
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 48(2), 2021, Pages 206–221
ISSN: 1223-6934

A variational approach for nonlocal problems with variable
exponent and nonhomogeneous Neumann conditions

Anderson L. A. De Araujo, Shapour Heidarkhani, Ghasem A. Afrouzi,
and Shahin Moradi

Abstract. We study the existence of at least one weak solution for p(x)-Kirchhoff-type prob-
lems of nonhomogeneous Neumann conditions. Our technical approach is based on variational

methods. Some examples are presented to demonstrate the application of our main results.
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1. Introduction

The aim of this paper is to establish the existence of at least one weak solution for
the following nonlocal problem{

T (u) = λf(x, u(x)), in Ω,

|∇u|p(x)−2 ∂u
∂v = λg(γ(u(x))), on ∂Ω

(P fλ )

where

T (u) = M
( ∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)(
−∆p(x)u+ α(x)|u|p(x)−2u

)
,

∆p(x)u := div(|∇u|p(x)−2∇u) is the p(x)-Laplacian operator, Ω ⊂ RN is an open
bounded domain with smooth boundary, M : [0,+∞[→ R is a continuous function
such that there are two positive constants m0 and m1 with m0 ≤ M(t) ≤ m1 for all
t ≥ 0, p ∈ C(Ω̄), λ > 0, f : Ω × R → R is an L1-Carathéodory function, g : R → R
is a non-negative continuous function, α ∈ L∞(Ω) with ess infΩ α > 0, v is the outer
unit normal to ∂Ω and γ : W 1,p(x)(Ω)→ Lp(x)(∂Ω) is the trace operator. If Ω =]a, b[
and h : [a, b]→ R is a continuous function, then

∫
∂Ω
h(x)dx reads h(b) + h(a).

Problems like (P fλ ) are usually called nonlocal problem because of the presence of

the integral over the entire domain, and this implies that the first equation in (P fλ )
is no longer a pointwise identity. In fact, such kind of problem can be traced back to
the work of Kirchhoff. In [31] Kirchhoff proposed the equation

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= 0, (1.1)

as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic

strings. The problem (P fλ ) is related to the stationary analogue of the problem (1.1).
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Kirchhoff’s model takes into account the changes in length of the string produced
by transverse vibrations. Similar nonlocal problems also model several physical and
biological systems where u describes a process which depends on the average of itself,
for example the population density. Lions [33] has proposed an abstract framework for
the Kirchhoff-type equations. After the work by Lions, various equations of Kirchhoff-
type have been studied extensively, for instance see [23, 44, 46].

The study of various mathematical problems with the variable exponent growth
condition has received considerable attention in recent years. These problems are
interesting in applications and raise many difficult mathematical problems. They
can model various phenomena which arise in the study of nonlinear elasticity the-
ory, electro-rheological fluids and so on (see [45, 49]). Materials which require such
advanced theories have been under experimental studies from the 1950s onwards.
The first important discovery on electrorheological fluids was contributed by Willis
Winslow in 1949. The viscosity of these fluids depends upon the electric field of
the fluids. He discovered that the viscosity of such fluids as instance lithium poly-
metachrylate in an electrical field is an inverse relation to the strength of the field. The
field causes string-like formations in the fluid, parallel to the field. They can increase
the viscosity five orders of magnitude. This event is called the Winslow effect. For a
general account of the underlying physics see [24] and for some technical applications
[39]. Electrorheological fluids also have functions in robotics and space technology.
Many experimental researches have been done chiefly in the USA, as in NASA lab-
oratories. The necessary framework for the study of these problems is represented
by the function spaces with variable exponent Lp(x)(Ω) and Wm,p(x)(Ω). The study
of various mathematical problems with variable exponent has received considerable
attention in recent years. For background and recent results, we refer the reader to
[1, 7, 8, 15, 17, 26, 28, 34, 38, 40, 41, 42, 48] and the references therein for details. For
example, Yao in [48] by using the variational method, under appropriate assumptions
on f and g, obtained a number of results on existence and multiplicity of solutions
for the nonlinear Neumann boundary value problem of the following form{

−div(|∇u|p(x)−2∇u) + |u|p(x)−2u = λf(x, u), in Ω,

|∇u|p(x)−2 ∂u
∂v = µg(x, u), on ∂Ω

where λ, µ ∈ R, p ∈ C(Ω̄) and p(x) > 1. Moschetto in [38] under suitable assumptions
on the functions α, f , p and g, based on the Ricceri two-local-minima theorem,
together with the Palais-Smale property, investigated the existence of at least three
solutions for the following Neumann problem{

−∆p(x)u+ α(x)|u|p(x)−2u = α(x)f(u) + λg(x, u), in Ω,
∂u
∂v = 0, on ∂Ω.

Bonanno and Chinǹı, based on variational methods, under appropriate growth condi-
tions on the nonlinearity, established the existence of multiple solutions for nonlinear
elliptic Dirichlet problems with variable exponent. D’Agùı and Sciammetta in [15]
based on variational methods established the existence of an unbounded sequence of
weak solutions for a class of differential equations with p(x)-Laplacian and subject to
small perturbations of nonhomogeneous Neumann conditions. In [28] based on the
variational methods and critical-point theory the existence of at least three solutions
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for elliptic problems driven by a p(x)-Laplacian was established. The existence of at
least one nontrivial solution was also proved.

In recent years, many authors looked for existence and multiplicity of solutions
to p(x)-Kirchhoff-type problems, for an overview on this subject, we cite the papers
[11, 12, 13, 16, 19, 25, 30, 47] and the reference therein. For example, Han and Dai in
[25] dealt with the sub-supersolution method for the p(x)-Kirchhoff type equations.
They established a sub-supersolution principle for the Dirichlet problems involving
p(x)-Kirchhoff, and presented a strong comparison theorem for the p(x)-Kirchhoff
type equations. They also gave some applications of the obtained abstract theorems
to the eigenvalue problems for the p(x)-Kirchhoff type equations. Dai and Wei in
[16] proved the existence of infinitely many non-negative solutions of the Dirichlet
problem involving the p(x)-Kirchhoff-type by applying a general variational princi-
ple due to Ricceri and the theory of the variable exponent Sobolev spaces. In [12],
Cammaroto and Vilasi by use variational nature and weak formulation takes place in
suitable variable exponent Sobolev spaces, established the existence of three weak so-
lutions for a nonlinear transmission problem involving degenerate nonlocal coefficients
of p(x)-Kirchhoff type. Hssini et al. in [30] based on variational methods, obtained
the existence and multiplicity of solutions for a class of p(x)-Kirchhoff type equations
with Neumann boundary condition. In [17] multiplicity results for nonlocal problems
with variable exponent and nonhomogeneous Neumann conditions were established.
In fact, using variational methods and critical point theory the existence results for the
problem under algebraic conditions with the classical Ambrosetti-Rabinowitz (AR)
condition on the nonlinear term were ensured. Furthermore, by combining two alge-
braic conditions on the nonlinear term which guarantees the existence of two solutions,
applying the mountain pass theorem given by Pucci and Serrin the existence of third
solution for the problem was proved.

The existence and multiplicity of solutions for stationary higher order problems
of Kirchhoff type (in n-dimensional domains, n ≥ 1) were also investigated in some
recent papers, using variational methods like the symmetric mountain pass theorem
in [14] and a three critical point theorem in [5]. Moreover, in [3, 4], some evolutionary
higher order Kirchhoff problems were studied, mainly focusing on the qualitative
properties of the solutions.

Motivated by the above facts, in the present paper, we study the existence of at least

one non-trivial weak solution for the problem (P fλ ) under an asymptotical behaviour
of the nonlinear datum at zero, see Theorems 3.1. Example 3.1 illustrates Theorem
3.1. We give some remarks on our results. In Theorem 3.2 we present an application
of Theorem 3.1. We present Example 3.2 to illustrate Theorem 3.2. As special cases
of Theorem 3.1, we obtain Theorem 3.3 considering the case p(x) = p > N .

Compared to the previous results, we give some new assumptions to obtain the

existence of at least one non-trivial weak solution of the problem (P fλ ). Recent related
works are generalized.

We refer to the recent monograph by Molica Bisci, Rădulescu and Servadei [36]
for related problems concerning the variational analysis of solutions of some classes
of nonlocal problems.

The paper is organized as follows. In Section 2, we recall some basic definitions
and our main tool, while Section 3 is devoted to our abstract results.
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2. Preliminaries

We shall prove the existence of at least one non-trivial weak solution to the problem

(P fλ ) applying the following version of Ricceri’s variational principle [43, Theorem 2.1]
as given by Bonanno and Molica Bisci in [9].

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X −→ R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicon-
tinuous, strongly continuous and coercive in X and Ψ is sequentially weakly upper
semicontinuous in X. Let Iλ be the functional defined as Iλ := Φ − λΨ, λ ∈ R, and
for every r > infX Φ, let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1(−∞,r)

supu∈Φ−1(−∞,r) Ψ(u)−Ψ(u)

r − Φ(u)
.

Then, for every r > infX Φ and every λ ∈ (0, 1
ϕ(r) ), the restriction of the functional

Iλ to Φ−1(−∞, r) admits a global minimum, which is a critical point (precisely a local
minimum) of Iλ in X.

We refer the interested reader to the papers [2, 21, 22, 27, 29, 35, 37] in which
Theorem 2.1 has been successfully employed to the existence of at least one non-
trivial solution for boundary value problems.

Here and in the sequel, meas(Ω) denotes the Lebesgue measure of the set Ω, and
we also assume that p ∈ C(Ω̄) verifies the following condition:

N < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞. (2.1)

Let Ω be a bounded domain of RN , denote:

Lp(x)(Ω) :=
{
u : Ω→ R measurable and

∫
Ω

|u(x)|p(x)dx < +∞
}
,

Lp(x)(∂Ω) :=
{
u : ∂Ω→ R measurable and

∫
∂Ω

|u(x)|p(x)dσ < +∞
}
.

We can introduce the norms on Lp(x)(Ω) and Lp(x)(∂Ω) by:

‖u‖Lp(x)(Ω) = inf
{
β > 0 :

∫
Ω

|u(x)

β
|p(x)dx ≤ 1

}
,

‖u‖Lp(x)(∂Ω) = inf
{
β > 0 :

∫
∂Ω

|u(x)

β
|p(x)dσ ≤ 1

}
where dσ is the surface measure on ∂Ω.

Let X be the generalized Lebesgue-Sobolev space W 1,p(x)(Ω) defined by putting
W 1,p(x)(Ω) by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
and it can be equipped with the norm:

‖u‖W 1,p(x)(Ω) := ‖u‖Lp(x)(Ω) + ‖|∇u|‖Lp(x)(Ω). (2.2)

It is well known (see [20]) that, in view of (2.1), both Lp(x)(Ω) and W 1,p(x)(Ω), with
the respective norms, are separable, reflexive and uniformly convex Banach spaces.
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Moreover, since α ∈ L∞(Ω), with α− := ess infx∈Ω α(x) > 0 is assumed, then the
following norm

‖u‖α = inf
{
σ > 0 :

∫
Ω

(
α(x)|u(x)

σ
|p(x) + |∇u(x)

σ
|p(x)

)
dx ≤ 1

}
,

onW 1,p(x)(Ω) is equivalent to that introduce in (2.2). SinceW 1,p(x)(Ω) is continuously

embedded in W 1,p−(Ω) (see [20] or [32]) and p− > N , W 1,p(x)(Ω) is continuously
embedded in C0(Ω̄) and one has

‖u‖C0(Ω̄) ≤ kp−‖u‖W 1,p− (Ω).

When Ω is convex, an explicit upper bound for the constant kp− is

kp− ≤ 2
p−−1

p− max

{
(

1

‖α‖1
)

1

p− ,
d

N
1

p−
(
p− − 1

p− −N
meas(Ω))

p−−1

p−
‖α‖∞
‖α‖1

}
where ‖α‖1 =

∫
Ω
α(x)dx and ‖α‖∞ = supx∈Ω α(x) and d = diam(Ω) (see [6, Remark

1]). On the other hand, taking into account that p− ≤ p(x), [32, Theorem 2.8]

ensures that Lp(x)(Ω) ↪→ Lp
−

(Ω) and the constant of such embedding does not exceed
1 + meas(Ω). So, one has

‖u‖W 1,p− (Ω) ≤ (1 + meas(Ω))‖u‖W 1,p(x)(Ω) ≤ (1 + meas(Ω))‖u‖α.

In conclusion, put

c = kp−(1 + meas(Ω)),

it results

‖u‖C0(Ω̄) ≤ c‖u‖α (2.3)

for each u ∈W 1,p(x)(Ω).

Remark 2.1. Let f : Ω× R→ R be an L1-Carathéodory function, that means:

(a) t 7→ f(x, t) is measurable for every t ∈ R,
(b) x 7→ f(x, t) is continuous for a.e. x ∈ Ω,
(c) for every ρ > 0 there exists a function lρ ∈ L1(Ω) such that

sup
|t|≤ρ
|f(x, t)| ≤ lρ(x)

for a.e. x ∈ Ω.

Corresponding to the functions f , g and M , we introduce the functions F : Ω×R→
R, G : R→ R and M̃ : [0,+∞[→ R , respectively, as follows

F (x, t) =

∫ t

0

f(x, ξ)dξ for all (x, t) ∈ Ω× R,

G(t) =

∫ t

0

g(ξ)dξ for all t ∈ R

and

M̃(t) =

∫ t

0

M(ξ)dξ for all t ≥ 0.
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We say that u ∈W 1,p(x)(Ω) is a weak solution of the problem (P fλ ) if

M
( ∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)

∫
Ω

(
|∇u(x)|p(x)−2∇u(x)∇v(x) + α(x)|u(x)|p(x)−2u(x)v(x)

)
dx

−λ
( ∫

Ω

f(x, u(x))v(x)dx+

∫
∂Ω

g(γ(u(x)))γ(v(x))dσ
)

= 0

for every v ∈W 1,p(x)(Ω).

Proposition 2.2 ([18, Proposition 2.4]). Let ρα(u) =
∫

Ω
[|∇u|p(x) + α(x)|u|p(x)]dx

for u ∈W 1,p(x)(Ω), we have

(1) ‖u‖α ≥ 1 =⇒ ‖u‖p−α ≤ ρα(u) ≤ ‖u‖p+α ,

(2) ‖u‖α ≤ 1 =⇒ ‖u‖p+α ≤ ρα(u) ≤ ‖u‖p−α .

3. Main results

We state our main result as follows.

Theorem 3.1. Assume that

sup
γ≥c

γp
−∫

Ω
sup|t|≤γ F (x, t)dx+ a(∂Ω)G(γ)

>
p+cp

−

m0
(DF )

where a(∂Ω) =
∫
∂Ω
dσ and c is the constant defined in (2.3), and there are a non-

empty open set D ⊆ Ω and B ⊂ D of positive Lebesgue measure such that

lim sup
ξ→0+

ess infx∈B F (x, ξ)

|ξ|p−
= +∞ (3.1)

and

lim inf
ξ→0+

ess infx∈D F (x, ξ)

|ξ|p−
> −∞. (3.2)

Then, for each

λ ∈ Λ =
(

0,
m0

p+cp−
sup
γ≥c

γp
−∫

Ω
sup|t|≤γ F (x, t)dx+ a(∂Ω)G(γ)

)
the problem (P fλ ) admits at least one non-trivial weak solution uλ ∈ X. Moreover,
one has

lim
λ→0+

‖uλ‖α = 0

and the real function

λ→M̃
( ∫

Ω

1

p(x)

(
|∇uλ(x)|p(x) + α(x)|uλ(x)|p(x)

)
dx
)

−λ(

∫
Ω

F (x, uλ(x))dx+

∫
∂Ω

G(γ(uλ(x)))dσ)

is negative and strictly decreasing in Λ.
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Proof. Our aim is to apply Theorem 2.1 to the problem (P fλ ). Consider the functionals
Φ,Ψ for every u ∈ X, defined by

Φ(u) = M̃
( ∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)

(3.3)

and

Ψ(u) =

∫
Ω

F (x, u(x))dx+

∫
∂Ω

G(γ(u(x)))dσ, (3.4)

and put Iλ(u) = Φ(u)− λΨ(u) for every u ∈ X. Let us prove that the functionals Φ
and Ψ satisfy the required conditions in Theorem 2.1. It is well known that Ψ is a
differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =

∫
Ω

f(x, u(x))v(x)dx+

∫
∂Ω

g(γ(u(x)))γ(v(x))dσ

for every v ∈ X, as well as is sequentially weakly upper semicontinuous. Due to
Proposition 2.2, we have

Φ(u) ≥ m0

p+
‖u‖p

−

α (3.5)

for all u ∈ X such that ‖u‖α > 1, and since p− > 1, it follows that Φ is coercive.
Moreover, Φ is continuously differentiable whose differential at the point u ∈ X is

Φ′(u)(v) =M
( ∫

Ω

1

p(x)

(
|∇u(x)|p(x) + α(x)|u(x)|p(x)

)
dx
)

∫
Ω

(
|∇u(x)|p(x)−2∇u(x)∇v(x) + α(x)|u(x)|p(x)−2u(x)v(x)

)
dx

for every v ∈ X. Furthermore, Φ is sequentially weakly lower semicontinuous. There-
fore, we observe that the regularity assumptions on Φ and Ψ, as requested in Theorem
2.1, are verified. Note that the critical points of the functional Iλ are the weak so-

lutions of the problem (P fλ ). We now look on the existence of a critical point of the
functional Iλ in X. By using the condition (DF ), there exists γ̄ ≥ c such that

γ̄p
−∫

Ω
sup|t|≤γ̄ F (x, t)dx+ a(∂Ω)G(γ̄)

>
p+cp

−

m0
. (3.6)

Choose

r =
m0

p+
(
γ̄

c
)p

−
.

Moreover, for all u ∈ X with Φ(u) < r, then, owing to [10, Proposition 2.2], one has

‖u‖α ≤ max
{

(p+r)
1

p+ , (p+r)
1

p−
}
.

So, due to the embedding X ↪→ C0(Ω) (see (2.3)), one has ‖u‖∞ ≤ c‖u‖α. From the
definition of r, it follows that

Φ−1(−∞, r) = {u ∈ X; Φ(u) < r} ⊆ {u ∈ X; |u| ≤ γ̄},
and this ensures

Ψ(u) ≤ sup
u∈Φ−1(−∞,r)

∫
Ω

F (x, u(x))dx+ sup
u∈Φ−1(−∞,r)

∫
∂Ω

G(γ(u(x)))dσ

≤
∫

Ω

sup
|t|≤γ̄

F (x, t)dx+

∫
∂Ω

max
|t|≤γ̄

G(t)dσ
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≤
∫

Ω

sup
|t|≤γ̄

F (x, t)dx+ a(∂Ω)G(γ̄)

for every u ∈ X such that Φ(u) < r. Then

sup
Φ(u)<r

Ψ(u) ≤
∫

Ω

sup
|t|≤γ̄

F (x, t)dx+ a(∂Ω)G(γ̄).

By simple calculations and from the definition of ϕ(r), since 0 ∈ Φ−1(−∞, r) and
Φ(0) = Ψ(0) = 0, one has

ϕ(r) = inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u))−Ψ(u)

r − Φ(u)
≤

supu∈Φ−1(−∞,r) Ψ(u)

r

≤
∫

Ω
sup|t|≤γ̄ F (x, t)dx+

∫
∂Ω

max|t|≤γ̄ G(t)dσ
m0

p+ ( γ̄c )p−

≤
∫

Ω
sup|t|≤γ̄ F (x, t)dx+ a(∂Ω)G(γ̄)

m0

p+ ( γ̄c )p−
.

Hence, putting

λ∗ =
m0

p+cp−
sup
γ≥c

γp
−∫

Ω
sup|t|≤γ F (x, t)dx+ a(∂Ω)G(γ)

.

Theorem 2.1 ensures that for every λ ∈ (0, λ∗) ⊆ (0, 1
ϕ(r) ), the functional Iλ admits

at least one critical point (local minima) uλ ∈ Φ−1(−∞, r). We will show that the
function uλ cannot be trivial.
Let us prove that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞. (3.7)

Owing to the assumptions (3.1) and (3.2), we can consider a sequence {ξn} ⊂ R+

converging to zero and two constants σ, κ (with σ > 0) such that

lim
n→+∞

ess infx∈B F (x, ξn)

|ξn|p−
= +∞

and

ess inf
x∈D

F (x, ξ) ≥ κ|ξ|p
−

for every ξ ∈ [0, σ]. We consider a set G ⊂ B of positive measure and a function v ∈ X
such that

(k1) v(x) ∈ [0, 1] for every x ∈ Ω,
(k2) v(x) = 1 for every x ∈ G,
(k3) v(x) = 0 for every x ∈ Ω \D.

Hence, fix M > 0 and consider a real positive number η with

M <
η meas(G) + κ

∫
D\G |v(x)|p−dx

m1

p− ‖v‖
p−
α

.



214 A. L. A. DE ARAUJO, S. HEIDARKHANI, G.A. AFROUZI, AND S. MORADI

Then, there is n0 ∈ N such that ξn < σ and

ess inf
x∈B

F (x, ξn) ≥ η|ξn|p
−

for every n > n0. Now, for every n > n0, by considering the properties of the function
v (that is 0 ≤ ξnv(x) < σ for n large enough), we have

Ψ(ξnv)

Φ(ξnv)
=

∫
G F (x, ξn)dx+

∫
D\G F (x, ξnv(x))dx+

∫
∂Ω
G(γ(ξnv(x)))dσ

Φ(ξnv)

≥

∫
G F (x, ξn)dx+

∫
D\G F (x, ξnv(x))dx

Φ(ξnv)

>
η meas(G) + κ

∫
D\G |v(x)|p−dx

m1

p− ‖v‖
p−
α

> M.

Since M could be arbitrarily large, it is concluded that

lim
n→∞

Ψ(ξnv)

Φ(ξnv)
= +∞,

from which (3.7) clearly follows. Hence, there exists a sequence {wn} ⊂ X strongly
converging to zero such that, for n large enough, wn ∈ Φ−1(−∞, r) and

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), we obtain

Iλ(uλ) < 0, (3.8)

hence that uλ is not trivial. From (3.8) we easily observe that the map

(0, λ∗) 3 λ 7→ Iλ(uλ) (3.9)

is negative. Also, one has

lim
λ→0+

‖uλ‖α = 0.

Indeed, bearing in mind that Φ is coercive and for every λ ∈ (0, λ∗) the solution
uλ ∈ Φ−1(−∞, r), one has that there exists a positive constant L such that ‖uλ‖α ≤ L
for every λ ∈ (0, λ∗). After that, it is easy to see that there exist positive constants
N and N ′ such that ∣∣∣ ∫

Ω

f(x, uλ(x))uλ(x)dx
∣∣∣ ≤ N‖uλ‖α ≤ NL (3.10)

and ∣∣∣ ∫
∂Ω

g(γ(uλ(x)))γ(uλ(x))dσ
∣∣∣ ≤ N ′‖uλ‖α ≤ N ′L (3.11)

for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′λ(uλ)(v) = 0 for
every v ∈ X and every λ ∈ (0, λ∗). In particular I ′λ(uλ)(uλ) = 0, that is,

Φ′(uλ)(uλ) = λ
( ∫

Ω

f(x, uλ(x))uλ(x)dx+

∫
∂Ω

g(γ(uλ(x)))γ(uλ(x))dσ
)

(3.12)

for every λ ∈ (0, λ∗). For ‖uλ‖α ≥ 1, owing to Proposition 2.2, we have

0 ≤ m0‖uλ‖p
−

α ≤ Φ′(uλ)(uλ),
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from (3.12), we have

0 ≤ m0‖uλ‖p
−

α ≤ λ
( ∫

Ω

f(x, uλ(x))uλ(x)dx+

∫
∂Ω

g(γ(uλ(x)))γ(uλ(x))dσ
)

(3.13)

for any λ ∈ (0, λ∗). Letting λ→ 0+, by (3.13) together with (3.10) and (3.11), we get

lim
λ→0+

‖uλ‖α = 0.

The proof of the case ‖uλ‖α ≤ 1 is similar to case ‖uλ‖α ≥ 1. Then, we have obviously
the desired conclusion. Finally, we have to show that the map

λ 7→ Iλ(uλ)

is strictly decreasing in (0, λ∗). For our goal we see that for any u ∈ X, one has

Iλ(u) = λ
(Φ(u)

λ
−Ψ(u)

)
. (3.14)

Now, let us consider 0 < λ1 < λ2 < λ∗ and let uλi
be the global minimum of the

functional Iλi restricted to Φ(−∞, r) for i = 1, 2. Also, set

mλi
=
(Φ(uλi

)

λi
−Ψ(uλi

)
)

= inf
v∈Φ−1(−∞,r)

(Φ(v)

λi
−Ψ(v)

)
for every i = 1, 2.
Clearly, (3.9) together with (3.14) and the positivity of λ imply that

mλi < 0 for i = 1, 2. (3.15)

Moreover
mλ2

≤ mλ1
, (3.16)

due to the fact that 0 < λ1 < λ2. Then, by (3.14)-(3.16) and again by the fact that
0 < λ1 < λ2, we get that

Iλ2
(uλ2

) = λ2mλ2
≤ λ2mλ1

< λ1mλ1
= Iλ1

(uλ1
),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗). The arbitrariness
of λ < λ∗ shows that λ 7→ Iλ(uλ) is strictly decreasing in (0, λ∗). The proof is
complete. �

Here we present an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.1. Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}. Consider the problem
M
( ∫

Ω
1

p(x,y)

(
|∇u(x)|p(x,y) + α(x)|u(x)|p(x,y)

)
dx
)
(−∆p(x,y)u+ α(x)|u|p(x,y)−2u)

= λf(x, y, u), in Ω,

|∇u|p(x,y)−2 ∂u
∂v = λg(γ(u(x))), on ∂Ω

(3.17)

where M(t) = 3
2 + cos(t)

2 for every t ∈ [0,+∞), p(x, y) = x2 +y2 +3 for every x, y ∈ Ω,

α(x, y) = x2 + y2 + 1 for every x, y ∈ Ω,

f(x, y, t) =
4(x2 + y2)

103c3
(
3t2 + 2t+

4t3

t4 + 1

)
for every (x, y, t) ∈ Ω×R and g(t) = 3

103c3 t
2 for every t ∈ R. By the expression of f ,

we have

F (x, y, t) =
4(x2 + y2)

103c3
(t3 + t2 + ln(t4 + 1))
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for every (x, y, t) ∈ Ω × R. By simple calculations, we obtain a(∂Ω) = 2π, m0 = 1,
p− = 3 and p+ = 4. Since

sup
γ≥c

γ3∫ ∫
Ω

sup|t|≤γ F (x, y, t)dxdy + a(∂Ω)G(γ)
> 4c3 =

p+cp
−

m0
,

we observe that all assumptions of Theorem 3.1 are fulfilled. Hence, Theorem 3.1

implies that for each λ ∈ (0, 103

16π ) the problem (3.17) admits at least one non-trivial
weak solution uλ ∈ X. Moreover, one has

lim
λ→0+

‖uλ‖α = 0

and the real function

λ→M̃
( ∫

Ω

1

p(x, y)

(
|∇uλ(x)|p(x,y) + α(x, y)|uλ(x)|p(x,y)

)
dx
)

−λ
( ∫ ∫

Ω

F (x, y, uλ(x))dxdy +

∫
∂Ω

G(γ(uλ(x)))dσ
)

is negative and strictly decreasing in (0, 103

16π ).

Now, we give some remarks of our results.

Remark 3.1. In Theorem 3.1 we searched for the critical points of the functional

Iλ naturally associated with the problem (P fλ ). We note that, generally Iλ can be
unbounded from the following in X. Indeed, for example, if we take f(x, ξ) = 1 +

|ξ|ε−p+ξp+−1 for (x, ξ) ∈ Ω×R and g(ξ) = |ξ|ε−1 for ξ ∈ R with ε > p+, for any fixed
u ∈ X\{0} and ι ∈ R, we obtain

Iλ(ιu) =Φ(ιu)− λ(

∫
Ω

F (x, ιu(x))dx+

∫
∂Ω

G(γ(u(x)))dσ)

≤ιp
+m1

p−
‖u‖p

+

− λι‖u‖L1(Ω) − λ
ιε

ε
‖u‖εLε(Ω) − λ

ιε

ε
‖u‖εLε(∂Ω) → −∞

as ι → +∞. Hence, we can not use direct minimization to find critical points of the
functional Iλ.

Remark 3.2. For fixed γ̄ ≥ c let

γ̄p
−∫

Ω
sup|t|≤γ̄ F (x, t)dx+ a(∂Ω)G(γ̄)

>
p+cp

−

m0
.

Then the result of Theorem 3.1 holds with ‖uλ‖∞ ≤ γ̄.

Remark 3.3. We observe that Theorem 3.1 is a bifurcation result in the sense that
the pair (0, 0) belongs to the closure of the set

{(uλ, λ) ∈ X × (0,+∞) : uλ is a non-trivial weak solution of (P fλ )}

in X × R. Indeed, by Theorem 3.1 we have that

‖uλ‖α → 0 as λ→ 0.

Hence, there exist two sequences {uj} in X and {λj} in R+ (here uj = uλj
) such that

λj → 0+ and ‖uj‖α → 0,
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as j → +∞. Moreover, we emphasis that due to the fact that the map

(0, λ∗) 3 λ 7→ Iλ(uλ)

is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗), with λ1 6= λ2, the weak solutions uλ1

and uλ2 ensured by Theorem 3.1 are different.

When f doesn’t depend upon x, we obtain the following autonomous version of
Theorem 3.1.

Theorem 3.2. Let f : R → R be a non-negative continuous function. Put F (ξ) =∫ ξ
0
f(t)dt for all ξ ∈ R. Assume that

lim
ξ→0+

F (ξ)

|ξ|p−
= +∞.

Then, for each

λ ∈ Λ =
(

0,
m0

p+cp−
sup
γ≥c

γp
−

meas(Ω)F (γ) + a(∂Ω)G(γ)

)
where c is the constant defined in (2.3), the problem{

T (u) = λf(u(x)), on Ω,

|∇u|p(x)−2 ∂u
∂v = λg(γ(u(x))), in ∂Ω

admits at least one non-trivial weak solution uλ ∈ X such that

lim
λ→0+

‖uλ‖α = 0

and the real function

λ→M̃
( ∫

Ω

1

p(x)

(
|∇uλ(x)|p(x) + α(x)|uλ(x)|p(x)

)
dx
)

−λ
( ∫

Ω

F (uλ(x))dx+

∫
∂Ω

G(γ(uλ(x)))dσ
)

is negative and strictly decreasing in Λ.

We now present the following example to illustrate Theorem 3.2.

Example 3.2. We consider the autonomous problem
M
( ∫

Ω
1

p(x,y)

(
|∇u(x)|p(x,y) + α(x)|u(x)|p(x,y)

)
dx
)(
−∆p(x,y)u+ α(x)|u|p(x,y)−2u

)
= λf(u), in Ω,

|∇u|p(x,y)−2 ∂u
∂v = λg(γ(u(x))), on ∂Ω

(3.18)

where Ω = {(x, y) ∈ R2 : x2 + y2 < 4}, M(t) = 3
2 + sin(t)

2 for every t ∈ [0,+∞),

p(x, y) = x2 + y2 + 5 for every x, y ∈ Ω, α(x, y) = x2 + y2 + 2 for every x, y ∈ Ω,

f(t) =
1

104c5
(
5t4 + 3t2

)
and g(t) = 3

104c5 t
2 for every t ∈ R. By simple calculations, we obtain

F (t) =
1

104c5
(t5 + t3)
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for every t ∈ R. Direct calculations give a(∂Ω) = 4π, m0 = 1, p− = 5 and p+ = 9.
We observe that all assumptions of Theorem 3.2 are fulfilled. Hence, Theorem 3.2

implies that for each Then, for each λ ∈
(
0, 104

36π

)
the problem (3.18) admits at least

one non-trivial weak solution uλ ∈ X. Moreover, one has

lim
λ→0+

‖uλ‖α = 0

and the real function

λ→M̃
( ∫

Ω

1

p(x, y)

(
|∇uλ(x)|p(x,y) + α(x, y)|uλ(x)|p(x,y)

)
dx
)

−λ
( ∫

Ω

F (uλ(x))dx+

∫
∂Ω

G(γ(uλ(x)))dσ
)

is negative and strictly decreasing in
(
0, 104

36π

)
.

We end this paper by presenting the following version of Theorem 3.1, in the case
p(x) = p for every x ∈ Ω.

Theorem 3.3. Assume that

sup
γ≥c

γp∫
Ω

sup|t|≤γ F (x, t)dx+ a(∂Ω)G(γ)
>
pcp

m0

and there are a non-empty open set D ⊆ Ω and B ⊂ D of positive Lebesgue measure
such that

lim sup
ξ→0+

ess infx∈B F (x, ξ)

|ξ|p
= +∞

and

lim inf
ξ→0+

ess infx∈D F (x, ξ)

|ξ|p
> −∞.

Then, for each

λ ∈ Λ =
(

0,
m0

pcp
sup
γ≥c

γp∫
Ω

sup|t|≤γ F (x, t)dx+ a(∂Ω)G(γ)

)
the problem

M(
∫

Ω
1
p

(
|∇u(x)|p + α(x)|u(x)|p

)
dx)(−∆pu+ α(x)|u|p−2u)

= λf(x, u(x)), in Ω,

|∇u|p−2 ∂u
∂v = λg(γ(u(x))), on ∂Ω

admits at least one non-trivial weak solution uλ ∈W 1,p(Ω). Moreover, one has

lim
λ→0+

‖uλ‖α = 0

and the real function

λ→M̃

p
(

∫
Ω

(
|∇uλ(x)|p + α(x)|uλ(x)|p

)
dx)

−λ(

∫
Ω

F (x, uλ(x))dx+

∫
∂Ω

G(γ(uλ(x)))dσ)

is negative and strictly decreasing in Λ.
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[8] G. Bonanno and A. Chinǹı, Multiple solutions for elliptic problems involving the p(x)-Laplacian,

Le Matematiche LXVI-Fasc. I (2011), 105–113.

[9] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with
discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), 1–20.
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Viçosa, 36570-000, Viçosa (MG), Brazil
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