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An existence result for homoclinic solutions for a linear
ordinary differential equation of second order

Cezar Avramescu and Cristian Vladimirescu

Abstract. In this paper we consider the equation ü + a (t) u̇ + u = 0, where a : IR → IR is
a function of class C1. We give sufficient conditions for which the above equation admits a
solution u : IR → IR fulfilling a condition of type lim

t→±∞u (t) = lim
t→±∞ u̇ (t) = 0. The result

is obtained through the method of differential inequalities, by using a classical Lyapunov
function. Recall that a solution non-identically zero fulfilling the mentioned conditions is
known in the literature as homoclinic solution.
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1. Introduction

It is well known the interest to study the asymptotic behavior on the semiaxis
IR+ = [0,+∞) of the solutions of differential equations (especially the ones of second
order). The appetite for this study has been opened also by the famous book of
Belmann [7].

In general, to make easy the study of an equation of second order, this is trans-
formed into a system with two equations of first order. The convenient choosing of
the transformation which realizes this thing can substantially contributes to obtain
certain consistent results. Such ingenuous transformations have been used in [8]) and
[9]) to research of the asymptotic stability of a linear homogeneous equation of second
order.

Less studied, but however important is the research of the asymptotic behavior of
the solutions on the whole real axis IR. Through the classes of properties which could
be interesting is the boundedness of solutions or the vanishing of solutions to ±∞;
such behaviors has been studied last time for example in [1], [2], [3], [4], [5], [6].

In the present paper we consider the equation

ü + a (t) u̇ + u = 0, (1)

where a : IR → IR is a function of class C1 and we give sufficient conditions for which
equation (1) admits at least one solution u : IR → IR fulfilling a condition of type

β (t) ≤ u2 (t) +
(

u̇ (t) +
a (t)

2
u (t)

)2

≤ α (t) , t ∈ IR, (2)

where α, β : IR → (0,+∞) are continuous functions depending on a. Next, we
present sufficient conditions for which α (±∞) := lim

t→±∞α (t) = 0. This fact assures
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the existence of a solution equation (1), which is non-identically zero, such that

lim
t→±∞u (t) = lim

t→±∞ u̇ (t) = 0. (3)

The left side of inequality (2) is used to prove that the found solution, fulfilling
(3), is non-identically zero.

To establish inequality (2) , we shall use the method of the Lyapunov function and
differential inequalities.

In [8], [9] equation (1) is considered on IR+ := [0,+∞) and the existence of solutions
satisfying the condition u (+∞) = u̇ (+∞) = 0 is researched.

To extend the cited results to the whole real axis, one uses the known method
of Krasnoselskii (see [10]), which has been used by this author to the study of the
existence of bounded and periodic solutions.

Remark that, since u = 0 is a solution to equation (1) , then each solution which
satisfies (3) , is a homoclinic solution.

2. Preliminaries

We start with the presentation of the principal notations and hypotheses used
throughout the paper.

Denote by (·, ·) and |·| respectively the inner product and the euclidean norm in
IR2. Define on IR2 the Lyapunov function

V (x) = u2 + v2 = |x|2 , x = (u, v)T ∈ IR2.

We use the transformation

v := u̇ +
a (t)

2
u

and equation (1) becomes
ẋ = f (t, x) , (4)

where

f (t, x) =

(
v − a(t)

2 u(
ȧ(t)
2 + a2(t)

4 − 1
)

u − a(t)
2 v

)

and x =
(

u
v

)
.

The derivative V̇ of V along system (4) is, by definition,

V̇ (x) = (grad V, f) .

Therefore, we obtain

V̇ (x (t)) = −a (t)
(
u2 + v2

)
+ 2uv

(
ȧ (t)

2
+

a2 (t)
4

)
. (5)

Let us consider a : IR → IR a function of class C1 (IR), satisfying the hypotheses:
a1)

∫ ±∞
(·) a (t) dt = +∞,

a2)
∫ +∞
(·)

∣∣2ȧ (t) + a2 (t)
∣∣ dt < +∞,

∫ (·)
−∞

∣∣2ȧ (t) + a2 (t)
∣∣ dt < +∞.

Denote in addition

z (t) : =
∣∣∣∣ ȧ (t)

2
+

a2 (t)
4

∣∣∣∣− a (t) ,

w (t) : = −
∣∣∣∣ ȧ (t)

2
+

a2 (t)
4

∣∣∣∣− a (t) ,
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for all t ∈ IR.

3. The main result

We can state and prove the following result.

Theorem 3.1. Suppose that a : IR → IR is a function of class C1 (IR), fulfilling
hypotheses a1) and a2). Then, the equation (1) admits at least one homoclinic solution.

Proof. Let n ∈ IN∗ be arbitrary.
Since V : IR2 → IR+ is continuous, V (0) = 0, lim

|x|→∞
V (x) = ∞ and V (IR) is

connected, it follows that for every r0 > 0, there exists x0 ∈ IR, x0 �= 0 such that
V (x0) = r0. Therefore one can consider xn = (un, vn)T the unique solution to system
(4) , for which

V (xn (−n)) = e−
∫ 0
−n

z(s)ds. (6)
From the obvious inequalities

−
(∣∣∣∣ ȧ2 +

a2

4

∣∣∣∣+ a

)(
u2

n + v2
n

) ≤ V̇ (xn) ≤
(∣∣∣∣ ȧ2 +

a2

4

∣∣∣∣− a

)(
u2

n + v2
n

)
,

it follows that

w (t)V (xn (t)) ≤ V̇ (xn (t)) ≤ z (t)V (xn (t)) , (∀) t ≥ −n. (7)

Since xn (−n) �= 0, we get V (xn (t)) > 0, for all t ≥ −n.
By (7) we obtain then

w (t) ≤ V̇ (xn (t))
V (xn (t))

≤ z (t) , (∀) t ≥ −n

and therefore

V (xn (−n)) e
∫ t
−n

w(s)ds ≤ V (xn (t)) ≤ V (xn (−n)) e
∫ t
−n

z(s)ds, (8)

for all t ≥ −n.
From relations (6) and (8) we deduce the following inequality

V (xn (t)) ≤ e
∫ t
0 z(t)dt, (∀) t ≥ −n.

Define the mapping α : IR → (0,+∞) , by

α (t) = e
∫ t
0 z(s)ds. (9)

By hypotheses a1) and a2), it follows that

lim
t→±∞α (t) = lim

t→±∞ e
∫ t
0 z(s)ds = lim

t→±∞ e

∫ t
0

(∣∣∣∣ ȧ(s)
2 +

a(s)2

4

∣∣∣∣−a(s)

)
ds

= 0.

The conclusion is that for every n ∈ IN∗, there exists a function xn such that

ẋn (t) = f (t, xn (t)) , (∀) t ∈ [−n, n] (10)

and
V (xn (t)) ≤ α (t) , (∀) t ∈ [−n, n] . (11)

We extend xn to the whole real axis, by setting

x̃n (t) :=


xn (t) , if t ∈ [−n, n] ,
xn (−n) , if t ≤ −n,

xn (n) , if t ≥ n.
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Consider the function space

Cc :=
{
x : IR → IR2, x continuous

}
,

endowed with the topology of the uniform convergence on compact subsets of IR; as
it is known, this topology can be defined through the following family of seminorms

|x|n := sup {|x (t)| , t ∈ [−n, n]} , n ∈ IN∗.

Furthermore, we know that a family A ⊂ Cc is relatively compact if and only if A is
equi-continuous and uniformly bounded on compact subsets of IR (the Ascoli-Arzela’
Theorem).

We want to show that the family {x̃n}n∈IN∗ is relatively compact on compact
subsets of IR.

To this aim, let us consider [−k, k] ⊂ IR an arbitrary compact subset of IR, k ∈ IN∗.
It is obviously that there exists n0 ∈ IN∗, such that [−k, k] ⊂ [−n, n], for all n ∈ IN∗,
n ≥ n0, and therefore,

x̃n (t) = xn (t) , (∀) t ∈ [−k, k] , n ≥ n0.

Since
V (xn (t)) = un (t)2 + vn (t)2 = |xn (t)|2

and
V (xn (t)) ≤ α (t) , (∀) t ∈ [−k, k] ,

it follows that
|xn (t)| ≤ Mk, (∀) t ∈ [−k, k] , n ≥ n0,

where
Mk := sup {α (t) , t ∈ [−k, k]} 1

2 .

Hence, the family {x̃n}n∈IN∗ is uniformly bounded on [−k, k] .
Next, by setting

Lk := sup {|f (t, x)| , t ∈ [−k, k] , |x| ≤ Mk} ,

it follows that

|x̃′
n (t)| = |f (t, x̃n (t))| ≤ Lk, (∀) t ∈ [−k, k] , n ≥ n0.

Then the family {x̃n}n∈IN∗ is equi-continuous on [−k, k], having the family of
derivatives, {x̃′

n}n∈IN∗ , uniformly bounded on [−k, k].
Hence, by passing to subsequences, one may suppose that

x̃n → x, in Cc.

From x̃′
n (t) = f (t, x̃n (t)) , it follows that {x̃′

n (t)}n∈IN∗ converges uniformly on
[−k, k] to ẋ. So, {

ẋ (t) = f (t, x (t))
V (x (t)) ≤ α (t) , (∀) t ∈ [−k, k] . (12)

But since each t ∈ IR belongs to an interval [−k, k] , it follows that (12) is true for
every t ∈ IR.

To end the proof of Theorem 3.1, it remains to show that x (t) is non-identically
zero.

From the inequalities

w (t) ≤ V̇ (xn (t))
V (xn (t))

≤ z (t) , (∀) t ≥ −n.

we get
V (xn (t)) ≥ V (xn (−n)) e

∫ t
−n

w(s)ds = e−
∫ 0
−n

z(s)ds+
∫ t
−n

w(s)ds.
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By setting t = 0 in the previous inequality, we obtain then

V (xn (0)) ≥ e
∫ 0
−n

(w(s)−z(s))ds = e
−2

∫ 0
−n

∣∣∣∣ ȧ(s)
2 +

a(s)2

4

∣∣∣∣ds
. (13)

If, be means of contradiction, x would be identically zero, then, since lim
n→∞xn (0) =

x (0) , it would result that
lim

n→∞V (xn (0)) = 0.

Therefore, by passing to limit as n → ∞ in relation (13) , it would follow that

0 ≥ e
−2

∫ 0
−∞

∣∣∣∣ ȧ(s)
2 +

a(s)2

4

∣∣∣∣ds

or, equivalently, ∫ 0

−∞

∣∣∣∣∣ ȧ (s)
2

+
a (s)2

4

∣∣∣∣∣ ds = +∞,

which contradicts the hypothesis a2). �

4. Final remarks

The inequality appearing in (12) allows us to estimate the ”speed” of the conver-
gence to zero of the homoclinic solution x (·). For example, by setting

a (t) =
t

t2 + 1
,

which fulfills the hypotheses a1) and a2), we obtain the estimation

|x (t)| ≤ k

1 + t2
,

where k is a positive constant.
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