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Approximation for multi-quadratic mappings in
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Abstract. In this article, we introduce the multi-quadratic mappings and then unify the

system of functional equations defining a multi-quadratic mapping to a single equation namely,
the multi-quadratic functional equation. We also apply a fixed point theorem to establish the

Hyers-Ulam stability for this new multi-quadratic functional equation in non-Archimedean

normed spaces.
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1. Introduction

Throughout this paper, N stands for the set of all positive integers, N0 := N ∪
{0},R+ := [0,∞), n ∈ N. For any s ∈ N0,m ∈ N, t = (t1, . . . , tm) ∈ {−1, 1}m and
x = (x1, . . . , xm) ∈ V m we write sx := (sx1, . . . , sxm) and tx := (t1x1, . . . , tmxm),
where ra stands, as usual, for the rth power of an element a of the commutative group
V .

It is well-known that the quadratic (Jordan-von Neumann) equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1)

(which is useful in some characterizations of inner product spaces) play a remarkable
role. A lot of information about its solutions, stability and its applications is available
for instance in [15] and [22].

Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer.
Recall from [11] that a mapping f : V n −→W is called multi-additive if it is additive
(satisfies Cauchy’s functional equation) in each variable. Some basic facts on such
mappings can be found in [17] and many other sources, where their application to
the representation of polynomial functions is also presented. The mapping f is also
said to be multi-quadratic if it is quadratic in each variable [10]. In [25], Zhao et al.
proved that the mapping f : V n −→W is multi-quadratic if and only if the following
relation holds.∑

t∈{−1,1}n
f(x1 + tx2) = 2n

∑
j1,j2,...,jn∈{1,2}

f(x1j1 , x2j2 , . . . , xnjn) (2)

where xj = (x1j , x2j , . . . , xnj) ∈ V n with j ∈ {1, 2}. Various versions of multi-
quadratic mappings which are recently studied can be found in [5] and [23].
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The stability of a functional equation originated from a question raised by Ulam: “
when is it true that the solution of an equation differing slightly from a given one must
of necessity be close to the solution of the given equation?” (see [24]). The first answer
(in the case of Cauchy’s functional equation in Banach spaces) to Ulam’s question
was given by Hyers in [14]. Following his result, a great number of papers on the
the stability problems of several functional equations have been extensively published
as generalizing Ulam’s problem and Hyers’s theorem in various directions; see for
instance [1, 3, 7, 9, 16, 21], and the references given there. In [11] and [10], Ciepliński
studied the generalized Hyers-Ulam stability of multi-additive and multi-quadratic
mappings in Banach spaces, respectively. For more information about stability of
multi-quadratic, multi-cubic and multi-quartic mappings, we refer to [4], [5], [6], [19]
and [20].

We recall that a general form of the quadratic functional equation (1) is as follows:

Q(x+ ay) +Q(x− ay) = 2Q(x) + 2Q2f(y) (3)

where a is a non-zero integer. It is easily verified that the function Q(x) = cx2 is a
solution of functional equation (3).

In this paper, we define the multi-quadratic mappings, i.e., they are quadratic
(equation (3)) in each variable and present a characterization of such mappings. In
other words, we reduce the system of n equations defining the multi-quadratic map-
pings to obtain a single functional equation and we prove the generalized Hyers-Ulam
stability of this equation. Indeed, in the proof of our main result (Theorem 3.2), we
apply the fixed point method, which was used for the first time by Brzdȩk et al., in
[8]; for more applications of this approach for the stability of multi-Cauchy-Jensen,
multi-quadratic and multi-cubic mappings in non-Archimedean spaces see [2], [5] and
[12], respectively.

2. Characterization of multi-quadratic mappings

Throughout this paper, let V and W be vector spaces over the rationals, n ∈ N and
xni = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We shall denote xni by xi or simply x
if there is no risk of ambiguity. Let lj ∈ {1, 2}. For the element (xl11, xl22, . . . , xlnn) ∈
V n, we put si = Card{lj : lj = 2}. Clearly, 0 ≤ si ≤ n.

We say the mapping f : V n −→ W is n-multi-quadratic or multi-quadratic if f
is quadratic in each variable (see equation (3)). Here, we consider the functional
equation ∑

q∈{−1,1}n
f(x1 + qax2) = 2n

∑
0≤si≤n

l1,...,ln∈{1,2}

a2sif(xl11, xl22, . . . , xlnn). (4)

In this section, we reduce the system of n equations defining the n-mixed quadratic
mapping to obtain equation (4) and show that if a mapping f : V n −→ W satisfies
equation (4), then it is multi-quadratic. Put m := {1, . . . ,m}, m ∈ N. For a subset
T = {j1, . . . , ji} of m with 1 ≤ j1 < · · · < ji ≤ m and x = (x1, . . . , xm) ∈ V m,

Tx := (0, . . . , 0, xj1 , 0, . . . , 0, xji , 0, . . . , 0) ∈ V m



90 A. BODAGHI, S. SALIMI, AND G. ABBASI

denotes the vector which coincides with x in exactly those components, which are
indexed by the elements of T and whose other components are set equal zero. Note
that φx = 0, mx = x. We use these notations in the proof of upcoming lemma.

We say the mapping f : V n −→W is even in the jth variable if

f(z1, . . . , zj−1,−zj , zj+1, . . . , zn) = f(z1, . . . , zj−1, zj , zj+1, . . . , zn).

To achieve our aim in this section, we need the next lemma.

Lemma 2.1. If the mapping f : V n −→ W satisfies equation (4), then f(x) = 0 for
any x ∈ V n with at least one component which is equal to zero.

Proof. Putting x1 = x2 = (0, . . . , 0) in (4), we get

2nf(0, . . . , 0) = 2n
n∑

si=0

a2sif(0, . . . , 0). (5)

Thus, f(0, . . . , 0) = 0. Letting x1k = 0 for all k ∈ {1, . . . , n}\{j} and x2k = 0 for
1 ≤ k ≤ n in (4), we obtain

2nf(0, . . . , 0, x1j , 0, . . . , 0) = 2n
n−1∑
si=0

a2sif(0, . . . , 0, x1j , 0, . . . , 0) (6)

and so f(0, . . . , 0, x1j , 0, . . . , 0) = 0. When k components of x1 are not zero, we denote
it by kx1. Therefore, the above process can be repeated to obtain

2nf(kx1) = 2n
n−k∑
si=0

a2sif(kx1). (7)

where 1 ≤ k ≤ n − 1. Hence, f(kx1) = 0. This shows that f(x) = 0 for any x ∈ V n
with at least one component which is equal to zero. �

Proposition 2.2. A mapping f : V n −→ W is multi-quadratic if and only if it
satisfies equation (4).

Proof. Assume that f is multi-quadratic. We prove f satisfies equation (4) by induc-
tion on n. For n = 1, it is trivial that f satisfies (3). Assume that (4) is valid for
some positive integer n > 1. Then,∑

q∈{−1,1}n+1

f
(
xn+1
1 + qaxn+1

2

)
= 2

∑
q∈{−1,1}n

f (xn1 + qaxn2 , x1n+1) + 2a2
∑

q∈{−1,1}n
f (xn1 + qaxn2 , x2n+1)

= 2n+1
n∑

si=0

a2sif(xl11, xl22, . . . , xlnn , x1n+1)

+ 2n+1a2
n∑

si=0

a2sif(xl11, xl22, . . . , xlnn , x2n+1)

= 2n+1
n+1∑
si=0

l1,...,ln∈{1,2}

a2sif(xl11, xl22, . . . , xlnn, xln+1n+1). (8)
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This means that (4) holds for n+ 1.
Conversely, suppose that f satisfies equation (4). Now, fix j ∈ {1, . . . , n}, put

x1j = 0 and x2k = 0 for all k ∈ {1, . . . , n}\{j}. Using Lemma 2.1, we obtain

2n−1[f (x11, . . . , x1j−1, ax2j , x1j+1, . . . , x1n) + f (x11, . . . , x1j−1,−ax2j , x1j+1, . . . , x1n)]

= 2na2f(x11, . . . , x1j−1, x2j , x1j+1, . . . , x1n). (9)

Replacing x2j by −x2j in (9), we get

2n−1[f (x11, . . . , x1j−1,−ax2j , x1j+1, . . . , x1n) + f (x11, . . . , x1j−1, ax2j , x1j+1, . . . , x1n)]

= 2na2f(x11, . . . , x1j−1,−x2j , x1j+1, . . . , x1n). (10)

Comparing equations (9) and (10), we see that

f(x11, . . . , x1j−1,−x2j , x1j+1, . . . , x1n) = f(x11, . . . , x1j−1, x2j , x1j+1, . . . , x1n),

and so f is even in the jth variable. Once more, fix j ∈ {1, . . . , n}. Setting x2k = 0
for all k ∈ {1, . . . , n}\{j}, applying Lemma 2.1 and using the evenness of f in the jth
variable, we find

2n−1[f (x11, . . . , x1j−1, x1j + ax2j , x1j+1, . . . , x1n)

+ f (x11, . . . , x1j−1, x1j − ax2j , x1j+1, . . . , x1n)]

= 2n[f(x11, . . . , x1j−1, x1j , x1j+1, . . . , x1n) + a2f(x11, . . . , x1j−1, x2j , x1j+1, . . . , x1n)].
(11)

It follows from relation (11) that f is quadratic in the jth variable. Since j is arbitrary,
we obtain the desired result. �

It is shown in [18, Propositon 2.1] that a mapping f satisfying functional equation
(1) if and only if it satisfies f(ax+ y) + f(ax− y) = 2a2f(x) + 2f(y). In this case, it
is easy to check that f is an even function and thus equation (1) is valid for f if and
only if it satisfies (3). This result, Theorem 3 from [25] and Proposition 2.2 lead us
to the following corollary. Since the proof is a direct consequence of the mentioned
results, is omitted.

Corollary 2.3. A mapping f : V n −→ W satisfies functional equation (4) if and
only if it satisfies (2).

3. Stability results for (4)

In this section, we prove the generalized Hyers-Ulam stability of equation (4) in non-
Archimedean spaces. We recall some basic facts concerning non-Archimedean spaces
and some preliminary results. Let us recall that a metric d on a nonempty set X is said
to be non-Archimedean (or an ultrametric) provided d(x, z) ≤max{d(x, y), d(y, z)} for
x, y, z ∈ X. By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|,
and |r + s| ≤ max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all
n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial
valuation | · |. A function ‖ · ‖ : X −→ R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:
(i) ‖x‖ = 0 if and only if x = 0;



92 A. BODAGHI, S. SALIMI, AND G. ABBASI

(ii) ‖rx‖ = |r|‖x‖, (x ∈ X , r ∈ K);
(iii) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X ).

Then (X , ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖;m ≤ j ≤ n− 1} (n ≥ m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space X . By a complete non-Archimedean normed space we
mean one in which every Cauchy sequence is convergent.

In [13], Hensel discovered the p-adic numbers as a number theoretical analogue of
power series in complex analysis. The most interesting example of non-Archimedean
normed spaces is p-adic numbers. A key property of p-adic numbers is that they do
not satisfy the Archimedean axiom: for all x, y > 0, there exists an integer n such
that x < ny.

Let p be a prime number. For any non-zero rational number x = pr mn in which
m and n are coprime to the prime number p. Consider the p-adic absolute value
|x|p = p−r on Q. It is easy to check that | · | is a non-Archimedean norm on Q. The
completion of Q with respect to | · | which is denoted by Qp is said to be the p-adic
number field. One should remember that if p > 2, then |2n| = 1 in for all integers n.

We recall that for a field K with multiplicative identity 1, the characteristic of K

is the smallest positive number n such that

n−times︷ ︸︸ ︷
1 + · · ·+ 1 = 0.

Throughout, for two sets A and B, the set of all mappings from A to B is denoted
by BA. We wish to prove the generalized Hyers-Ulam stability of equation (4) in non-
Archimedean spaces. The proof is based on a fixed point result that can be derived
from [8, Theorem 1]. To present it, we introduce the following three hypotheses:

(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a
non-Archimedean field of the characteristic different from 2, j ∈ N, g1, . . . , gj :
E −→ E and L1, . . . , Lj : E −→ R+,

(H2) T : Y E −→ Y E is an operator satisfying the inequality

‖T λ(x)− T µ(x)‖ ≤ maxi∈{1,...,j}Li(x) ‖λ(gi(x))− µ(gi(x))‖ , λ, µ ∈ Y E , x ∈ E,

(H3) Λ : RE+ −→ RE+ is an operator defined through

Λδ(x) := maxi∈{1,...,j}Li(x)δ(gi(x)) δ ∈ RE+, x ∈ E.

Here, we highlight the following theorem which is a fundamental result in fixed
point theory [8]. This result plays a key tool to obtain our objective in this paper.

Theorem 3.1. Let hypotheses (H1)-(H3) hold and the function ε : E −→ R+ and
the mapping ϕ : E −→ Y fulfill the following two conditions:

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x), lim
l→∞

Λlε(x) = 0 (x ∈ E).

Then, for every x ∈ E, the limit liml→∞ T lϕ(x) =: ψ(x) and the function ψ ∈ Y E,
defined in this way, is a fixed point of T with

‖ϕ(x)− ψ(x)‖ ≤ supl∈N0
Λlε(x) (x ∈ E).
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Here and subsequently, for the mapping f : V n −→ W , we consider the difference
operator Daf : V n × V n −→W by

Daf(x1, x2) =
∑

q∈{−1,1}n
f(x1 + qax2)− 2n

∑
0≤si≤n

l1,...,ln∈{1,2}

a2sif(xl11, xl22, . . . , xlnn).

In the sequel, P stands for {1 − a, 1 + a}n. Furthermore,

(
n
k

)
is the binomial

coefficient defined for all n, k ∈ N0 with n ≥ k by n!/(k!(n−k)!). With these notations,
we have the upcoming result.

Theorem 3.2. Let V be a linear space and W be a complete non-Archimedean normed
space over a non-Archimedean field of the characteristic different from 2. Suppose that
ϕ : V n × V n −→ R+ is a function satisfying the equality

lim
l→∞

(
1

|2(1 + a2)|n

)l
maxp∈Pϕ(plx1, p

lx2) = 0, (12)

for all x1, x2 ∈ V n. Assume also f : V n −→W is a mapping fulfilling the inequality

‖Daf(x1, x2)‖ ≤ ϕ(x1, x2) (13)

for all x1, x2 ∈ V n. Then, there exists a unique multi-quadratic mapping Q : V n −→
W such that

‖f(x)−Q(x)‖ ≤ supl∈N

(
1

|2 + 2a2|n

)l
maxp∈Pφ(plx, plx) (14)

for all x ∈ V n.

Proof. Putting x = x1 = x2 in (13), we have∥∥∥∥∥∥
∑
p∈P

f(px)− 2n
n∑

si=0

(
n
si

)
a2sif(x)

∥∥∥∥∥∥ ≤ ϕ(x, x) (15)

for all x ∈ V n. Since
n∑

si=0

(
n
si

)
a2si =

n∑
si=0

(
n
si

)
a2si × 1n−si = (1 + a2)n,

inequality (15) implies that∥∥∥∥∥∥f(x)− 1

(2 + 2a2)n

∑
p∈P

f(px)

∥∥∥∥∥∥ ≤ 1

|2 + 2a2|n
ϕ(x, x) (x ∈ V n). (16)

For each x ∈ V n, set

T ξ(x) :=
1

(2 + 2a2)n

∑
p∈P

ξ(px) and ε(x) =
1

|2 + 2a2|n
ϕ(x, x) (ξ ∈WV n).

Now, inequality (16) can be rewritten as follows:

‖f(x)− T f(x)‖ ≤ ε(x) (x ∈ V n). (17)

Define Λη(x) := maxp∈P
1

|2+2a2|n η(px) for all η ∈ RV n+ , x ∈ V n. It is easily seen that

Λ has the form described in (H3) with E = V n, gi(x) := gp(x) = px for all x ∈ V n
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and Li(x) = 1
|2+2a2|n for any i. In addition, for each λ, µ ∈ WV n and x ∈ V n, we

obtain

‖T λ(x)− T µ(x)‖ ≤ maxp∈P
1

|2 + 2a2|n
‖λ(px)− µ(px)‖ .

The above relation shows that the hypothesis (H2) holds. By induction on l, one can
check that for any l ∈ N and x ∈ V n that

Λlε(x) :=

(
1

|2 + 2a2|n

)l
maxp∈P ε(p

lx) (18)

for all x ∈ V n. Indeed, by definition of Λ, it follows from equality (18) is true for
l = 1. If now (18) holds for l ∈ N, then

Λl+1ε(x) = Λ(Λlε(x)) = Λ

((
1

|2 + 2a2|n

)l
maxp∈P ε(p

lx)

)

=

(
1

|2 + 2a2|n

)l
maxp∈PΛ

(
ε(plx)

)
=

(
1

|2 + 2a2|n

)l+1

maxp∈P ε(p
l+1x)

for all x ∈ V n. Relations (17) and (18) imply that all assumptions of Theorem
3.1 are satisfied. Hence, there exists a unique mapping Q : V n −→ W such that
Q(x) = liml→∞(T lf)(x) for all x ∈ V n, and(14) holds as well. We shall to show that

‖Da(T lf)(x1, x2)‖ ≤
(

1

|2 + 2a2|n

)l
maxp∈Pϕ(plx1, p

lx2) (19)

for all x1, x2 ∈ V n and l ∈ N. We argue by induction on l. For l = 1 and for all
x1, x2 ∈ V n, we have

‖Da(T f)(x1, x2)‖

=
∥∥∥ ∑
q∈{−1,1}n

(T f)(x1 + qax2)− 2n
∑

0≤si≤n
l1,...,ln∈{1,2}

a2si(T f)(xl11, xl22, . . . , xlnn)
∥∥∥

=
∥∥∥ 1

(2 + 2a2)n

∑
q∈{−1,1}n

∑
p∈P

f(px1 + pqax2)

− 1

(1 + a2)n

∑
0≤si≤n

l1,...,ln∈{1,2}

a2si
∑
p∈P

f(pxl11, pxl22, . . . , pxlnn)
∥∥∥

=
∥∥∥ 1

(2 + 2a2)n

∑
p∈P

Da(f)(p(x1, x2))
∥∥∥

≤ 1

|2 + 2a2|n
maxp∈P ‖Da(f)(p(x1, x2))‖

≤ 1

|2 + 2a2|n
maxp∈Pϕ(p(x1, x2))
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for all x1, x2 ∈ V n. Assume that (19) is true for an l ∈ N. Then

∥∥Da(T l+1f)(x1, x2)
∥∥

=
∥∥∥ ∑
q∈{−1,1}n

(T l+1f)(x1 + qax2)− 2n
∑

0≤si≤n
l1,...,ln∈{1,2}

a2si(T l+1f)(xl11, xl22, . . . , xlnn)
∥∥∥

=
∥∥∥ 1

(2 + 2a2)n

∑
q∈{−1,1}n

∑
p∈P

(T lf)(px1 + pqax2)

− 1

(1 + a2)n

∑
0≤si≤n

l1,...,ln∈{1,2}

a2si
∑
p∈P

(T lf)(p(xl11, xl22, . . . , xlnn))
∥∥∥

=
∥∥∥ 1

(2 + 2a2)n

∑
p∈P

Da(T lf)(p(x1, x2))
∥∥∥

≤ 1

|2 + 2a2|n
maxp∈P

∥∥Da(T lf)(p(x1, x2))
∥∥

≤
(

1

|2 + 2a2|n

)l+1

maxp∈Pϕ(pl+1(x1, x2))

for all x1, x2 ∈ V n. Letting l→∞ in (19) and applying (12), we arrive at DaQ(x1, x2) =
0 for all x1, x2 ∈ V n. This means that the mapping satisfies (4) and the proof is now
completed. �

The following corollaries are the direct consequence of Theorem 3.2 concerning the
stability of (4) when the norm Daf(x1, x2) is controlled by the sum and product of
the norms powers of variables.

Corollary 3.3. Let α ∈ R fulfills α > log
2(1+a2)
(1+a) for the fixed positive integer a. Let

also V be a normed space and W be a complete non-Archimedean normed space over
a non-Archimedean field of the characteristic different from 2 such that |2| < 1. If
f : V n −→W is a mapping satisfying the inequality

‖Daf(x1, x2)‖ ≤
2∑
k=1

n∑
j=1

‖xkj‖nα

for all x1, x2 ∈ V n, then, there exists a unique multi-quadratic mapping Q : V n −→W
such that

‖f(x)−Q(x)‖ ≤ 2

∣∣∣∣ (1 + a)α

2 + 2a2

∣∣∣∣n n∑
j=1

‖x1j‖nα

for all x = x1 ∈ V n.
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Proof. Putting φ(x1, x2) =
∑2
k=1

∑n
j=1 ‖xkj‖α, for x = x1 we have φ(plx, plx) =

2|p|lnα
∑n
j=1 ‖x1j‖nα. By assumptions, we have (1+a)α

2+2a2 > 1 and so

supl∈N

(
1

|2 + 2a2|n

)l
maxp∈Pφ(plx, plx) = 2supl∈N

∣∣∣∣ (1 + a)α

2 + 2a2

∣∣∣∣ln n∑
j=1

‖x1j‖nα

= 2

∣∣∣∣ (1 + a)α

2 + 2a2

∣∣∣∣n n∑
j=1

‖x1j‖nα.

Therefore, one can obtain the desired result by Theorem 3.2. �

Corollary 3.4. Suppose that pkj > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n} fulfill α =∑2
k=1

∑n
j=1 pkj > log

2(1+a2)
(1+a) for the fixed positive integer a. Let V be a normed space

and W be a complete non-Archimedean normed space over a non-Archimedean field
of the characteristic different from 2 such that |2| < 1. If f : V n −→W is a mapping
satisfying the inequality

‖Daf(x1, x2)‖ ≤
2∏
k=1

n∏
j=1

‖xkj‖pkj

for all x1, x2 ∈ V n, then there exists a unique multi-quadratic mapping Q : V n −→W
such that

‖f(x)−Q(x)‖ ≤
∣∣∣∣ (1 + a)α

2 + 2a2

∣∣∣∣n n∏
j=1

‖x1j‖p1j+p2j

for all x = x1 ∈ V n.
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