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A study on K- paracontact and (k, u)- paracontact manifold
admitting vanishing Cotton tensor and Bach tensor

V. VENKATESHA, N. BHANUMATHI, AND C. SHRUTHI

ABSTRACT. The object of the present paper is to study K-paracontact manifold admitting
parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact
manifold. In that we prove for a K-paracontact metric manifold M2"*1 has parallel Cotton
tensor if and only if M2"*1 is an n-Einstein manifold and r = —2n(2n + 1). Further we show
that if g is an n-Einstein K-paracontact metric and if g is Bach flat then g is an Einstein.
Also we study vanishing Cotton tensor on (k, p)-paracontact manifold for both x > —1 and
k < —1. Finally, we prove that if M27*1 is a (k, u)-paracontact manifold for k # —1 and if
M?7+1 has vanishing Cotton tensor for p # s, then M?"t! is an 7-Einstein manifold.
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1. Introduction

In 1921, the notion of Bach tensor was introduced by R. Bach [1] to study conformal
relativity. This is a symmetric traceless (0,2)-type tensor B on an n-dimensional
Riemannian manifold (M, g), defined by

1 n
B(X,Y) =— Z ((Ve,Ve,W) (X, e1,€;,Y))
ij=1
1 n
+ —3 Z Ric(e;, ;)W (X, e5,€5,Y), (1)
ij=1

where (e;),% =1, ...,m, is a local orthonormal frame on (M;g), Ric is the Ricci tensor
of type (0,2) and C is the (0, 3)-type Cotton tensor defined by|[9]

C(X,Y)Z =(VxRic)(Y, Z) — (VyRic)(X, Z)

5 Y 2)X) (X 2)()) 2)

and W denotes the Weyl tensor of type (0,3) defined by[9]
W(X,Y)Z =R(X,Y)Z —g(Y, Z)QX — g(X, 2)QY +g(QY, Z) X
T
QX 2)Y ~ L(a¥.2)X — (X, 2)Y). Q
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After Bach[l], many people worked on Bach tensor; In 1993 Pedersen and Swann[13]
studied Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature. In
2013-14 H.D. Cao and others ([6] and [7]) studied Bach tensor on gradient shrinking
and steady Ricci soliton. In 2017 Ghosh and Sharma [10] studied Sasakian manifolds
with purely transversal Bach tensor. In that article they shows a (2n+1)-dimensional
Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar
curvature > 2n(2n + 1), equality holding if and only if (M, g) is Einstein. For dimen-
sion 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition
(M, g) is complete, then it has positive Ricci curvature and is compact with finite
fundamental group m1(M). Recently in 2019 Ghosh and Sharma [9] studied classi-
fication of (k, pt)-contact manifold with divergence free Cotton tensor and vanishing
Bach tensor.

The study of paracontact geometry was introduced by Kaneyuki and Williams in
[11]. A systematic study of paracontact metric manifolds started with the paper [16],
were the Levi-Civita connection, the curvature and a canonical connection (analogue
to the Tanaka Webster connection of the contact metric case) of a paracontact metric
manifold have been described.

There are differences between a contact metric (k, u)- space (M2t ¢, €, 1, g) and
a paracontact metric (k, p)-space (M2"*1 ¢ €,m,g). Namely, unlike in the contact
Riemannian case, a paracontact (k,u)-manifold such that x = —1 in general is not
para-Sasakian. In fact, there are paracontact (k,u)-manifolds such that h? = 0
(which is equivalent to take Kk = —1) but with h # 0. For 5-dimensional, Cappelletti
Montano and Di Terlizzi gave the first example of paracontact metric (—1,2)-space
(M?"+1 ¢, € n, g) with h? = 0 but h # 0 in [5] and then Cappelletti Montano et. al.,
gave the first paracontact metric structures defined on the tangent sphere bundle and
constructed an example with arbitrary n in [2]. Later, for 3-dimensional, the first
numerical example was given in [8]. Another important difference with the contact
Riemannian case, due to the non-positive definiteness of the metric, is that while for
contact metric (k, u)-spaces the constant x can not be greater than 1, paracontact
metric (k, u)-space has no restriction for the constants £ and p.

These papers leads interest and gives motivation to us to study Bach and Cotton
tensor on K-paracontact and (k, u1)-paracontact manifold.

After the introduction, we discuss preliminary part, it includes some basic defini-
tions and some important properties of K-paracontact and (k, p)-paracontact mani-
fold which are related to our paper and in the third section we study vanishing Cotton
tensor on K-paracontact manifold, in the next section we study parallel Cotton tensor
on K-paracontact manifold. In section five, we study Bach tensor on 7n-Einstein K-
paracontact manifold (n > 1). Finally in the last two sections, we discuss vanishing
Cotton tensor on (k, u)-paracontact manifold for both k > —1 and k < —1.

2. Preliminaries

In this section, we recall some basic definitions, which are helpful for our future studies.
For more information we refer [3],[12],[15]. A (2n + 1)-dimensional smooth manifold
M?"*+1 has a almost paracontact structure (i, £, n) if it admits a (1, 1)-tensor field ¢,
a vector field £ and a 1-form 7 such that

P =I-n-& @€ =0 ne=0, n& =1, (4)
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for all X,Y € TM?"*! and the eigen distributions Dt and D~ of ¢ corresponding to
the respective eigenvalues 1 and —1 have equal dimension n. If an almost paracontact
manifold is endowed with a semi-Riemannian metric g such that

9(pX,0Y) = —g(X,Y) + n(X)n(Y), (5)
where signature of g is necessarily (n+1,n) for all X, Y € TM?"+1 then (M?"*1 ., &1, g)
is called an almost paracontact metric manifold. The curvature tensor R is taken with
the sign convention R(X,Y) = [Vx, Vy] — V[x y] (note that an opposite convention
is used in [[3],[4],[14]]. By @ and r, we shall denote the Ricci operator determined
by S(X,Y) = g(QX,Y) and the scalar curvature of the metric g, respectively. The
fundamental 2-form of an almost paracontact metric manifold (M?2"+1 o € n,g) is
defined by ®(X,Y) = g(X,¢Y). If dyp = ®, then the manifold (M?"T1 . & n,g) is
said to be paracontact metric manifold and g the associated metric. In such case 7 is
a contact form (that is, n A (dn)™ # 0), € is its Reeb vector field and M?"*1 is a con-
tact manifold. If, in addition, £ is a Killing vector field (equivalently, h = %.fg(p =0,
where £ is the usual Lie derivative), then M?"*! is said to be a paracontact metric
manifold. In a K-paracontact manifold, we can easily get the following formulas

Vx&é = —pX+ phX, (6)
Veh = —p+ph? — ¢l (7)
Ric(&,€) = g(QE,€) = Trl = Tr(h?) — 2n, (8)

for all vector fields X,Y on M, where V is the operator of covariant differentia-
tion of g and @ denotes the Ricci operator associated with the Ricci tensor given
by Ric(X,Y) = g(QX,Y) for all vector fields X,Y on M. If the vector field £ is
Killing (equivalently, h = 0) then M is said to be a K-paracontact manifold. On
K-paracontact manifold, the following formulas hold:

Vx§ = —pX 9)
R(X,§)¢ = —X+n(X)§ (10)
QS = —2n¢ (11)

Proposition 2.1. On a K-paracontact manifold M?*"*1(p, & 1, g), we have (from

[12])
(i) (VxQ)§ = QpX +2npX, (12)
(11)  (VeQ)X = QuX — pQX, (13)
for any vector field X on M?"+1.

Definition 2.1. (See [2]) A paracontact metric (k, u)-manifold M?" ! is a paracon-
tact metric manifold for which the curvature tensor field satisfies

R(X,Y)§ = k(n(Y)X —n(X)Y) + u(n(Y)hX — n(X)hY), (14)
for all vector fields X,Y on M?"*! and for some real constants x and p .
Further, a paracontact metric manifold M satisfies the following properties
R? = (14 k)¢, (15)

Q¢ = 2nké, (16)
(Vxp)Y = —g(X —hX,Y)E+n(Y)(X — hX), for k = —1, (17)
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(Vxh)Y = (Vyh)X = — (14 £)29(X, Y)E +n(X)pY —n(Y)eX

+ (1= p)n(X)phY —n(Y)phX, (18)
Q=21 —n)+nu)I+(2n—-1)+ph

+@2n—-1)+n2c—p))n®E,  for k> —1, (19)
Q=21 -n)+nuw) I+ 2Mn+1)+ph

+2n—-1)+n2k—p))neE for k< -1, (20)

for any vector fields X,Y on M, where @ denotes the Ricci operator of (M?"+1 g).

Definition 2.2. A Riemannian manifold is called an 7n-Einstein manifold, if it has
Ricci tensor (Q such that

QY =aY +bn(Y)§ (21)
where a,b € C*°(M?"+1) and if the function b = 0 then it is called Einstein.

3. Vanishing Cotton tensor on K-paracontact manifold

Proposition 3.1. Let M?"*! be a K-paracontact manifold. Then M?***! has con-
stant scalar curvature if and only if C(X,£)§ =0

Proof. Setting Z = £ in (2) we get.

C(X,Y)§=9((VxQ)EY) —g((VyQ)E, X) — ﬁ[(XT)n(Y) - Yrn(X)]  (22)
Using equation (12) from Proposition [2.1] in the above equation, we get
(X, Y)E = ~Ang(oX,Y) + (QpX,Y) ~ g(QeY, X) — L [(Xr)n(¥) — (¥r)(X)]. (23)
Replacing X by ¢X and Y by ¢V in (23) we obtain,
ClpX, Y )E = dng(pX,Y) + 9(Qp* X, ¢Y) — g(Q¥*Y, pX) = 0, (24)
which gives
—dng(pX,Y) — g(X, QpY) + g(QpX,Y) = 0. (25)
Admitting (25) in (23), we get,
(Xr)n(Y) = (Yr)n(X) =0. (26)
Putting Y = £ and taking X orthogonal to £ in the above equation gives
Xr = 0. (27)

As M is paracontact manifold and X € kern which implies Xr = 0, VX € TM?"+1,
So r is constant.

Conversely, if r is constant then substituting ¥ = ¢ in the equation (23) gives
C(X,€)¢ = 0.
Hence the proof. O
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4. Parallel Cotton tensor on K-paracontact manifold )27 !

Definition 4.1. In a Riemannian manifold M?"*!  if there is a Cotton tensor C such
that its covariant differentiation i.e., (Vi) = 0 then the manifold is said to have
parallel Cotton tensor.

Theorem 4.1. Let M?"*! be a K -paracontact metric manifold. Then M has parallel
Cotton tensor if and only if M*"*1 is an n-Einstein manifold and r = —2n(2n + 1).

Proof. For a K-paracontact manifold M?" 1 the equation (2) for Y =¢ and Z =Y
is gives

1
C(X, )Y = 2ng(¢X,Y) + g(QpX,Y) — —{(Xr)n(Y)}. (28)
Taking Y = ¢ in the above equation, we get
1
(X, 6 = - ((X7). (29)
Using (29) in (22) we calculate the following relations
ViwC(X,8)¢ = —E{9(VwX, Dr) + g(X,VwDr)}, (30

C(VwX,€)¢ = —{g(VwX, Dr)}, 31

(
C(X, W) = dng(eX, W) + g(QeX, W) — g(Q*W, X) — £={—(eWr)n(X)¥32
C(X,§)pW = 2ng(pX, oW) + g(Qp X, pW). (33

Making use of above group of equations we obtain

(Vi C)(X, )€ =~ {g(X, Vi Dr)} + dng(oX, oW) + g(QuX, oWV

O — ~— —

1
—9(Qe*W, X) = —{(eWr)n(X)} + 2ng(p X, oW) + g(pQX, oW).  (34)
Putting W = £ in the above equation, the parallel Cotton tensor becomes
1
(VeC)(X, €)6 = — ¢ {9(X, VeDr)} =0. (3)
As £er = 0,VeDr = Vp,& = —pDr, which implies ¢g(X,Dr) = 0, which gives

Dr =0 and so r is constant. Then the relation (34) becomes
6ng(pX, oW) + g(QpX, W) — (X, QW) — 2nn(X)n(W)
—9(X, QW) — 2nn(X)n(W) = 0. (36)
Replacing X by X and W by oW in (36) and simplifying we get

9(QpX, $T) = ~3ng(o X, 6W) + Lg(QX, W) + my(X)n(IV). (31)
Feeding (37) in (36) we obtain

6ng (X, W) + 60n(X)n(IV) = 3ng(X, W) + 3 (X)n(WW) + Sg(X, 6I7)

+nn(X)n(W) — dnn(X)n(W) — 29(X, QW) = 0. (38)

Contracting the equation (38) over X and W we have r = —2n(2n + 1) and M is an
n-Einstein manifold.
Conversely, suppose M is an n-Einstein manifold and r = —2n(2n+ 1), which implies
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QY = —2nY. And so this gives C(X,Y)Z = 0.
Hence the proof. O

Lemma 4.2. Let M?"*1(n > 1) be a K-paracontact manifold. If M*"*1 satisfies
(21), then a and b are constant functions

Proof. From the condition (21) we have,

(VxQ)Y = (Xa)Y + (X0)n(Y)E + b{g(X, ¢Y)E +n(Y)VxE}. (39)
From n-Einstein condition, —2n = a 4+ b, so (Xa) = —(Xb).
Therefore

(VxQ)Y = (Xa)Y = (Xa)n(Y)§ +{=2n — a} {g(X,Y)E —n(Y)pX}.  (40)

Contracting the above equation over X with respect to the orthonormal frame field
we get

2n+1 2n+1

Z € (Ve,Q)Y,€;) = Z ei(e;a)g(Y,e;) + (a) (41)

=1 i=1

where £ = g(e;, €;), as {r = 0 gives a = 0. But we know that Zf:lﬂ ((Ve;Q)Y, ;) =
2(Y'r) which gives

%(Y’/‘) = g¢g(Y, Da) (42)

as Yr =2,s0 (n—1)Ya =0 for n > 1 becomes Ya = 0, therefore a is constant.
This completes the proof. O

5. Bach tensor on 7-Einstein K-paracontact manifolds for (n > 1)

Bach tensor for 2n + 1-dimensional manifold is given by

2n+1 2n+1
1
B(X,Y)=5— D Ve, O)en X,Y) + Y eig(Qei,e))W (X, e4,¢5,Y) 3 (43)
i=1 i,j=1

By lemma (4.2) we know that a and b are constants then equation (39) becomes
(VxQ)Y =b{g(X,pY) —n(Y)eX}. (44)

We know that from the lemma (4.2) r is constant and simplifying the cotton tensor
using (44)
CX,Y)Z = bg(X,oY)n(Z) = bn(Y)g(0X, Z) = bg(Y, X )1(Z) + bg (Y, Z)n(X).
Applying Vy on both side of the above equation gives
(VwCO)(X,Y)Z =bVw {29(X, oY )0(Z) + n(X)g(¢Y, Z) +n(Y)g(X, ¢ Z)}

=b29(X, (Vw@)Y)n(Z) + bg(X, oY )g(W,02) + bg(Vwe)Y, Z)n(X)

+bg(¢Y, Z)g(W, 0 X) + bg(X, (Vwep)Z)n(Y) + bg(X, saZ)g(Wé @1)/)
45
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On contracting above equation over X and W gives

2n+1 2n+1
> Ve, O)(e,Y)Z = b{ > eiglei, (Ve @)Y IN(Z + glei, (Veiw)Z)n(Y)} +2bg(pY, pZ)

i=1 i=1

2n+1

(S, (Z) - S(ZEOMY)) + 2yl 07)
= b{4nn(Y)n(Z) +29(¢Y,pZ)} .

Now we calculate the right hand side of the Bach tensor that is

2n+1 2n+1
D eg(Qeie)g(W (X e)e;,Y) = — > €g(Qes, W(X,e;)Y).
i,j=1 i,j=1

By n-Einstein condition Qe; = ae; + bn(e;)€, which gives

2n+1 2n+1
Y cg(Qeie)g(W(X ei)e;, Y) = = Y eigles + bn(es)é, W(X, e)Y)
i,5=1 i,7=1
’ 2n+J1
= Y eg(W(X,e)e;, Y) +bg(W (X, 6)E,Y).
i=1

(46)
From the expression of Weyl tensor W we deduce the following relation

2n+1 2n+1

Z & (W(X,e)e;, Y) = Z &((R(X,e;)e;,Y) — 2n1— 119(Qei, ei)g(X,Y)

—9(QX,ei)g(ei,Y) + glei, €)g(QX,Y) — g(X, e;)g(Qe;, Y)]

+ e (e e, Y) — g(X eg(en V)
=S(X,Y) - in_ T [rg(X,Y)—-S(X,Y)+ (2n+1)S(X,Y)

= SOY )+ g l(n+ Dg(XY) = g (X, V)]
=0. (47)

Taking inner product of W (X, )¢ with Y we get,

(W(X,8)&,Y) = (R(X,8)¢,Y) — (=2n (X, Y) + 2nn(X)n(Y) + (QX,Y)

2n —1

+20(X)(Y) + 55 s ((GY) = n(X)n(Y)
= (PVXEY) + o (XY) = (XY ) + sl (XY)
- S OY) - G S(KY)
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But (pX, ¢Y) = <X Y) +n(X)n(Y), so we get

(W(X.0e Y {( Fa ) 0¥ = (14204 0 ) n(X)n(n)} - 5 S(X,Y) (48)
Using the value of S( Y)=(1+£)(X,Y)—(142n+ L) n(X)n(Y) in (48) gives
<W(X7 f)é, Y> = 0. (49)

Therefore if g is Bach flat,

B(Y,Z) = 0= 5— {4m(Y)n(2) + 29(pY, p2)} . (50)

For Y = Z = £ we obtain b = 0.

Hence we can state this result

Theorem 5.1. Let M?"*1 be an n-Einstein K-paracontact manifold. If it has Bach
flat then M?"*1 is an Einstein manifold.

6. (k,u)-paracontact manifold, for x # —1

In this section we deal with paracontact (k,u)-manifolds such that x > —1 and
K< —1.
First for k > —1, using (19) we calculate,

(VxQ)Y =g(2(n — 1) + p)(Vxh)Y
+ @2 =1) +n2s = wW){(Vxn)YE+n(Y)VxE} (51)

Now considering the Cotton tensor on (x, pt)-paracontact manifold as from (19), r is
constant, which implies

CX.Y)Z =9((VxQ)Y,Z) + g(VyQ)X, Z). (52)
Using equation (51) we obtain
CX,Y)Z =2(n - 1) + p){=(1+ r)(29(X, pY)n(Z) + n(X)g(¢Y, X)
—n(Y)g(eX, Z)) + (1 + p)(n(X)g(phY, Z) —n(Y)g(phX, Z))}
+2(2(n — 1) + n(2k — p)g(X, oY )n(Z) + (2(n — 1) + n(2k — p))
X An(Y)g(=X + ohX, Z) = n(X)g(—pY + phY, Z)}. (53)
Replacing X, Y, Z by pX, ¢Y, pZ respectively in the above equation then we get
C(pX, oY )pZ = 0.
Similarly for x < —1 we have from (20)
(VxQ)Y =g(2(n = 1)+ 1)(Vxh)Y + (2(n + 1) + n(2r — p) {(Vxn) Y+ n(Y)Vx €}

Now consider the Cotton tensor with r is constant and substitute (VxQ)Y and
(Vy Q)X values in Cotton tensor then we get

C(X,Y)Z =9((VxQ)Y, Z) + g((VyQ)X, Z)
=2(n+1) + W {=(1+ r)(29(X, pY)0(Z) + n(X)g(¢Y, X)
—n(Y)g(pX, 2)) + (L + p)(n(X)g(hY, Z) —n(Y)g(phX, Z))}
+22n+1)+n2c — w)g(X,oY)(Z) + 2(n+ 1) + n(25 — p))
x {n(Y)g(—pX + ¢hX,Z) — n(X)g(—pY + hY, Z)} (54)
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Replacing X, Y and Z by ¢ X, ¢Y and pZ respectively in the above equation,
then C(pX, pY)pZ = 0.
Form the above two cases, when k # —1 we obtain the following result;

Proposition 6.1. On a (k, u)-paracontact metric manifold for k # —1 the projection
of the image of Cotton tensor C/ pp, (v2nt1)xoTp(M2nt1y N ©T,(M?"+1) is zero, i.e.,
CleX,pY)pZ =0,VX,Y,Z € Tp(M?*"+1)

7. Vanishing Cotton tensor on (k, u)-paracontact manifold, for xk # —1

In this section we deal with paracontact (k, p¢)-manifolds such that k < —1 and k > —1
then we have the Cotton tensor C(X,Y)Z = 0.
For k > —1, replacing Z by & in equation (54) then we get

CX,Y)E=0=(2(n—1)+p{-(1+r)2g(X,9Y))} +2(2(n — 1) + n(n(2x — n))g(X, Y)

Ch-1)+pw)A+r)+2n-1)4+n2n—pn) =0 (55)
Similarly, admitting £ in the place of X in equation (54) gives,
CEY)Z=0 = (2n—1)+p{—(1+m)g(eY, 2) + (1 + p)gl(ph, 2)}
+(2(n — V(26 — w){9(¢Y, Z) — g(phY, Z)} (56)

Symmetrizing the above equation and replacing Y by hY we obtain
A+ {2 -1 +p)A+p) - 20 -1)+n2c—p)} =0
From equation (55) it gives,
A+ -1+ +p) - 2n-1)+p)(1+r)}=0
= (+r)p—r)Q2n-1)+p =0
The above calculations leads this result.
Case(i) If p # & then (2(n — 1) + u) = 0. Therefore M?"*! is n-Einstein.

Case(ii) If 4 = & then from equation (55) p =« =0 or pt = k = 0. Therefore the we
have the following result.

Lemma 7.1. Let M?"*! be a (k, p)-paracontact manifold, admitting vanishing Cot-
ton tensor for k > —1 then we have

i). If i # K then M*"*L is an n-Einstein manifold,

it). If 2(n — 1)+ p) #0 then p=r =0.

Next for k < —1, Cotton tensor is
CX,Y)Z=2(n+1)+p){(Vxn)Y — (Vyn) X} + (2(n + 1) + n(s — p)){(Vxn)Yn(Z)
= (Vxn)Xn(Z2)} + 2(n = 1) + n(2k — ) {n(Y)VxE —n(X)Vy &}
=2(n+1) + W{=(1+ r)29(X, Y)N(Z) + n(X)g(Y, Z) —n(Y)g(¢X, Z)}
+ 1+ p)((X)g(phX, Z) —n(Y)g(phX, Z))
+2(2(n = 1) + n(26 — p)g(X, Y )n(Z) + (2(n — 1) + n(2k — p)
x {n(Y)g(—¢X + phX, Z) — n(X)g(—9Y + ohY, Z)} (57)
Substitute Z by ¢ in the above equation become
CX,)=0={Cn+ 1)+ p)(l+k) —2n-1)+n2c—pu)} (58)
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Replace X by £ in the equation (57) gives
CY)Z=0=(=2(n—1)+p)(L+rK)g(pY,Z) + (2(n — 1) + p)(1 + p)g(phY, Z)

+(2(n = 1) + n(26 + p){9(¢Y, Z) — g(phY, Z)}. (59)
On symmetrizing the above equation we have
1+k)2Mn+1)+un)(p—~r)=0. (60)

Therefore we can state the following lemma

Lemma 7.2. Let M?"*! be a (k,p) paracontact metric manifold for k < —1, if
M?" L has vanishing Cotton tensor for u # w then M?"+1 is an n- Einstein manifold.

From case (i) of lemma (7.1) and lemma (7.2) we get the following result.

Theorem 7.3. Let M*" L be a (k, p)-paracontact manifold for k # —1. If M7+t
has vanishing Cotton tensor for p # k, then M*" 1 is an n-Einstein manifold.
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