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Boundary stabilization of an overhead crane with beam model

My Driss Aouragh, Samir Khallouq, and M’hamed Segaoui

Abstract. In this paper, we study the boundary feedback stabilization problem of a hybrid
system consisting of a flexible beam attached to a platform moving along a straight rail and

carrying at the free end a load which is free to move in a horizontal plane. The model

proposed in this paper fits a large class of real-life applications such as an overhead crane with
a beam. Using the Riesz basis approach of general second-differential equation systems with

non-separated boundary conditions, it is shown that the Riesz basis property holds for the

system and as a consequence, the exponential stability is concluded. To verify the theoretical
developments, numerical study of the spectrum is performed by Legendre approximation, also

the numerical simulations are presented to show the effectiveness of the proposed control.
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1. Introduction

In this paper, we consider a model of an overhead crane system with a beam which
consist of a flexible beam attached to a platform moving along a straight rail of mass
Im and attached rigidly at the free end to a tip body of mass M and moment of
inertia J . Furthermore, the beam is supposed to be clamped at the platform. The
stabilization was achieved using the application of high derivative boundary damping.

The design of the high derivative feedback controllers in literature is mainly based
on the principle of passivity that makes the closed loop system dissipative, so the
system is at least asymptotically stable by Lyapunov function method. There are
many technics of designing controllers that make the system practically uniformly
stable, but there is no dissipativity which usually brings the difficulty of theoretical
proof of the uniform stability of the system. We use in the present paper the Riesz
basis approach, which was recently used to study the basis generation, exponential
stability and distribution of eigenvalues.

There are many different models in literature describing the vibration of a flexible
beam with a tip rigid body [7, 9]. The transversal displacement y(x, t) at position x
and time t is governed by one partial differential equation (the Euler-Bernoulli beam
equation for vibrations of a beam) coupled with two ordinary differential equations
(the Newton-Euler equations for oscillations of a rigid body), this set of equations
forms what is often called in the literature a hybrid system.
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In this paper, we consider the following system

∂2y
∂t2 (x, t) + ∂4y

∂x4 (x, t) = 0, 0 < x < 1, t > 0,
∂y
∂x (0, t) = 0, t > 0,(
∂3y
∂x3 + Im

∂2y
∂t2 + αy + β ∂y∂t +K ∂4y

∂x3∂t

)
(0, t) = 0, t > 0,

M ∂2y
∂t2 (1, t)− ∂3y

∂x3 (1, t) = 0, t > 0,

J ∂3y
∂x∂t2 (1, t) + ∂2y

∂x2 (1, t) = 0, t > 0,

(1)

where α > 0, β > 0, and K 6= 0. When Im = 0, the uniform stabilization of the
hybrid system is obtained in [1] by means of a feedback law taking into account
only the position and the velocity of the platform. i.e. K = 0. When Im 6= 0, no
result is available about the uniform stabilization of this hybrid system. It should

be noted that, in engineering, it is usually difficult to directly measure ∂4y
∂x3∂t (0, t),

but measuring the strain signal ∂3y
∂x3 (0, t) by strain gauges can be easily obtained.

Combining these measures with the actuator equations, such as those of an electrical

motors with drivers of speed reference type, produces indirectly the signal ∂4y
∂x3∂t (0, t).

Details can be found in Section V of [8].
The rest of this paper is organized as follows. In section 2, the asymptotic ex-

pressions of eigenvalues and eigenfunctions are derived. In Section 3, we show that
there is a sequence of generalized eigenfunctions of system (1), which forms a Riesz
basis for the state Hilbert space and the exponential stability of the system is proved.
Numerical simulation of the distribution of eigenvalues is presented in the first part
of section 4 after relating the stability of the system to a finite dimensional eigenvalue
problem and the effectiveness of the control is presented in the second part of section
4.

2. Abstract formulation and asymptotic behavior of the eigenpairs

We consider the system (1) on the following complex Hilbert space

H := V× L2(0, 1)× C3, where V = {φ ∈ H2(0, 1)/φ′(0) = 0} (2)

equipped with the norm

‖(u, v, a, b, c)‖2 :=

∫ 1

0

[|u′′|2 + |v|2]dx+ α|u(0)|2 +
|a|2

Im
+
|b|2

M
+
|c|2

J
, (3)

and the state variable

Y (t) := (y(., t),
∂y

∂t
(., t), Im

∂y

∂t
(0, t) +K

∂3y

∂x3
(0, t),M

∂y

∂t
(1, t), J

∂2y

∂x∂t
(1, t)). (4)

Then the system (1) can be written as

∂Y

∂t
(t) = AY (t), (5)

where the associated system operator is

A(φ, ψ, a, b, c) = (ψ,−φ′′′′,−φ′′′(0)− αφ(0)− βψ(0), φ′′′(1),−φ′′(1)) (6)

D(A) =

(φ, ψ, a, b, c) ∈ (H4(0, 1) ∩ V)× V× C3

∣∣∣∣∣∣
a = Imψ(0) +Kφ′′′(0),
b = Mψ(1),
c = Jψ′(1).

 .
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Lemma 2.1. A−1 exists and is compact on H. Hence σ(A), the spectrum of A,
consists of isolated eigenvalues only.

Proof. For any (f, g, a, b, c) ∈ H, solving

A(φ, ψ, Imψ(0) +Kφ′′′(0), ζ, δ)

= (ψ,−φ(4),−φ′′′(0)− αφ(0)− βψ(0), φ′′′(1),−φ′′(1)) = (f, g, a, b, c),

produces the unique solution (notice that φ′(0) = 0) ψ = f ∈ V and φ ∈ H4(0, 1)∩V

φ(x) =
1

α
[
bα− 6b

6
− a−

∫ 1

0

g(t)dt− βf(0) + α

∫ 1

0

t3

6
g(t)dt]

− 1

2
x[b+

∫ 1

0

t2g(t)dt]− c

2
x2 +

b

6
(x− 1)3 − 1

6

∫ x

1

(x− t)3g(t)dt.

(7)

The result then follows from the Sobolev’s embedding theorem [11] and the details
are omitted. �

Lemma 2.2. For any λ = iτ2 ∈ σ(A), there is a unique eigenfunction (up to a
scalar)

(φ, λφ, λImφ(0) +Kφ′′′(0),Mλφ(1), Jλφ′(1)) (8)

where

φ(x) =− (1 +MJτ4) cosh τx+ [2Jτ3 sin τ + (−1 +MJτ4) cos τ ] cosh τ(1− x)

+ [2Jτ3 sinh τ − (1 +MJτ4) cos τ + (−1 +MJτ4) cosh τ ] cos τ(1− x)

+ [(−1 +MJτ4) sin τ − 2Mτ cos τ ] sinh τ(1− x)

+ [(1−MJτ4) sinh τ − (1 +MJτ4) sin τ + 2Mτ cosh τ ] sin τ(1− x)

(9)

Proof. Solving the eigenvalue problem

A(φ, ψ, a, b, c) = λ(φ, ψ, a, b, c), where (φ, ψ, a, b, c) ∈ D(A),

one has a = Imψ(0) +Kφ′′′(0), b = Mψ(1), c = Jψ′(1), ψ = λφ, and

φ′′′′ + λ2φ = 0,

(1 + λK)φ′′′(0) + (Imλ
2 + α+ βλ)φ(0) = 0,

φ′(0) = 0,

φ′′′(1)−Mλ2φ(1) = 0,

φ′′(1) + Jλ2φ′(1) = 0.

(10)

Let f(x) = φ(1− x). Then f satisfies

f ′′′′ + λ2f = 0,

f ′(1) = −(1 + λK)f ′′′(1) + (Imλ
2 + α+ βλ)f(1) = 0,

f ′′′(0) +Mλ2f(0) = 0,

f ′′(0)− Jλ2f ′(0) = 0.

(11)
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Let λ = iτ2, it is easily seen that for any λ = iτ2, the general solution of the following
equation

f ′′′′ + λ2f = 0,

f ′′′(0) +Mλ2f(0) = 0,

f ′′(0)− Jλ2f ′(0) = 0,

is of the form

f(x) =[(d1 − d2)−MJτ4(d1 + d2)] cosh τx+ [(d1 − d2) +MJτ4(d1 + d2)] cos τx

+ 2Mτ [d1 sinh τx+ d2 sin τx],

where d1 and d2 are arbitrary constants. By f ′(1) = 0, one has (up to a scalar)

d1 = (1 +MJτ4) sinh τ + (−1 +MJτ4) sin τ − 2Mτ cos τ,

d2 = (1−MJτ4) sinh τ − (1 +MJτ4) sin τ + 2Mτ cosh τ,

d1 − d2 = 2MJτ4 sinh τ + 2MJτ4 sin τ − 2Mτ cos τ − 2Mτ cosh τ,

d1 + d2 = 2 sinh τ − 2 sin τ − 2Mτ cos τ + 2Mτ cosh τ.

Hence (again up to a scalar)

f(x) =− (1 +MJτ4) cosh τ(1− x) + [2Jτ3 sin τ + (−1 +MJτ4) cos τ ] cosh τx

+ [2Jτ3 sinh τ − (1 +MJτ4) cos τ + (−1 +MJτ4) cosh τ ] cos τx

+ [(−1 +MJτ4) sin τ − 2Mτ cos τ ] sinh τx

+ [(1−MJτ4) sinh τ − (1 +MJτ4) sin τ + 2Mτ cosh τ ] sin τx.

�

Lemma 2.3. The characteristic equation that λ satisfies is

τ3(1 + iKτ2)[−2Mτ cosh τ cos τ + (−1 +MJτ4) cos τ sinh τ

+ (−1 +MJτ4) cosh τ sin τ + 2Jτ3 sinh τ sin τ ]

+ (−Imτ4 + iβτ2 + α)[(1 +MJτ4)− (Mτ + Jτ3) sin τ cosh τ

+ (1−MJτ4) cos τ cosh τ + (Mτ − Jτ3) cos τ sinh τ ] = 0.

(12)

Proof. For any λ = iτ2. In order f to be a solution of (11), it is necessary and sufficient
that −(1 + λK)f ′′′(1) + (Imλ

2 + α + βλ)f(1) = 0 which induces (12), proving the
lemma. �

Lemma 2.4. There is a family of eigenvalues {λn = iτ2n,−iτ2n} of A with the follow-
ing asymptotic expression

λn = iτ2n = −Im
K

+ i(
2

M
+ (sπ)2) +O(

1

n
), (13)

where s = n− 1
4 , n is a sufficiently large positive integer. A corresponding eigenfunc-

tion is of the form

Φn = (φn, λnφn, λnImφn(0) +Kφ′′′n (0),Mλnφn(1), Jλnφ
′
n(1)),

= (φn, λnφn,−λ−1n ((α+ λnβ)φn(0) + φ′′′n (0)), λ−1n φ′′′n (1), λ−1n φ′′n(1)),
(14)
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where

φn(x) =− (1 +MJτ4n) cosh τnx+ [2Jτ3n sin τn + (−1 +MJτ4n) cos τn] cosh τn(1− x)

+ [2Jτ3n sinh τn − (1 +MJτ4n) cos τn + (−1 +MJτ4n) cosh τn] cos τn(1− x)

+ [(−1 +MJτ4n) sin τn − 2Mτn cos τn] sinh τn(1− x)

+ [(1−MJτ4n) sinh τn − (1 +MJτ4n) sin τn + 2Mτn cosh τn]× sin τn(1− x).

(15)

Proof. Note that for a large positive integer n, in a uniformly bounded small neigh-
borhood of sπ = (n− 1

4 )π

| sin τ | ≤ C, | cos τ | ≤ C, |e−τ sinh τ | ≤ C, |e−τ cosh τ | ≤ C,

uniformly for all n with some constant C. By multiplying − e
−ττ−9

iKMJ on both sides of

(12), we can write in a uniformly bounded small neighborhood of sπ = (n− 1
4 )π for

each n to be

sin τ + cos τ = O(
1

|τ |
) (sin 2τ = −1 +O(

1

|τ2|
)),

or

sin τ + cos τ =
1

τ
(

2

M
+
iIm
K

) cos τ +O(
1

|τ |2
).

 (16)

Applying Rouche’s Theorem [6] in a small neighborhood of sπ = (n− 1
4 )π where n is

a large positive integer, we obtain a solution τn which is of the form

τ = τn = sπ +O(
1

n
), (17)

for sufficiently large n. Substituting (17) into the second equation of (16), yields

2O(
1

n
) =

1

sπ
(

2

M
+
iIm
K

) +O(
1

n2
),

and so

τn = sπ +
1

sπ
(

1

M
+
iIm
2K

) +O(
1

n2
).

�

3. Riesz basis and exponential stability

3.1. Preliminaries. We consider the following second-order differential equation
system with one-spatial variable in the general form [5]:

d2y
dt2 + L(y) = 0, 0 < x < 1, t > 0
Uj(y) = B1,j(y) = 0, j = 1, 2, ..., n1 − 1,
Uj(y) = B1,j(y), j = n1, ...n2 − 1,
Uj(y, yt) = B1,j(y) +B2,j(yt) = 0, j = n2, n2 + 1, ...., n3 − 1,
Uj(y, yt) = B1,j(y) +B2,j(yt) = 0, j = n3, n2 + 1, ...., n4 − 1,
Uj(y, yt, ytt) = B1,j(y) +B2,j(yt) +B3,j(ytt) = 0, j = n4, n4 + 1, ...., n,

(18)
where
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• L(y) is an ordinary differential operator of order n = 2m ∈ N,

L(y)(x, t) = (−1)m
∂ny(x, t)

∂xn
+

n∑
s=2

fs(x)
∂(n−s)y(x, t)

∂x(n−s)
, (19)

• B1,j(y), B2,j(yt) and B3,j(ytt) are linear forms of differentiations of their vari-
ables in x at most of order n − 1 evaluated at the two point x = 0 or x = 1.
That is

B1,j(y) =

k1j∑
s=0

(α1js
∂(k1j−s)y(x, t)

∂x(k1j−s)
|x=0 + β1js

∂(k1j−s)y(x, t)

∂x(k1j−s)
|x=1), (20)

B2,j(yt) =

k2j∑
s=0

(α2js
∂(k2j−s+1)y(x, t)

∂x(k2j−s)∂t
|x=0 + β2js

∂(k2j−s+1)y(x, t)

∂x(k2j−s)∂t
|x=1), (21)

and

B3,j(ytt) =

k3j∑
s=0

(α3js
∂(k3j−s+2)y(x, t)

∂x(k3j−s)∂t2
|x=0 + β3js

∂(k3j−s+2)y(x, t)

∂x(k3j−s)∂t2
|x=1), (22)

with kij ∈ {0, 1, ...n− 1} and αljs, βljs ∈ C. The order of the boundary conditions of
(18) is defined as

γ = k̃1 + k̃2 + ....+ k̃n, (23)

with

k̃j =


k1j , j = 1, 2, ..., n2 − 1,

max{k1j ,m+ k2j}, j = n2, n2 + 1, ..., n4 − 1,

max{m+ k2j , n+ k3j}, j = n4, n4 + 1, ..., n.

We assume that the following conditions are satisfied:
• (H1) the coefficient functions fs, (2 ≤ s ≤ n) in (19) are sufficiently smooth, say
Cn−s, in x.
• (H2) |αlj0|+|βlj0| > 0 for l = 1, 1 ≤ j ≤ n, l = 2, n2 ≤ j ≤ n, l = 3, n4 ≤ j ≤ n.
• (H3) max1≤j≤n1−1{k1j} < m, minn1≤j≤n2−1{k1j} ≥ m.
• (H4) maxn2≤j≤n3−1{k2j} < m, m ≤ minn3≤j≤n4−1{k2j}.
• (H5) maxn4≤j≤n{k3j} < m.
• (H6) the boundary conditions are already normalized in the sense that for any

equivalent boundary condition {Ũ}nj=1 of order γ̃, it always holds that γ ≤ γ̃.
Let Hm

E (0, 1) = {f(x) ∈ Hm(0, 1)/B1j(f) = 0, j = 1, 2, ..., n1 − 1} and define a
Hilbert space H by H = Hm

E (0, 1)× L2(0, 1)× Cn0 , where n0 = n− n3 + 1 with the
norm

‖(y, z, η1, ..., ηn0
)‖2H := ‖y‖2HmE + ‖z‖L2 +

∑n0

j=1 γj |ηj |2, (24)

where γj , j = 1, 2, ..., n0 are positive constants.
Define the operator A in H by

A(f, g, η1, ..., ηn0
) = (g,−L(f), η̃1, ..., η̃n0

) (25)
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D(A) =


(f, g, η1, ..., ηn0

) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣

f ∈ Hn(0, 1), g ∈ Hm
E (0, 1),

B1,j(f) = 0, for n1 ≤ j ≤ n2 − 1,
B1,j(f) +B2,j(g) = 0, for n2 ≤ j ≤ n3 − 1,
ηj = B2,j+n3−1(f), for n2 ≤ j ≤ n4 − n3,
nj = B2,j+n3−1(f) +B3,j+n3−1(g),

for n4 − n3 + 1 ≤ j ≤ n0.


.

where η̃j = −β1,j+n3−1(f) for j = 1, 2, ...n0.
The following result can be obtained from [5]:

Theorem 3.1. If the ordinary differential system with parameter λ = ρm
L(f, λ) = L(f) + λ2f = 0,
Uj(f) = B1,j(f) = 0, j = 1, 2, ..., n2 − 1,
Uj(f, λf) = B1,j(f) + λB2,j(f) = 0, j = n2, n2 + 1, ...., n4 − 1,
Uj(f, λf, λ

2f) = B1,j(f) + λB2,j(f) + λ2B3,j(f) = 0, j = n4, n4 + 1, ...., n,
(26)

has strongly regular boundary conditions, then the system of generalized eigenfunctions
of A forms a Riesz basis in the Hilbert space H.

3.2. Riesz basis property of the eigenfunctions of A. To further solve the
eigenvalue problem (10), we follow the procedure in Birkhoff [2] and Naimark [10]
and divide the complex plane into eight distinct sectors,

Sk =

{
ρ ∈ C/

kπ

4
≤ arg ρ ≤ (k + 1)π

2

}
, k = 0, 1, ..., 7, (27)

and let ω1, ω2, ω3, and ω4 be the roots of equations θ4 + 1 = 0 that are arranged so
that

<(ρω1) ≤ <(ρω2) ≤ <(ρω3) ≤ <(ρω4), ∀ρ ∈ Sk. (28)

Setting λ = ρ2, in each sector Sk, we have the following result about the fundamental
solutions of the system (10):

Lemma 3.2. [10] For ρ ∈ Sk with |ρ| large enough, the equation

φ(4)(x) + ρ4φ(x) = 0, (29)

has four linearly independent asymptotic fundamental solutions φi, i = 1, 2, 3, 4 such
that

φi(x, ρ) = eρωix
(
1 +O(ρ−1)

)
, (30)

and hence their derivatives for i = 1, 2, 3, 4 and j = 1, 2, 3 are given by

dj

dxj
φi(x, ρ) = (ρωi)

jeρωix
(
1 +O(ρ−1)

)
. (31)

Substituting (30) and (31) into the boundary conditions of (10), we obtain asymp-
totic expressions for the boundary conditions for large enough |ρ|:

V4(φi, ρ) = ρωi +O(ρ−1) = ρωi(1 +O(ρ−2)),

V3(φi, ρ) = (1 + ρ2K)(ρωi)
3 + (Imρ

4 + α+ βρ2) +O(ρ−1),

= ρ5((Kω3
i +

Im
ρ

) +O(ρ−2)),
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V2(φi, ρ) = (ρωi)
3eρωi −Mρ4eρωi +O(ρ−1) = ρ4(eρωi(−M +

ω3
i

ρ
) +O(ρ−2)),

V1(φi, ρ) = (ρωi)
2eρωi + Jρ5ωie

ρωi +O(ρ−1) = ρ5(ωiJe
ρωi +O(ρ−2)). (32)

Theorem 3.3. Let λ = ρ2. For ρ ∈ S1 = {ρ ∈ C/
π

4
≤ arg ρ ≤ π

2 }, the characteristic

determinant ∆(ρ) of system (10) has an asymptotic expansion of the following form

∆(ρ) =KMJiρ15eρω4

×
{
eρω2

[
− 2
√

2i −2i

ρ
(

2

M
+
Im
K

)

]
+ eρω3

[
2
√

2 +
2i

ρ
(

2

M
− Im
K

)

]}
+O(ρ−2).

Proof. Set λ = ρ2 Now, let us choose ωi (i = 1, 2, 3, 4) in S1, to check the regularity
of the characteristic determinant ∆(ρ) as follows

ω1 = e
3πi
4 , ω2 = e

πi
4 , ω3 = −ω2, ω4 = −ω1, (33)

consequently, we have for ρ ∈ S1
<(ρω1) ≤ <(ρω2) ≤ <(ρω3) ≤ <(ρω4),

<(ρω1) = − | ρ | sin(arg ρ+
π

4
) ≤ −

√
2 | ρ |
2

< 0,

<(ρω2) =| ρ | cos(arg ρ+
π

4
) ≤ 0.

(34)

Note that λ 6= 0 is the eigenvalue of (10) if and only if the characteristic determinant

∆(ρ) =


V4(φ1, ρ) V4(φ2, ρ) V4(φ3, ρ) V4(φ4, ρ)
V3(φ1, ρ) V3(φ2, ρ) V3(φ3, ρ) V3(φ4, ρ)
V2(φ1, ρ) V2(φ2, ρ) V2(φ3, ρ) V2(φ4, ρ)
V1(φ1, ρ) V1(φ2, ρ) V1(φ3, ρ) V1(φ4, ρ)

 = 0. (35)

So substituting (32) into (35), we get

∆(ρ) =


ω1ρ ω2ρ ω3ρ
ρ5(Kω3

1 + Im
ρ ) ρ5(Kω3

2 + Im
ρ ) ρ5(Kω3

3 + Im
ρ )

ρ4eρω1(−M +
ω3

1

ρ ) ρ4eρω2(−M +
ω3

2

ρ ) ρ4eρω3(−M +
ω3

3

ρ )

ω1ρ
5eρω1J ω2ρ

5eρω2J ω3ρ
5eρω3J

ω4ρ
ρ5(Kω3

4 + Im
ρ )

ρ4eρω4(−M +
ω3

4

ρ )

ω4ρ
5eρω4J

+O
(
ρ−2

)
.

(36)
From (34), we obtain

∆(ρ) =KMJρ15eρω4

×


ω1 ω2 ω3 0
ω3
1 + Im

Kρ ω3
2 + Im

Kρ ω3
3 + Im

Kρ 0

0 eρω2(−1 +
ω3

2

Mρ ) eρω3(−1 +
ω3

3

Mρ ) −1 +
ω3

4

Mρ

0 ω2e
ρω2 ω3e

ρω3 ω4

+O
(
ρ−2

)
.

(37)
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Since

ω1ω
−1
2 = i, ω2

2 = i, ω3
1ω
−1
2 = 1, ω1 + ω2 =

√
2i,

ω1 − ω2 = −
√

2, ω2
1 = −i, ω1ω2 = −1,

then

∆(ρ) =KMJω2
2ρ

15eρω4

×


i 1 −1 0
1 + Im

Kρω2
i+ Im

Kρω2
−i+ Im

Kρω2
) 0

0 eρω2(−1 +
ω3

2

Mρ ) −eρω3(1 +
ω3

2

Mρ ) −(1 +
ω3

1

Mρ )

0 ω2e
ρω2 −ω2e

ρω3 −ω1

+O
(
ρ−2

)
.

Expanding the above determinant, we obtain

∆(ρ) =KMJω2
2ρ

15eρω4

{
2

[
(ω2 − ω1)eρω3 − (ω1 + ω2)eρω2

]
+

1

ρ

[
− 2

M
(ω1ω

3
2 − ω2ω

3
1) +

Im
Kω2

(ω1 − ω2)(i− 1)

]
eρω3

+
1

ρ

[
− 2

M
(ω2ω

3
1 − ω1ω

3
2)− Im

Kω2
(ω1 + ω2)(i+ 1)

]
eρω2

}
+O(ρ−2)

=KMJiρ15eρω4

{
eρω2

[
− 2
√

2i− 2i

ρ
(

2

M
+
Im
K

)

]
+ eρω3

[
2
√

2 +
2i

ρ
(

2

M
− Im
K

)

]}
+O(ρ−2).

�

The characteristic determinant ∆(ρ) can be written as follows

∆(ρ) = KMJiρ15eρω4([θ−1(ρ)]1e
−ρω2 + [θ0(ρ)]1 + [θ1(ρ)]1e

ρω2) +O(ρ−2), (38)

where [θj(ρ)]1 = θj0 +O(ρ−1) =


2
√

2 +O(ρ−1) if j = −1,

−2
√

2i+O(ρ−1) if j = 1,

O(ρ−1) if j = 0.

Definition 3.1. [5] The boundary-value problem (26) is said to be regular if

|θ−1,0| 6= 0 and |θ1,0| 6= 0. (39)

It is said to be strongly regular if the zeros {ρi} of ∆(ρ) = 0 are simple and separable
in the sense that infi6=j |ρi − ρj | > 0 for all sufficiently large |ρi|, or equivalently

θ200 − 4θ1,0θ−1,0 6= 0. (40)

In light of definition 3.1, the boundary-value problem (10) is strongly regular. In
order to apply theorem 2.9 in [5], it suffices that conditions (H1) to (H6) be satisfied.
Therefore, theorem 2.9 in [5] can be directly applied to get the principal result of the
paper:

Theorem 3.4. Let A defined as in (6). For any α > 0 and real parameters β 6= 0,
and K 6= 0, then

(i) The generalized eigenfunctions of A form a Riesz basis for H.
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(ii) Suppose there exists a constant q such that∑
q

= {λ ∈ C/<(λ) > q} ⊂ ρ(A). (41)

Then A generates a C0-semigroup eAt on H.
(iii) The spectrum-determined growth condition holds true; that is, S(A) = ω(A),

where

S(A) = sup
λ∈σ(A)

<(λ), (42)

is the spectral bound, and

ω(A) = inf
{
ω/∃c > 0 such that ‖eAt‖ ≤ c eωt

}
, (43)

is the growth order of eAt.

3.3. Exponential stability.

Theorem 3.5. Suppose β ≥ αK > 0. Then there exists an ω > 0 such that <(λ) <
−ω for all λ ∈ σ(A). Therefore the C0-semigroup eAt generated by A is exponentially
stable:

‖eAtΦ‖ ≤ c e−ωt‖Φ‖2, (44)

where c > 0 is a constant independent of Φ.

Proof. It is seen from (13) that if K < 0, then system (1) is never exponentially
stable. Since the spectrum-determined growth condition holds, it follows from (ii) of
Theorem 3.4 that eAt is exponentially stable under condition β ≥ αK > 0 if and only
if <(λ) < −ω for all λ ∈ σ(A).

Clearly, if λ is a real number, it must have λ < 0. Notice that λ = 0 is always not
in the spectrum of A. Suppose that λ = λ1 + iλ2 (λ2 6= 0). Multiplying φ on both
sides of the first equation in (10), integrating by parts from 0 to 1 with respect to x
and taking the imaginary parts, yields

2λ1[
∫ 1

0
|φ(x)|2dx+M |φ(1)|2 + J |φ′(1)|2] + 2Imλ1+ImK|λ|2+β−αK

|1+λK|2 |φ(0)|2 = 0.

There are two cases. When λ1 6= 0 it is obvious that λ1 < 0 as β ≥ αK > 0. While
as λ1 = 0, it must be φ(0) = 0 and so φ′′′(0) = 0 from the boundary condition
of (10). In this case, the solution of (10) shall be (we may assume that λ2 > 0)
φ(x) = cosh

√
λ2x− cos

√
λ2x. But from the boundary condition φ′′′(1) = Mλ2φ(1),

we arrive the contradiction that

sinh
√
λ2 − sin

√
λ2 = −λ22 M(cosh

√
λ2 − cos

√
λ2). (45)

�

4. Numerical simulations

4.1. Simulation part I: Spectrum of the closed-loop system. Our approxi-
mation process starts from the eigenvalue problem (10). Set

Φ(x) = f

(
x+ 1

2

)
. (46)
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Then Φ satisfies

Φ(4)(x) +
λ2

16
Φ(x) = 0, −1 < x < 1,

Φ′(−1) = 0,

Φ′′′(−1)(1 +Kλ) +
1

8
(Imλ

2 + λβ + α)Φ(−1) = 0,

Φ′′′(1)− 1

8
λ2MΦ(1) = 0,

Φ′′(1) +
1

2
λ2JΦ′(1) = 0.

(47)

Let Pn(x) be the Legendre polynomial of degree n, satisfying

d

dx

(
(1− x2)

dPn(x)

dx

)
+ n(n+ 1)Pn(x) = 0, Pn(1) = 1. (48)

We approximate Φ(x) by

ΦN (x) =

N∑
n=1

anPn(x). (49)

For more details on the procedure we refer to [3]. Here we take N = 100, Im =
3, M = J = α = 1. Using this method, the total of 101 eigenvalues on the up half
complex plane is easily calculated by MATLAB. As it is indicated in [3], computing
eigenvalues of boundary value problems with any discretization method, only those
numerical values of small magnitude have significant accuracy, with that we can be
sure of the accuracy of the first 50 eigenvalues on the up half complex plane, although
for our system, the same can be said for large magnitude eigenvalues. We denote
Lasp = − ImK , the asymptote of the eigenvalues claimed in (13).

Figure 1. Distribution of eigenvalues Im = 3, α = β = m = J =
1, K = 2.

The figures 1 and 2 plot the distribution of the eigenvalues obtained on the complex
plane for different values of K. In figure 1, Lasp = −1.5 and in figure 2, Lasp = −3.
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Figure 2. Distribution of eigenvalues Im = 3, α = β = m = K =
J = 1.

It is apparent that the numerical results and the theoretical estimate (13) relatively
coincident.

Figure 3 plots the functional of S(L) with respect to β, where we have 0.01 ≤
β ≤ 10, while Figure 4 demonstrates the same functional of S(L) with respect to
K, 0.01 ≤ K ≤ 10. Both cases suggest that the optimal value β∗ for K = 1 and K∗

for β = 1 do exist, moreover an interesting fact which can be observed from these two
figures is that the assumption β ≥ αK > 0 may be necessary since from figures 3 and
4, S(L) can be positive outside region β ≥ αK > 0.

Figure 3. Functional relation between S(L) and K.

4.2. Simulation part II: Dynamical behavior of the closed-loop system.
Simulations for the hybrid system (1) with the parameters listed in Table 1 are used
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Figure 4. Functional relation between S(L) and β.

Table 1. Parameters of the hybrid system

Parameter Description Value
M Mass of the tip body 0.1kg
J Moment of inertia of the tip body 130kg/m
Im Mass of the platform 20.0kg/m

to demonstrate the effectiveness of the boundary feedback control. We solve the
system (1) using the finite difference method in time and space for the space-time
domain [0, 1]× [0, 15]. In order to ensure the numerical stability of the finite difference
numerical scheme, we subdivided the spatial interval into 30 subintervals and the
temporal interval into 200000 subintervals.
The initial conditions is selected as

y(x, 0) =
sin(πx2 )

50
, and yt(x, 0) = 0, ∀x ∈ [0, 1]. (50)

Figure 5 shows the displacement of the Euler-Bernoulli beam without control input
(i.e. α = 0, β = 0, and K = 0). It is clear that the system is unstable and the
vibration of the beam is quite large. Displacement of the Euler-Bernoulli beam with
the boundary feedback control is shown in Figure 6. It can be seen that the vibrations
of the Euler-Bernoulli beam can be suppressed greatly within 12s, by choosing α =
14.4, β = 12, and K = 2, which illustrate that the proposed boundary feedback
control is able to stabilize the Euler-Bernoulli beam at small neighborhood of its
equilibrium position.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments
and suggestions.



76 M. D. AOURAGH, S. KHALLOUQ, AND M. SEGAOUI

Figure 5. Displacement of the beam without control.

Figure 6. Displacement of the beam with boundary control.
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