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Abstract. To prevent an exhaustive key-search attack of the key-exchange protocol using

real quadratic fields, we need to ensure that the number ` of reduced principal ideals in K is
sufficiently large. In this paper we present an example of a family which are not valid for this

protocol.
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1. Introduction

In cryptography, a Public key is one of the main techniques for making the inter-
net secure. Most public key crypto-systems are based on intractable computational
problems in number theory such as factoring integers. The public key systems have a
major advantage over the private key systems, they do not require that the two parties
meet beforehand to exchange a key, the circumventing of this problem gave birth to
algorithms and key exchange protocols. Since then many public key crypto-systems
have been suggested whose security is based on difficult problems in quadratic number
fields.

In 1976 Diffie and Hellman introduced their well-known key exchange protocol [5],
This scheme is based on the arithmetic in the multiplicative group F ∗ of a finite field
F . In 1988 Buchmann and Williams [1] presented a variant of the Diffie-Hellman
key exchange protocol in class groups of imaginary quadratic fields. And in 1989
Buchmann and Williams [3] sketched the other Diffie-Hellman protocol which does
not require a group structure. Here we are interested in this latest protocol which is
instead based on the infrastructure of a real quadratic field. Currently, the best known
algorithms for breaking this scheme are exponential in the size of the key. Moreover,
the problem of breaking this scheme is closely related to the very difficult problems
of computing class numbers of real quadratic fields and factoring large integers.

In order to raise the degree of security of this scheme, it is necessary that the
number ` of reduced principal ideals be sufficiently large in the quadratic number
field considered K = Q(

√
D). From Williams [9] we know the following lower bound:

` > R
log(D) , where R is the regulator of K. moreover, it follows from a result of [7]

that hKR >> D1/2−η where η > 0 arbitrarily small and hK is the class number of
K. To get ` large we must therefore find and use real quadratic field with small class
numbers. on the other hand it is also necessary to prevent exhaustive attacks, so
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we must choose real quadratic fields whose cardinal of the cycle of reduced principal
ideals is very large.

In this paper we will determine, by the continued fraction algorithm, the cycles of
principal reduced ideals of a quadratic fields of type K = Q(

√
m2 ± 1) where m is

an integer such that m2 ± 1 is square-free, and then we find the fundamental unit of
these fields, and therefore these fields are not valid for the exchange protocol based on
real quadratic fields. We also present, by the Voronoi algorithm a similar results for
a pure cubic fields of type K = Q( 3

√
m3 ± 1) where m is an integer such that m3 ± 1

is square-free and 6≡ ±1 (mod 9). For this family of pure cubic fields, we will also
determine an upper bound of the cardinal of the set R of principal reduced ideals.

2. Preliminary

Let K = Q(
√
D) where D > 1 is a square free integer. If we denote

σ =

{
1 if D ≡ 2, 3 (mod 4)

2 if D ≡ 1 (mod 4)
and ω =

σ − 1 +
√
D

σ
,

then the ring of integers of K is O = Z[ω] and the discriminant of K is ∆ = 4D
σ2 . Let

ε0 be the fundamental unit of K, R its regulator and hK its class number. We define
the norm of α ∈ K to be N(α) = αα′, where α′ is the conjugate of α.

Every ideal I of O has a representation I = [a, b+ cω] where a, b, c ∈ Z such that
a > b ≥ 0, c > 0, c | a, c | b and ac | N(b + cω). Under these conditions the integers
a, b, c are unique, further a is the least positive rational integer in I that we denote
it by L(I). We call a number µ ∈ I a minimum in I if µ > 0 and if there is no
(α 6= 0) ∈ I such that |α| < µ and |α′| < |µ′|. We note by MI the set of minimums
in I. Because the set {logµ, µ ∈MO} is discrete in R, the ordering of minimums in
O can be written as a sequence:

µ1 = 1 < µ2 < µ3 < . . . ,

and since |N(µ)| < 2
πN(I)

√
D, there is some ` ∈ N such that

µ`+1 = ε0, µi+j` = µiε
j
0, ∀(i, j) ∈ N2.

We say that the ideal I = [a, b + cω] is primitive, if c = 1. The ideal I is said to
be reduced if I is primitive and L(I) is a minimum in I. For example, O = [1, ω] is
reduced, L(O) = 1. We denote by R the set of all reduced principal ideals.

It is known that for every r ∈ R there is a minimum µ in O such that 1
L(r)r = 1

µO.
The sequence (µi)i∈N of minimums in O gives rise to a sequence (ri = (L(ri)

µi
))i∈N of

reduced principal ideals, and since µi+j` = µiε
j
0 for all i, j ∈ N, then ri+j` = ri for

all i, j ∈ N, hence (ri)i∈N is purely periodic with length ` it follow that the set R is

finite of cardinal ` and we have R = {ri = (L(ri)
µi

), 1 ≤ i ≤ `}.
For each reduced principal ideal ri we associate the distance δi = logµi. We can

also define the distance between an ideal ri and a positive real number x as follows

δ(ri, x) = δi − x.

If x ∈ R+, then there is a unique i ∈ N such that δi ≤ x < δi+1. If ri = (L(ri)
µi

) where

δi = logµi, then we call ri the ideal closest to the left of x and denote it by r−x, and
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if ri+1 = (L(ri+1)
µi+1

) where δi+1 = logµi+1, then we call ri+1 the ideal closest to the

right of x and denote it by r+x.
The idea of the protocol, in brief, is as follows. Alice and Bob publicly agree

on a large integer D > 0. Alice secretly chooses a positive integer x and computes
the reduced principal ideal a−x and δ(a−x, x) and send these two information to
Bob. Similarly, Bob secretly chooses a positive integer y and computes the reduced
principal ideal b−y and δ(b−y, y) and send these two information to Alice. From x,
b−y and δ(b−y, y), Alice computes a reduced principal ideal c−xy. Similarly, using y,
a−x and δ(a−x, x), Bob computes a reduced principal ideal c−xy which is the key.

A part from exhaustive search, The only known way of breaking this protocol is
to solve the discrete logarithm problem (DLP) in R, i.e. given a reduced principal

ideal ri find its distance δi. Since δi = logµi where ri = (L(ri)
µi

) ∈ R the DLP in R
is equivalent to the problem of finding for any reduced principal ideal ri, a generator
L(ri)
µi

. For more details concerning this section see [3] and [6].

3. On the choice of D for a real quadratic field

Based on a result of Buchmann and Williams [2], a fast algorithm for solving the
DLP in R can be used to find the regulator R of K. By a result of Schoof [8], we
know that if it is possible to find R quickly, then D can be factored quickly. Thus
the DLP in K = Q(

√
D) is at least as difficult as factoring D. On the other hand,

to prevent an exhaustive key-search attack, we need to ensure that the number ` of
reduced principal ideals in O is sufficiently large, which is not always guaranteed even
if D is large as we will see.

Theorem 3.1. Let m ≥ 1 be an odd integer such that D = m2 +1 is square-free, and
let K = Q(

√
D). Then the only reduced principal ideal in the ring of integers of K is

the entire ring (1).

Proof. We use the notation bxc the floor of x, i.e. the largest integer less than or equal

to x. If m is an odd integer then m2 + 1 ≡ 2 (mod 4) hence σ = 1 and ω =
√
m2 + 1.

Using the continued fraction expansion of ω, we have

ω0 = ω =
√
m2 + 1 =

P0 +
√
m2 + 1

Q0
,

ω1 =
1

ω0 − bω0c
=

1√
m2 + 1−m

= m+
√
m2 + 1 =

P1 +
√
m2 + 1

Q1
,

ω2 =
1

ω1 − bω1c
=

1√
m2 + 1−m

= ω1,

hence the length of this sequence is ` = 1, and the ideal correspond to ω1 is[
Q1

σ
,
P1 +

√
m2 + 1

σ

]
=
[
1,m+

√
m2 + 1

]
,

which is equal to [
Q0

σ
,
P0 +

√
m2 + 1

σ

]
=
[
1,
√
m2 + 1

]
= O,
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which is correspond to ω0. �

The cycle of reduced ideals of O is constituted by a only ideal: R = {O}. The
minimums of O are exactly the units of O, and we have

ε0 =
∏̀
i=1

ωi = ω1 = m+
√
m2 + 1

Lemma 3.2. If m > 0 is an even integer then b 1+
√
m2+1
2 c = m

2 .

Proof. We have m− 1 ≤
√
m2 + 1 < m+ 1, hence

√
m2 + 1− 1 < m ≤ 1 +

√
m2 + 1,

it follow that 1+
√
m2+1
2 − 1 < m

2 ≤
1+
√
m2+1
2 , then b 1+

√
m2+1
2 c = m

2 . �

Theorem 3.3. Let m > 2 be an even integer such that D = m2 +1 is square-free, and
let K = Q(

√
D). Then the ring of integers of K has three reduced principal ideals,

namely (1),
[
m
2 ,

m−1+
√
m2+1

2

]
which is generated by m−1+

√
m2+1

2 , and
[
m
2 ,

1+
√
m2+1
2

]
which is generated by m+1+

√
m2+1

2 .

Proof. Ifm is an even integer thenm2+1 ≡ 1 (mod 4) hence σ = 2 and ω = 1+
√
m2+1
2 .

We have

ω0 = ω =
1 +
√
m2 + 1

2
=
P0 +

√
m2 + 1

Q0

which correspond to the ideal

I1 =

[
Q0

σ
,
P0 +

√
m2 + 1

σ

]
=

[
1,

1 +
√
m2 + 1

2

]
= O.

Then we have

ω1 =
1

ω0 − bω0c
=

1
1+
√
m2+1
2 − m

2

=
m− 1 +

√
m2 + 1

m
=
P1 +

√
m2 + 1

Q1

which correspond to the ideal

I2 =

[
Q1

σ
,
P1 +

√
m2 + 1

σ

]
=

[
m

2
,
m− 1 +

√
m2 + 1

2

]
,

and I2 is reduced because we have m
2 <

√
∆
2 , and it’s principal because

Q0

ω1
I2 = Q1I1 and I2 =

Q1ω1

Q0
O = (

m− 1 +
√
m2 + 1

2
).

Afterward we have

ω2 =
1

ω1 − bω1c
=

1
m−1+

√
m2+1

m − 1
=

1 +
√
m2 + 1

m
=
P2 +

√
m2 + 1

Q2

which correspond to the reduced ideal

I3 =

[
Q2

σ
,
P2 +

√
m2 + 1

σ

]
=

[
m

2
,

1 +
√
m2 + 1

2

]
,
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and we have

Q0

ω1ω2
I3 = Q2I1 and I3 =

Q2ω1ω2

Q0
O = (

m+ 1 +
√
m2 + 1

2
).

We continue this process,

ω3 =
1

ω2 − bω2c
=

1
1+
√
m2+1
m − 1

=
m− 1 +

√
m2 + 1

2
=
P3 +

√
m2 + 1

Q3
,

which correspond to the ideal

I4 =

[
1,
m− 1 +

√
m2 + 1

2

]
=

[
1,
m− 2

2
+

1 +
√
m2 + 1

2

]
= O,

this also justified by the fact that ω4 = ω1. �

Remark 3.1. For m > 2 an even integer such that D = m2+1 is square-free, we have

R = {O, (m−1+
√
m2+1

2 ), (m+1+
√
m2+1

2 )} and ε0 =
∏̀
i=1

ωi = ω1ω2ω3 = m +
√
m2 + 1.

For m = 2, we have R = {O} and ε0 = ω0 = 1+
√

5
2 .

Theorem 3.4. Let m > 1 be an integer such that D = m2 − 1 is square-free, and let
K = Q(

√
D). Then the ring of integers of K has two reduced principal ideals, namely

(1), and
[
2(m− 1),m− 1 +

√
m2 − 1

]
which is generated by m− 1 +

√
m2 − 1.

Proof. If m > 1 is an integer, then m2 − 1 ≡ 2, 3 (mod 4), therefore σ = 1, ω0 =√
m2 − 1 (P0 = 0, Q0 = 1) and we have

ω1 =
1

ω0 − bω0c
=

1√
m2 − 1− (m− 1)

=
m− 1 +

√
m2 − 1

2(m− 1)
=
P1 +

√
m2 − 1

Q1
,

which correspond to the ideal

I2 =

[
Q1

σ
,
P1 +

√
m2 − 1

σ

]
=
[
2(m− 1),m− 1 +

√
m2 − 1

]
.

Since 2(m− 1) < m− 1 +
√
m2 − 1 and −N(I2) < m− 1−

√
m2 − 1 < 0, then I2 is

reduced, and

Q0

ω1
I2 = Q1I1 = Q1O, and I2 =

Q1ω1

Q0
O = (m− 1 +

√
m2 − 1).

We end with

ω2 =
1

ω1 − bω1c
=

1
m−1+

√
m2−1

2(m−1) − 1
= m− 1 +

√
m2 − 1 =

P2 +
√
m2 − 1

Q2

which correspond to the ideal I3 =
[
1,m− 1 +

√
m2 − 1

]
= O. �

Remark 3.2. For m > 1 an integer such that D = m2 − 1 is square-free,we have

R = {O, (m− 1 +
√
m2 − 1)} and ε0 =

∏̀
i=1

ωi = ω1ω2 = m+
√
m2 − 1.
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4. On the choice of D for a pure cubic field

It seems that the key-exchange protocol of Buchmann and Williams can be applied
in a pure cubic field with the same steps, and hence we need as in the quadratic case
a good choice of D.

A pure cubic field is formed by a adjoining δ = 3
√
D to the rationals Q where D

is a cube-free integer. We can assume that D > 1, and we can write D in a unique
fashion: D = rs2, where r, s ∈ N, gcd(r, s) = 1, and r, s are square-free. Moreover we

may assume that r > s because if we put δ̄ =
3
√
D̄ =

3
√
r2s we have Q(δ) = Q(δ̄).

Any such field has one real embedding and a pair of conjugate complex embedding,
and hence has one fundamental unit ε0 and negative discriminant.

The pure cubic number field K = Q( 3
√
D) is said to be of type I if D 6≡ ±1 (mod 9),

in this case
[
1, δ, δ̄

]
is a basis of the ring of integers OK of K, and the discriminant of

K is ∆K = −27r2s2. Otherwise is said to be of type II and in this case
[
1, δ, 1+rδ+sδ̄

3

]
is a basis of OK , and ∆K = −3r2s2. Denote by α′ and α′′ the conjugate roots of any
α ∈ K. If K is of type I and D is square-free (s = 1) then OK = [1, δ, δ2] = Z[δ] thus
we say that K is monogenic.

In the case of a quadratic field we have used the continued fraction algorithm, and
the idea can be extended to the Voronoi algorithm in pure cubic field. For a more
detailed description of these ideas we refer the reader to [4] and [10].

Let δ1, δ2, δ3 ∈ K such that

3∑
k=1

zkδk = 0 (zk ∈ Z)⇔ z1 = z2 = z3 = 0.

We say that L = {(ω, ω′, ω′′) | ω =
∑3
k=1 zkδk, zk ∈ Z} is a lattice over K with basis

{δ1, δ2, δ3}. Since ω′ and ω′′ are complex, we consider the real lattice

L = {Ω = (ω,
ω′ − ω′′

2i
,
ω′ + ω′′

2
) | ω =

3∑
k=1

zkδk, zk ∈ Z}

we also write L = 〈δ1, δ2, δ3〉 and we often identify Ω with to ω and we write Ω ≈ ω.
We say that (Θ ≈ θ) ∈ K is a relative minimum of L if Θ ∈ L and there does not

exist (Φ ≈ φ 6= 0) ∈ L such that |φ| < |θ| and φ′φ′′ < θ′θ′′, it is clear that if Θ ≈ θ
then −Θ ≈ −θ so is, and so we consider that the positive relative minima. If Θ and
Φ are relative minima of L such that 0 < θ < φ and there does not exist a Ψ ∈ L
such that θ < ψ < φ and ψ′ψ′′ < θ′θ′′ we call Φ the relative minimum adjacent to Θ.
for any lattice we construct the sequence (Θn)n∈N, where Θ1 is a minimum of L, and
Θk+1 is a relative minimum adjacent to Θk.

Now if we consider the lattice L1 = 〈1, δ2, δ3〉 where [1, δ2, δ3] is an integral basis of
OK , clearly Θ1 = (1, 0, 1) is a relative minimum of L1, and let Θ2 be the relative min-

imum adjacent to Θ1. Put θ
(1)
g = θ2 ≈ Θ2 and find θ

(1)
h such that L1 = 〈1, θ(1)

g , θ
(1)
h 〉.

Put L2 = 〈1, 1

θ
(1)
g

,
θ
(1)
h

θ
(1)
g

〉. Again (1, 0, 1) ≈ 1 is a relative minimum of L2 and we

find θ
(2)
g , a relative minimum adjacent to 1 in L2. We continue like this, we have

(1, 0, 1) ≈ 1 is a relative minimum of Lk = 〈1, 1

θ
(k−1)
g

,
θ
(k−1)
h

θ
(k−1)
g

〉 and determining θ
(k)
g , the
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relative minimum adjacent to 1 in Lk. We put Θn+1 =

n∏
k=1

θ(k)
g . When for some least

integer k > 1, Lk and L1 are the same lattice, or equivalently, N(Θk) = 1, then the
sequence of relative minimum of L1 is

Θ1 = 1 < Θ2 < ... < Θk−1

and we have

ε0 = Θk

the rest of the sequence is as follows

Θk = ε0 < Θk+1 = Θ2ε0 < ... < Θ2(k−1) = Θk−1ε0 < ...

Now we will use the correspondence between the lattices of K and the ideals of OK .
Any ideal I of OK = [1, δ2, δ3] has a basis [λ1, λ2, λ3] where λ1 = a11, λ2 = a21 +a22δ2
and λ3 = a31 +a32δ2 +a33δ3 with akl ∈ Z and a11, a22, a33 > 0, further a11 is the least
positive rational integer in I, (L(I) = a11). If we put L = 〈1, λ2

λ1
, λ3

λ1
〉 we say that L is

the 1-lattice which corresponds to the ideal I. If L1 = αL2, α ∈ K we say that L1 and
L2 are similar. We call a 1-lattice in which (1, 0, 1) is a relative minimum a reduced
lattice. an ideal I is reduced if and only if its corresponding lattice is reduced.

Lemma 4.1. Let L1 be a 1-lattice which corresponds to the ideal I1 and L2 be a
1-lattice which corresponds to the ideal I2.
(1) If L1 = αL2 then (L(I2))I1 = (L(I1)α)I2.

(2) If I1 = (β)I2 then L1 = L(I1)
L(I2)βL2.

Proof. Let I1 = [L(I1), λ2, λ3] and I2 = [L(I2), γ2, γ3], then L1 = 〈1, λ2

L(I1) ,
λ3

L(I1) 〉 and

L2 = 〈1, γ2
L(I2) ,

γ3
L(I2) 〉. If L1 = αL2, then there is M ∈ GL3(Z) such that

α

 1
γ2/L(I2)
γ3/L(I2

 = M

 1
λ2/L(I1)
λ3/L(I1)


hence

α

L(I2)

L(I2)
γ1

γ3

 =
1

L(I1)
M

L(I1)
λ2

λ3

 ,

which proves the first assertion. Similarly we show the second. �

In the remainder of this section we consider the pure cubic field K = Q(δ) where
δ3 = D is a square-free integer and D 6≡ ±1 (mod 9) . We will use the correspondence
between the lattices of K and the ideals of OK , to get some important results similar
to the ones we got in the quadratic case.

Lemma 4.2. Let m ≥ 1 be an integer such that D = m3+1 is square-free and D 6≡ ±1
(mod 9), and let K = Q( 3

√
D). Then Θ ≈ m2 +mδ+ δ2 is a relative minimum of the

lattice L which corresponds to OK .

Proof. Let Φ ≈ φ ∈ L such that |φ| < |θ| and φ′φ′′ < θ′θ′′, then N(φ) < N(m2 +
mδ + δ2) = 1, and since N(φ) ∈ Z then φ = 0. �
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Theorem 4.3. Let m ≥ 1 be an integer such that D = m3 + 1 is square-free and
D 6≡ ±1 (mod 9), and let K = Q( 3

√
D). Then the only reduced principal ideal of OK

is OK = (1) itself.

Proof. Let L1 be the lattice which corresponds to OK , hence L1 = 〈1, δ, δ2〉 where

δ = 3
√
m3 + 1. With the same notations above, we have Θ1 = (1, 0, 1) ≈ 1. By the

above lemma, θ
(1)
g = m2 +mδ+δ2 is a relative minimum of L1. If there is Ψ ≈ ψ ∈ L1

such that

1 < ψ = x+yδ+zδ2 < θ(1)
g ,

1

4
(2x−yδ−zδ2)2+

3

4
(yδ−zδ2)2 = ψ′ψ′′ < 1, (x, y, z) ∈ Z3,

then 
−1
3 < x <

θ(1)g +2

3

−1
δ
√

3
< y <

θ(1)g +1+
√

3

3δ

−1
δ2
√

3
< z <

θ(1)g +1+
√

3

3δ2

⇒ x, y, z ≥ 0.

But z = 0 means that ψ = 0, z = 1 means that ψ = θ
(1)
g and z > 1 means that the

value minimal of ψ (z fixed) is −2 + 3zδ2 and θ
(1)
g < −2 + 3zδ2, all these contradict

the hypothesis, therefore θ
(1)
g is the relative minimum adjacent to 1 in L1. We can

take θ
(1)
h = −δ (which is not unique), because 1

m2 +mδ + 1
−δ

 =

 1 0 0
m2 m 1
0 −1 0

 1
δ
δ2

 ,

hence L2 = 〈1, 1
m2+mδ+δ2 ,

−δ
m2+mδ+δ2 〉 = 〈1,−m+ δ,mδ − δ2〉.

We have L2 = L1 because 1
−m+ δ
mδ − δ2

 =

 1 0 0
−m 1 0

0 m −1

 1
δ
δ2

 ,

hence the only reduced ideal equivalent to OK is itself. �

Corollary 4.4. Let m ≥ 1 be an integer such that D = m3 + 1 is square-free and
D 6≡ ±1 (mod 9), and let K = Q( 3

√
D). Then the fundamental unit of K is

ε0 = m2 +m
3
√
m3 + 1 + 3

√
(m3 + 1)2

Proof. We have L2 = L1 hence ε0 = Θ2 = θ
(1)
g . �

Lemma 4.5. Let m > 1 be an integer such that D = m3 − 1 is square-free and
D 6≡ ±1 (mod 9), and let K = Q( 3

√
D). Then Θ ≈ m2 − 1 + mδ + δ2 is a relative

minimum of the lattice L which corresponds to OK .

Proof. Let Φ ≈ φ ∈ L such that φ < θ and φ′φ′′ < θ′θ′′, since φ = x+ yδ + zδ2 with
x, y, z ∈ Z, then{

0 ≤ x+ yδ + zδ2 < m2 − 1 +mδ + δ2

( 2x−yδ−zδ2
2 )2 + 3

4 (yδ − zδ2)2 < 3m(m−1)
m2−1+mδ+δ2 < 1

as in the proof of the later theorem, the integers x, y, z are positive. If we have z ≥ 1

then yδ < mδ or x < m2 − 1 hence z < 2√
3δ2

+ m
δ or z < 1√

3δ2
+ m2

δ2 , in both cases
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we have z ≤ 1. if z = 1 then y = m and x = m2 − 1 which is not possible therefore
z = 0 hence y < 2√

3δ
< 1 and y = 0 and this means that x < 1 and x = 0 finally we

have φ = 0. �

Theorem 4.6. Let m > 1 be an integer such that D = m3 − 1 is square-free and
D 6≡ ±1 (mod 9), and let K = Q( 3

√
D). Then OK has two reduced principal ideals,

(1) itself and
[
3m(m− 1), 3m(m− 1)δ, (m− 1)2 + (m− 1)δ + δ2

]
which is principally

generated by −2m2 +m+ 1 + (m− 1)δ + δ2.

Proof. We consider the lattice L1 which corresponds to OK , (δ = 3
√
m3 − 1), where

Θ1 = (1, 0, 1) ≈ 1 is a relative minimum. there is no Ψ ≈ ψ ∈ L1 such that{
1 < ψ = x+ yδ + zδ2 < θ = m2 − 1 +mδ + δ2, (x, y, z) ∈ Z3

1
4 (2x− yδ − zδ2)2 + 3

4 (yδ − zδ2)2 = ψ′ψ′′ < 1

because the two inequalities means that z = 0 hence ψ = 0, or z = 1 hence ψ = θ,

consequently, the relative minimum adjacent to 1 is θ
(1)
g = m2 − 1 +mδ+ δ2, and we

find θ
(1)
h = −δ such that L1 = 〈1, θ(1)

g , θ
(1)
h 〉.

We continue with L2 = 〈1, 1
m2−1+mδ+δ2 ,

−δ
m2−1+mδ+δ2 〉 where (1, 0, 1) ≈ 1 is a

relative minimum, and as before we can shown that

θ(2)
g =

(m− 1)2 + (m− 1)δ + δ2

3m(m− 1)
= 1 +

1

m2 − 1 +mδ + δ2

is the relative minimum adjacent to 1, and we find that

θ
(2)
h = δ and L2 = 〈1, (m− 1)2 + (m− 1)δ + δ2

3m(m− 1)
, δ〉.

We end with

L3 = 〈1, 3m(m− 1)

(m− 1)2 + (m− 1)δ + δ2
,

3m(m− 1)δ

(m− 1)2 + (m− 1)δ + δ2
〉

= 〈1,−m+ 1 + δ, (−m+ 1)δ + δ2〉.
We have L3 = L1 because 1

−m+ 1 + δ
(−m+ 1)δ + δ2

 =

 1 0 0
−m+ 1 1 0

0 −m+ 1 1

 1
δ
δ2

 .

Finally we have two reduced lattices, namely L1 and L2 which correspond respectively
to the ideals

I1 = (1) and I2 =
[
3m(m− 1), 3m(m− 1)δ, (m− 1)2 + (m− 1)δ + δ2

]
,

and since L2 = 1
m2−1+mδ+δ2L1 then by lemma 4.1 we have

I2 = (
3m(m− 1)

m2 − 1 +mδ + δ2
)I1 = (−2m2 +m+ 1 + (m− 1)δ + δ2).

�

Corollary 4.7. Let m ≥ 1 be an integer such that D = m3 − 1 is square-free and
6≡ ±1 (mod 9), and let K = Q( 3

√
D). Then the fundamental unit of K is

ε0 = m2 +m
3
√
m3 − 1 + 3

√
(m3 − 1)2.
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Proof. We have L3 = L1, hence ε0 = Θ3 = θ
(2)
g θ

(1)
g . �

If we know the fundamental unit ofK, then we can have information on the cardinal
of R, indeed we have the following result.

Theorem 4.8. Let K = Q(δ) where D = δ3 is square-free integer and D 6≡ ±1
(mod 9). If ε0 is the fundamental unit of K, then the number of principal reduced
ideals of OK is smaller than t = b ε0+1

3δ2 cb
ε0+1

3δ cb
ε0+2

3 c.

Proof. Let µ = x + yδ + zδ2 a minimum of OK such that 1 < µ < ε0, then we have

µ′µ′′ < 1 hence ( 2x−yδ−zδ2
2 )2 + 3

4 (yδ − zδ2)2 < 1, therefore

−1√
3δ2

< z <
ε0 + 1

3δ2
+

1√
3δ2

,
−1√

3δ
< y <

ε0 + 1

3δ
+

1√
3δ
,
−1

3
< x <

ε0 + 2

3
,

hence the result. �

Remark 4.1. If there is no minimum µ of OK such that 1 < µ < ε0, then the only
reduced principal ideal in OK is OK itself.
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