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The total edge Steiner number of a graph

J. John

Abstract. A total edge Steiner set of G is an edge Steiner set W such that the subgraph

〈W 〉 induced by has no isolated vertex. The minimum cardinality of a total edge Steiner set
of G is the total edge Steiner number of G and is denoted by ste(G). Some general properties

satisfied by this concept are studied. The total edge Steiner number of certain classes of

graphs is determined. Connected graphs of order p with total edge Steiner number 2 or 3 are
characterized. Necessary conditions for total edge Steiner number to be p or p− 1 is given. It

is shown that for every pair a and b of integers with 2 ≤ a < b and b > a + 1, there exists a
connected graph G such that se(G) = a and ste(G) = b. Also it shown that for every pair a

and b of integers with 4 ≤ a < b and b > a + 1, there exists a connected graph G such that

st(G) = a and ste(G) = b.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and q respectively. For
basic graph theoretic terminology, we refer to Harary [1]. The open neighborhood of v
is N(v) = {u/uv ∈ E}. The degree of a vertex v is degG(v) = |N(v)|. If the degree of
a vertex is 0, it is called an isolated vertex, while if the degree is 1, it is called an end-
vertex. The subgraph induced by set S of vertices of a graph G is denoted by 〈S〉 with
V (〈S〉) = S and E(〈S〉) = {uv ∈ E(G) : u, v ∈ S}. A vertex v is an extreme vertex of
a graph G if the subgraph induced by its neighbors is complete. The distance d(u, v)
between two vertices u and v in a connected graph G is the length of a shortest u-v
path in G. A u-v path of length d(u, v) is called a u-v geodesic. It is known that the
distance is a metric on the vertex set of G. For a vertex v of G, the eccentricity e(v) is
the distance between v and a vertex farthest from v. The minimum eccentricity among
the vertices of G is the radius, radG and the maximum eccentricity is its diameter,
diamG of G. Two vertices u and v are said to be antipodal if d(u, v) = diam(G). For
a nonempty set W of vertices in a connected graph G, the Steiner distance d(W ) of
W is the minimum size of a connected subgraph of G containing W . Necessarily, each
such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner
W -tree. It is to be noted that d(W ) = d(u, v), when W = {u, v}. If v is an end vertex
of a Steiner W -tree, then v ∈ W . Also if 〈W 〉 is connected, then any Steiner W -tree
contains the elements of W only. The Steiner distance of a graph was introduced in
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[4].The set of all vertices of G that lie on some Steiner W -tree is denoted by S(W ).
If 〈W 〉 is connected, then S(W ) = W . If S(W ) = V , then W is called a Steiner set
for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a
s-set of G and this cardinality is the Steiner number s(G) of G. If W is a Steiner set
of G and v a cut vertex of G, then v lies in every Steiner W -tree of G and so W ∪{v}
is also a Steiner set of G. The Steiner number of a graph was introduced in [5] and
further studied in [2, 3, 6-9, 11-16, 17-19, 21]. The set of edges of G that lie on some
Steiner W -tree is denoted by Se(W ). If Se(W ) = E(G), then W is called an edge
Steiner set for G. An Steiner set of minimum cardinality is a minimum edge Steiner
set or simply a edge se-set of G and this cardinality is the edge Steiner number se(G)
of G. The edge Steiner number of a graph was introduced in [16] and further studied
in [20]. A total Steiner set of G is a Steiner set W such that the subgraph induced
by W has no isolated vertex. The minimum cardinality of a total Steiner set of G
is the total Steiner number of G and is denoted by st(G). The total Steiner number
of a graph was introduced in [10]. Steiner trees have application in transportation
networks. For example, it may be desired to connect a certain set of leading cities
with sub-cities that uses the least number of transportation links. In a transportation
network, leading cities are a set of cities which cover the entire sub-cities with the
property of the shortest transportation link. Automobile repair shops are present
in the leading cities. If the leading cities are isolated and also if repair shops in a
particular leading city fail, then repair of a vehicle is impossible as help from other
leading city will not be available. The problem in the vehicle can be fixed only when
there is an edge between each pair of leading cities or no leading city is isolated.
Consider a transportation network as a graph model and each city as a vertex. Then
the minimum cardinality of a set of leading cities with at least two leading cities are
connected or no leading city is isolated is a minimum total edge Steiner set for the
graph representing the transportation network. In this paper, we have introduced
and studied the concept of the total edge Steiner number of a graph. The following
theorems are used in the sequel.

Theorem 1.1. [10,16] Each extreme vertex of a graph G belongs to every edge
Steiner set (total Steiner set) of G. In particular, each end-vertex of G belongs to
every edge Steiner set (total Steiner set) of G.

Theorem 1.2. [10] Let G is a connected graph and v an extreme vertex of G. Then
every total Steiner set of G contains at least one element of N(v).

2. The total edge Steiner number of a graph

Definition 2.1. Let G be a connected graph with at least 2 vertices. An edge Steiner
set W of G is called a total edge Steiner set of G if 〈W 〉 has no isolated vertex. The
total edge Steiner number ste(G) is the minimum cardinality of its total edge Steiner
sets and any total edge Steiner set of cardinality ste(G) is a minimum total edge
Steiner set of G or ste-set of G.

Example 2.1. For the graph G given in Figure 2.1, W1 = {v1, v3, v5, v6, v8, v10} is a
minimum total edge Steiner set of G so that ste(G) = 6
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Remark 2.1. For the graph G in Figure 2.1, W1 = {v1, v3, v5, v6, v8, v10} is a mini-
mum total Steiner set of G so that ste(G) = 4. Thus the total Steiner number and
total edge Steiner number of a graph are different.
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Remark 2.2. There can be more than one minimum total edge Steiner set for a graph.
For the graph G given in Figure 2.2, W = {v1, v3, v4, v6} and W1 = {v1, v2, v4, v5}
are two different minimum total edge Steiner sets of G.
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Remark 2.3. For any connected graph G, 2 ≤ se(G) ≤ ste(G) ≤ p.

Theorem 2.1. Each extreme vertex of a graph G belongs to every total edge Steiner
set of G. In particular, each end-vertex of G belongs to every total edge Steiner set of
G.

Proof. Since every total edge Steiner set of G is an edge Steiner set of G, the result
follows from Theorem 1.1. �

Theorem 2.2. Let G is a connected graph and v an extreme vertex of G. Then every
total edge Steiner set of G contains at least one element of N(v).

Proof. Assume, to the contrary, that G contains an extreme vertex v and a total edge
Steiner set W such that W contains no element of N(v). Then it follows that the
vertex v is an isolated vertex of 〈W 〉, which is a contradiction to W is a total edge
Steiner set of G. Thus every total edge Steiner set of G contains at least one element
of N(v). �

Corollary 2.3. If G is a connected graph of order p with k extreme vertices, then
max{2, k} ≤ ste(G) ≤ p.
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Proof. Since, k ≥ 0 the result follows from Remark 2.3 and Theorem 2.1. �

Corollary 2.4. For the complete graph G = Kp (p ≥ 2), ste(G) = p.

Proof. Since every vertex of the complete graph Kp (p ≥ 2) is an extreme vertex, the
vertex set of Kp is the unique total edge Steiner set of Kp. Thus ste(G) = p. �

Corollary 2.5. For the star G = K1,p−1 (p ≥ 2), ste(G) = p.

Proof. This follows from Theorems 2.1 and 2.2. �

Theorem 2.6. For the complete bipartite graph G = Km,n 2 ≤ m ≤ n, ste(G) =
m + n.

Proof. Let U = {u1, u2, .., um}, and V = {v1, v2, .., vn} be the bipartition of G. Let
W $ U ,then has isolated vertices and so W is not a total edge Steiner set of G. If
W & V , then it can be proved, as earlier that W is not a total edge Steiner set of G.
If W is either U or V , then W is an edge Steiner set of G. However 〈W 〉 has isolated

vertices and so W is not a total edge Steiner set of G. If W
′ & U ∪ V , such that W

contains at least one vertex from each of U and V, then 〈W 〉 is connected and so W
is not a total edge Steiner set of G. Thus in any case W is not a total edge Steiner
set of G. Hence W = U ∪ V is the unique minimum total edge Steiner set of G so
that ste(G) =|W |= m + n. �

Theorem 2.7. For the cycle G = Cp (p ≥ 6), ste (G) =

{
4 if n is even
5 if n is odd

.

Proof. If n is even, then every pair of antipodal vertices W = {u, v} of G is an edge
Steiner set of G. However 〈W 〉 contains isolated vertices and so W is not a total
edge Steiner set of G. It can be easily verified that no three element subset of G is a
total edge Steiner set of G and so ste(G) ≥ 4. Let ux be an edge of G and y be the
antipodal vertex of x. Then W1 = {u, v, x, y} is a total edge Steiner set of G so that
ste(G) = 4. Let n be odd. Let u and v be any two vertices of G. Then, since any
Steiner {u, v}-tree is the u−v geodesic, it follows that {u, v} is not a total edge Steiner
set of G. Thus, no 2-element subset of vertices of G is a total edge Steiner set of G.
For any vertex u, let v,w be the antipodal vertices of u. Then clearly W2 = {u, v, w}
is an edge Steiner set of G. However 〈W2〉 contains isolated vertices and so W2 is not
a total edge Steiner set of G. It can be easily verified that no four element subset
of G is a total edge Steiner set of G and so ste(G) ≥ 5. Let N(u) = {x, y}. Then
W2 = {u, v, w, x, y} is a total edge Steiner set of G so that ste(G) = 5. �

Theorem 2.8. Let G be a connected graph with v a cut-vertex of G and let W be a
total edge Steiner set of G. Then every component of G − v contains an element of
W.

Proof. Let v be a cut-vertex of G and W be a total edge Steiner set of G. Suppose
there exists a component say G1 of G− v such that G1 contains no vertex of W . By
Theorem 2.1, W contains all the extreme vertices of G and hence it follows that G1

does not contain any extreme vertex of G. Thus G1 contains at least one edge say
xy. Since every Steiner W -tree T must have its end-vertex in W and v is a cut-vertex
of G, it is clear that no Steiner W -tree would contain the edge xy. This contradicts
that W is a total edge Steiner set of G. �
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Corollary 2.9. If v is a cut-vertex of a connected graph G and W is a total edge
Steiner set of G, then v lies in every Steiner W-tree of G.

Proof. Let v be a cut-vertex of G and W a total edge Steiner set of G. Since every
component of G-v contains an element of W it is clear that v lies in Steiner W -
tree. �

The following two theorems characterize the total edge Steiner of a graph to be 2
or 3.

Theorem 2.10. For a connected graph G with p ≥ 2, ste(G) = 2 if and only if
G = K2.

Proof. If G = K2, then by Corollary 2.4, ste(G) = 2. Let ste(G) = 2 and let W =
{u, v} be a minimum total edge Steiner set of G. Then Se(W ) = E(G). Since 〈W 〉 has
no isolated vertices, it follows that W is connected. Therefore W = V [Se(W )] = V .
Since |W | = 2, it follows that G = K2. �

Lemma 2.11. For a connected graph G with p ≥ 2, if ste(G) = 3, then 〈W 〉 is
connected for any ste- set W of G.

Proof. Let ste(G) = 3 and let W = {u, v, w} be a ste- set of G. Then Se(W ) = E(G).
Suppose that 〈W 〉 is not connected. Then 〈W 〉 has isolated vertices, which is a
contradiction to W a ste- set of G. Therefore 〈W 〉 is connected. �

Theorem 2.12. For a connected graph G with p ≥ 3, ste(G) = 3 if and only if
G = K3 or P3 .

Proof. If G is either K3 or P3, then by Corollary 2.4 and Corollary 2.5, ste(G) = 3.
Conversely let ste(G) = 3. Let W = {u, v, w} be a ste- set of G. Then by Lemma
2.11, 〈W 〉 is connected. Therefore W = V [Se(W )] = V . Since 〈W 〉 is connected,
either u, v, w are adjacent or only one vertex of G is adjacent to other two. Hence it
follows that G is either K3 or P3. �

Theorem 2.13. If G is a connected graph of order p ≥ 3 containing a vertex v of
degree p− 1, then all the neighbors of v belong to every total edge Steiner set of G.

Proof. Let v be a vertex of degree p−1 and v1, v2, ..., vp−1 be the neighbors of v in G.
Let W be a total edge Steiner set of G. Suppose v1 6∈W . Then the edge vv1 lies on a
Steiner W -tree of G, say T . Since v1 6∈W , v1 is not an end-vertex of T . Let T

′
be a

tree obtained from T by removing the vertex v1 in T and joining all the neighbors of
v1 other than v in T to v. Then T

′
is a Steiner W -tree such that |V (T

′
)| = |V (T )|−1,

which is a contradiction to T a Steiner W -tree. Therefore every total edge Steiner set
of G contains all the neighbors of v. �

Theorem 2.14. If G is a connected graph of p ≥ 3 with v a cut vertex of degree p−1
such that degree of each vertex of N(v) is greater than one, then ste(G) = p− 1.

Proof. Let v be a cut-vertex of degree p− 1 such that degree of each vertex of N(v)
is greater than one. By Theorem 2.13, ste(G) ≥ p− 1. Since degree of each vertex of
N(v) is greater than one, we have W = N(v) is a total edge Steiner set of G so that
ste(G) = p− 1. �
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Corollary 2.15. Let G be a connected graph of order p ≥ 3 such that G = K1 +
∪mjKj, where

∑
mj ≥ 2 and | V (Kj) |≥ 2 for all j. Then ste(G) = p− 1.

Theorem 2.16. If G is a connected graph of order p ≥ 3 with a vertex of degree p−1
such that degree of at least one vertex of N(v) is one, then ste(G) = p.

Proof. Let v be a cut-vertex of degree p − 1 and W be a total edge Steiner set of
G. Then by Theorem 2.13, | W |≥ p − 1 so that ste(G) ≥ p − 1. Since degree of at
least one vertex of N(v) is one, it follows that N(v) contains an end vertex. Then by
Theorem 2.2, v belongs to every total edge Steiner set of G so that ste(G) ≥ p. Hence
ste(G) = p. �

Corollary 2.17. Let G be a connected graph of order p ≥ 3 such that G = K1 +
∪mjKj, where

∑
mj ≥ 2 and | V (Kj) |= 1 for some j. Then ste(G) = p.

Theorem 2.18. If G is a connected graph of order p ≥ 3 with v a vertex of degree
p− 1 such that v is not a cut-vertex of G, then ste(G) = p.

Proof. Let v be a vertex of degree p − 1 such that v is not a cut-vertex of G. Let
v1, v2, ..., vp−1 be the neighbors of v in G. Then by Theorem 2.13, v1, v2, ..., vp−1

belong to every total edge Steiner set of G. Let W = {v1, v2, ..., vp−1}. Since v is not
a cut-vertex of G, 〈W 〉 is connected. Hence the edge vvi /∈ Se(W ) for (1 ≤ i ≤ p− 1)
and so W is not a total edge Steiner set of G. Now, it follows that V (G) is the unique
total edge Steiner set of G so that ste(G) = p. �

Corollary 2.19. For the wheel W1,p−1, ste(W1,p−1) = p.

Theorem 2.20. If G is a connected graph of order p ≥ 3 with at least two vertices
of degree p− 1, then ste(G) = p.

Proof. Let G contains at least two vertices of degree p−1. Then G has no cut vertex.
Hence by Theorem 2.18, ste(G) = p. �

Theorem 2.21. For every pair a and b of integers with 2 ≤ a < b and b > a + 1,
there exists a connected graph G such that se(G) = a and ste(G) = b.

Proof. First we prove that se(G) = a. Let V (K2) = {x, y} and V (Kb−a−1) =
{v1, v2, ..., vb−a−1}. Let H = Kb−a−1 + K2. Let G be the graph in Figure 2.3 ob-
tained from H by adding a−1 new vertices u1, u2, ..., ua−1 and joining each vertex ui

(1 ≤ i ≤ a−1) with y. Let W = {u1, u2, ..., ua−1} be the set of end vertices of G. Then
by Theorem 1.1, W is a subset of every edge Steiner set of G. Since Se(W ) 6= E(G),

W is not an edge Steiner set of G and so se(G) ≥ a. Let W
′

= W ∪ {x}. Then

Se(W
′
) = E(G) and so W

′
is an edge Steiner set of G. Therefore se(G) = a. Next we

prove that ste(G) = b. By Theorems 2.1 and 2.2, W1 = W ∪ {y} is a subset of every
total Steiner set of G. Since Se(W1) 6= E(G), W1 is not a total edge Steiner set of G.
Let W2 = W1 ∪ {x}. Then W2 is an edge Steiner set of G. Since 〈W2〉 has isolated
vertex, W2 is not a total edge Steiner set of G. It is easily observed that every total
edge Steiner set of G contains each vi (1 ≤ i ≤ b− a− 1) and so ste(G) ≥ b. Hence it
follows that S = V (G) is the unique total edge Steiner set of G so that ste(G) = b. �
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3. The total edge Steiner number and the total Steiner number of a graph

Theorem 3.1. Every total edge Steiner set of a connected graph G is a total Steiner
set of G.

Proof. Let G be a connected graph and W be a total edge Steiner set of G. Let
v ∈ V (G). Let uv be an edge of G. Then uv lies on a Steiner W -tree of G. Thus
v lies on a Steiner W -tree of G so that W is a Steiner set of G. Since 〈W 〉 has no
isolated vertices, G is a total Steiner set of G. �

Corollary 3.2. For any connected graph G, st(G) ≤ ste(G).

Proof. Let W be any total edge Steiner set of G with minimum cardinality. Then
|W |= ste(G). By Theorem 3.1, W is a total Steiner set of G so that st(G) ≤|W |=
ste(G). �

Remark 3.1. The bounds in Corollary 3.2 is strict. For the graph G given in Figure
2.1, st(G) = 4 and ste(G) = 6 so that s(G) < se(G). Also the bound in Corollary 3.2
is sharp. For the cycle C6, st(C6) = ste(C6) = 4.

The following theorem gives a realization for the total Steiner number and the total
edge Steiner number of a graph.

Theorem 3.3. For every pair a and b of integers with 4 ≤ a < b and b > a+ 1, there
exists a connected graph G such that st(G) = a and ste(G) = b.

Proof. If a = 4, b ≥ 5, let G be the graph in Figure 3.1, obtained from the path on five
vertices P : u1, u2, u3, u4, u5 by adding b − 5 new vertices v1, v2, ..., vb−5 and joining
each vi (1 ≤ i ≤ b− 5) with u2, u3, u4. By Theorems 1.1 and 1.2, {u1, u2, u4, u5} is a
subset of every total Steiner set of G and so st(G) ≥ 4. It is clear that {u1, u2, u4, u5}
is a total Steiner set of G so that st(G) = 4 = a.
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By Theorems 2.1 and 2.2, S = {u1, u2, u4, u5} is a subset of every total edge Steiner
set of G. It is clear that S is not a total edge Steiner set of G. It is easily observed
that every total edge Steiner set of G contains each vi (1 ≤ i ≤ b − 5) and so
ste(G) ≥ 4 + b − 5 = b − 1. It is easily verified that S1 = S ∪ {v1, v2, ..., vb−5} is
not a total edge Steiner set of G and so ste(G) ≥ b. However S1 = S ∪ {u3} is a
total edge Steiner set of G and so that ste(G) = b. If a ≥ 5 and b ≥ 6, let G be
the graph obtained in Figure 3.2 from the path on four vertices P : u1, u2, u3, u4

by adding the new vertices v1, v2, ..., vb−a−1 and w1, w2, ..., wa−3 and joining each vi
(1 ≤ i ≤ b − a − 1) with u1, u2, u4 and also joining each wi (1 ≤ i ≤ a − 3) with
u1 and u2. Since each wi (1 ≤ i ≤ a − 3) is an extreme vertex of G, by Theorem
1.1, each wi (1 ≤ i ≤ a − 3) belongs to every total Steiner set of G. Also since each
wi (1 ≤ i ≤ a − 3) and u3 or extreme vertices of G, by Theorem 1.2, every total
Steiner set contains either u1 or u2 and either u2 or u4 and so st(G) ≥ a− 3 + 3 = a.
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Let W = {w1, w2, ..., wa−3, u1, u3, u4}. Then W is a total Steiner set of G and so
st(G) = a. Since u2 is a full degree vertex of G which is not a cut vertex of G, by
Theorem 2.18, ste(G) = a− 3 + 4 + b− a− 1 = b. �
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