarithmic
measure on [0, 1), we have∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤
[(

1

1− |z|

)2+2ε

T (s(|z|), f)

]j
.

It follows from Lemma 2.6 and Proposition 1.6 that there exists a set E of infinite
logarithmic measure on [0, 1) such that for |z| ∈ E\F, we have∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤
[(

1

1− |z|

)2+2ε

T (s(|z|), f)

]j

≤

[(
1

1− |z|

)2+2ε

ϕ−1
(

(µ1 + ε) log
1

1− s (|z|)

)]j
. (18)

Since E\F is a set of infinite logarithmic measure, there exists a sequence of points
rn = |zn| ∈ E\F tending to 1. Set Rn = s(|zn|) = 1 − d(1 − |zn|), d ∈ (0, 1). We
have 1 − |zn| = 1−Rn

d , d ∈ (0, 1). By substituting (16)-(18) into (15) for the above
ε (0 < 3ε < µ0 − β) and using Remark 1.1, we obtain for Rn −→ 1− and Rn ∈ E\F
that

ϕ−1
(

(µ0 − ε) log
d

1−Rn

)

≤ k

[(
d

1−Rn

)2+2ε

ϕ−1
(

(µ1 + ε) log
1

1−Rn

)]k
ϕ−1

(
(β + ε) log

d

1−Rn

)

≤
[
ϕ−1

(
(β + ε) log

d

1−Rn

)]k+2

≤ ϕ−1
(

(β + 2ε) log
d

1−Rn

)
.

By arbitrariness of ε (0 < 3ε < µ0 − β) and the monotonicity of ϕ−1 we obtain the
contradiction µ0 ≤ β. Thus, µ1 = µ̃1

ϕ(f) ≥ µ̃0
ϕ(A0) = µ0.
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Now, we prove the converse inequality µ̃1
ϕ(f) ≤ µ̃0

ϕ(A0). Let θ0 ∈ [0, 2π] be such that

|f(reiθ0)| = M(r, f). By Lemma 2.5, we have

M(r, f) ≤ C exp

(
nc

∫ r

ν

max
j=0,1,··· ,k−1

|Aj(teiθ0)|
1

k−j dt

)
≤ C exp

(
nc

∫ r

ν

max
j=0,1,··· ,k−1

|M(r,Aj)|
1

k−j dt

)
≤ C exp

(
nc(r − ν) max

j=0,1,··· ,k−1
M(r,Aj)

)
. (19)

The definition of ρ̃0ϕ(Aj) implies that for any ε > 0 and r → 1−, we have

M(r,Aj) ≤ ϕ−1
(

(β +
ε

2
) log

1

1− r

)
, (j = 1, · · · , k − 1) , (20)

where β = max
{
ρ̃0ϕ(Aj) : j = 1, · · · , k − 1

}
. By Lemma 2.7, there exists a set E ⊂

[0, 1) with
∫
E

dr
1−r = +∞ such that for r ∈ E, r → 1−

M(r,A0) ≤ ϕ−1
(

(µ̃0
ϕ(A0) +

ε

2
) log

1

1− r

)
. (21)

We deduce from (19)-(21) that for any ε > 0 and all r ∈ E, r → 1−

logM(r, f) ≤ ϕ−1
(

(µ̃0
ϕ(A0) + ε) log

1

1− r

)
. (22)

By arbitrariness of ε > 0 and the monotonicity of ϕ−1, we obtain µ̃1
ϕ(f) ≤ µ̃0

ϕ(A0).
Hence, Theorem 1.7 is proved.

Proof of Theorem 1.8. Let f be a non-zero solution of equation (1). First, we
prove ρ0ϕ(A0) ≤ ρ1ϕ(f). Suppose that to the contrary, ρ1ϕ(f) < ρ0ϕ(A0). Let β1 and

β2 be two real constants satisfying ρ1ϕ(f) < β1 < β2 < ρ0ϕ(A0). Equation (1) can be
written as

A0 = −
(
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f

)
. (23)

By Lemma 2.2 and the above equation, we obtain that

m(r,A0) ≤
k−1∑
j=1

m(r,Aj) +

k∑
j=1

m

(
r,
f (j)

f

)
+O(1)

≤
k−1∑
j=1

m(r,Aj) +O

(
log+ T (r, f) + log

1

1− r

)
(24)

holds for all r, r → 1− outside of an exceptional set F ⊂ [0, 1) with
∫
F

dr
1−r < +∞.

Assume that

lim sup
r→1−

k−1∑
j=1

m(r,Aj)

m(r,A0)
= µ < λ < 1.
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Then for r → 1−, we have

k−1∑
j=1

m(r,Aj) < λm(r,A0)

and thus for r → 1−, r /∈ F we have

(1− λ)m(r,A0) < O

(
log+ T (r, f) + log

1

1− r

)
. (25)

Hence, by Lemma 2.3, we obtain that

T (r,A0) = m(r,A0) ≤ O
(

log+ T (r, f) + log
1

1− r

)
= O

(
log+ ϕ−1

(
β1 log

1

1− r

))
(26)

holds for r → 1− and r /∈ F. By Lemma 2.11, there exists a set E of infinite logarithmic
measure on [0, 1) such that for r → 1−

T (r,A0) > log+ ϕ−1
(
β2 log

1

1− r

)
. (27)

Since E\F is a set of infinite logarithmic measure, there exists a sequence of points
rn = |zn| ∈ E\F tending to 1. By substituting (27) into (26), we obtain for all
rn = |zn| ∈ E\F, rn → 1− and any given ε, 0 < ε < β2 − β1

log+ ϕ−1
(
β2 log

1

1− rn

)
≤ O

(
log+ ϕ−1

(
β1 log

1

1− rn

))
≤ log+ ϕ−1

(
(β1 + ε) log

1

1− rn

)
. (28)

By arbitrariness of ε, 0 < ε < β2 − β1 and the monotonicity of ϕ−1, from (28) we
obtain β2 ≤ β1. This contradiction proves the inequality ρ0ϕ(A0) ≤ ρ1ϕ(f). On the

other hand, it follows from Lemma 2.9 that ρ1ϕ(f) ≤ ρ̃0ϕ(A0). Therefore, ρ0ϕ(A0) ≤
ρ1ϕ(f) = ρ̃1ϕ(f) ≤ ρ̃0ϕ(A0).

Now, we prove µ0
ϕ(A0) ≤ µ1

ϕ(f). Suppose that to the contrary, µ1
ϕ(f) < µ0

ϕ(A0).

Let α1 and α2 be two real constants satisfying µ1
ϕ(f) < α1 < α2 < µ0

ϕ(A0). It follows
from Lemma 2.6 that there exists a set E of infinite logarithmic measure on [0, 1)
such that for r ∈ E, r → 1−

T (r, f) < ϕ−1
(
α1 log

1

1− r

)
(29)

and for r → 1−

T (r,A0) > log+ ϕ−1
(
α2 log

1

1− r

)
. (30)

Since E\F is a set of infinite logarithmic measure, there exists a sequence of points
rn = |zn| ∈ E\F tending to 1. By substituting (29) and (30) into (25), we obtain for
all rn = |zn| ∈ E\F, rn → 1− and any given ε, 0 < ε < α2 − α1

log+ ϕ−1
(
α2 log

1

1− rn

)
≤ O

(
log+ ϕ−1

(
α1 log

1

1− rn

))
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≤ log+ ϕ−1
(

(α1 + ε) log
1

1− rn

)
. (31)

By arbitrariness of ε, 0 < ε < α2 − α1 and the monotonicity of ϕ−1, from (31) we
obtain α2 ≤ α1. This contradiction proves the inequality µ0

ϕ(A0) ≤ µ1
ϕ(f). By Lemma

2.8, we obtain µ1
ϕ(f) ≤ µ̃0

ϕ(A0) and therefore µ0
ϕ(A0) ≤ µ1

ϕ(f) = µ̃1
ϕ(f) ≤ µ̃0

ϕ(A0).

Proof of Theorem 1.9. If max{ρ̃0ϕ(Aj) : j = 1, · · · , k − 1} < ρ̃0ϕ(A0) < +∞, then

by Theorem 1.5 we get ρ̃1ϕ(f) = ρ̃0ϕ(A0). Suppose now max{ρ̃0ϕ(Aj) : j = 1, · · · , k −
1} = ρ̃0ϕ(A0) = ρ0, (0 < ρ0 < +∞) and max{τ̃0ϕ(Aj) : ρ̃0ϕ(Aj) = ρ̃0ϕ(A0), j 6= 0} <
τ̃0ϕ(A0) = τ0, (0 < τ0 < +∞) . Then we can choose a set J ⊂ {1, · · · , k − 1} such

that ρ̃0ϕ(Aj) = ρ̃0ϕ(A0) = ρ0 and τ̃0ϕ(Aj) < τ̃0ϕ(A0) = τ0 for all j ∈ J as well as

ρ̃0ϕ(Aj) < ρ̃0ϕ(A0) for all j /∈ J.
First, we prove ρ̃1ϕ(f) ≥ ρ̃0ϕ(A0). Suppose that to the contrary, ρ1 = ρ̃1ϕ(f) <

ρ̃0ϕ(A0) = ρ0. Let β1 and β2 be two real constants satisfying max{τ̃0ϕ(Aj) : j ∈ J} <
β1 < β2 < τ0. Then, by the definition of ρ̃0ϕ(Aj), for all r, r −→ 1−, we have

|Aj(z)| ≤ ϕ−1
(

log
β1

(1− r)ρ0

)
, j ∈ J (32)

and

|Aj(z)| ≤ ϕ−1
(
γ log

1

1− r

)
≤ ϕ−1

(
log

β1
(1− r)ρ0

)
, j ∈ {1, . . . , k − 1} \ J, (33)

where 0 < γ < ρ0. By Lemma 2.10, there exists a set E ⊂ [0, 1) with
∫
E

dr
1−r = ∞

such that for all r ∈ E, we have

|A0(z)| = M(r,A0) > ϕ−1
(

log
β2

(1− r)ρ0

)
. (34)

By Lemma 2.1, for j = 1, · · · , k and |z| /∈ F, where F is a set of finite logarithmic
measure on [0, 1), we have∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤
[(

1

1− |z|

)2+2ε

T (s(|z|), f)

]j
.

It follows from the definition of ρ1ϕ(f), Proposition 1.4 that for any given ε (0 < ε <
ρ0 − ρ1) and |z| /∈ F, we obtain∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤
[(

1

1− |z|

)2+2ε

T (s(|z|), f)

]j

≤

[(
1

1− |z|

)2+2ε

ϕ−1
(

(ρ1 + ε) log
1

1− s(|z|)

)]j
. (35)

Since E\F is a set of infinite logarithmic measure, there exists a sequence of points
rn = |zn| ∈ E\F tending to 1. Set Rn = s(|zn|) = 1 − d(1 − |zn|), d ∈ (0, 1).

Substituting (32)-(35) into (15) for any given ε (0 < ε < min{β2−β1

2 , ρ0 − ρ1}, we
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obtain for Rn −→ 1− and Rn ∈ E\F that

ϕ−1
(

log
β2d

ρ0

(1−Rn)ρ0

)

≤ k

[(
d

1−Rn

)2+2ε

ϕ−1
(

(ρ1 + ε) log
1

1−Rn

)]k
ϕ−1

(
log

β1d
ρ0

(1−Rn)ρ0

)

≤
[
ϕ−1

(
log

(β1 + ε) dρ0

(1−Rn)ρ0

)]k+2

≤ ϕ−1
(

log
(β1 + 2ε) dρ0

(1−Rn)ρ0

)
.

The last estimate is verified in view of Remark 1.1. By arbitrariness of ε (0 < ε <

min{β2−β1

2 , ρ0−ρ1} and the monotonicity of ϕ−1 we obtain the contradiction β2 ≤ β1.
Thus ρ̃1ϕ(f) ≥ ρ̃0ϕ(A0). It follows from Lemma 2.9 that

ρ̃1ϕ(f) ≤ max{ρ̃0ϕ (Aj) : j = 0, 1, · · · , k − 1} = ρ̃0ϕ(A0).

Therefore, ρ̃1ϕ(f) = ρ̃0ϕ(A0) and Theorem 1.9 is proved.

Proof of Theorem 1.10. Since µ̃0
ϕ(A0) ≤ ρ̃0ϕ(A0), then by Theorem 1.9 we obtain

ρ̃1ϕ(f) = ρ̃0ϕ(A0). If max
{
ρ̃0ϕ(Aj) : j 6= 0

}
< µ̃0

ϕ(A0), then by Theorem 1.7 we have

µ̃1
ϕ(f) = µ̃0

ϕ(A0). If ρ̃0ϕ(Aj) = µ̃0
ϕ(A0) = µ0 and τ̃0ϕ(Aj) ≤ τ < τ̃0ϕ(A0) = τ0.

We first prove the inequality µ1 = µ̃1
ϕ(f) ≥ µ̃0

ϕ(A0) = µ0. Suppose that to the

contrary, µ1 < µ0. It follows from the definitions of τ̃0ϕ(Aj) and τ̃0ϕ(A0) that for all r,

r −→ 1− and for any given ε(0 < 3ε < τ0 − τ), we have

|Aj(z)| ≤ ϕ−1
(

log
τ + ε

(1− r)µ0

)
(36)

and

|A0(z)| ≥ ϕ−1
(

log
τ0 − ε

(1− r)µ0

)
. (37)

By Lemma 2.1, for j = 1, · · · , k and |z| /∈ F, where F is a set of finite logarithmic
measure on [0, 1), we have∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤
[(

1

1− |z|

)2+2ε

T (s(|z|), f)

]j
.

By Proposition 1.4 and Lemma 2.6, there exists a set E ⊂ [0, 1) with
∫
E

dr
1−r = ∞

such that for all r ∈ E\F, and any given ε (0 < ε < µ0 − µ1), we obtain∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤
[(

1

1− |z|

)2+2ε

T (s(|z|), f)

]j

≤

[(
1

1− |z|

)2+2ε

ϕ−1
(

(µ1 + ε) log
1

1− s(|z|)

)]j
. (38)

Since E\F is a set of infinite logarithmic measure, there exists a sequence of points
rn = |zn| ∈ E\F tending to 1. Set Rn = s(|zn|) = 1 − d(1 − |zn|), d ∈ (0, 1).
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Substituting (36)-(38) into (15) for any given ε (0 < ε < min{µ0 − µ1,
τ0−τ

3 }, we
obtain for Rn −→ 1− and Rn ∈ E\F that

ϕ−1
(

log
(τ0 − ε)dµ0

(1−Rn)µ0

)

≤ k

[(
d

1−Rn

)2+2ε

ϕ−1
(

(µ1 + ε) log
1

1−Rn

)]k
ϕ−1

(
log

(τ + ε)dµ0

(1−Rn)µ0

)

≤
[
ϕ−1

(
log

(τ + ε)dµ0

(1−Rn)µ0

)]k+2

≤ ϕ−1
(

log
(τ + 2ε)dµ0

(1−Rn)µ0

)
.

The last estimate is verified in view of Remark 1.1. By arbitrariness of ε (0 < ε <

min{µ0−µ1,
τ0−τ

3 } and the monotonicity of ϕ−1 we obtain the contradiction τ0 ≤ τ.
Thus µ̃1

ϕ(f) ≥ µ̃0
ϕ(A0). It follows from Lemma 2.8 that

µ̃1
ϕ(f) ≤ µ̃0

ϕ(A0).

Therefore, µ̃1
ϕ(f) = µ̃0

ϕ(A0).
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[1] B. Beläıdi, Growth of solutions to linear differential equations with analytic coefficients of [p, q]

-order in the unit disc, Electron. J. Differential Equations 2011(2011), No. 156, 11 pp.
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