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One-center nonrelativistic integrals of second order for the
NMR shielding tensor

Bouchra Abouzaid, Mouna Essaouini, and Hassan Safouhi�

Abstract. This work presents an analytical development for one-center nonrelativistic inte-
grals of second order for the nuclear magnetic resonance (NMR) shielding tensor. The main

difficulty in the treatment of these integrals arises from the presence of r−3 in the operator.

Compact analytical formulae are obtained using B functions as the basis set of atomic orbitals,
the Fourier transform formalism and Cauchy’s residue theorem. The obtained formulae are

computationally convenient and can be computed to machine accuracy.
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1. Introduction

Experimental methods based on magnetic resonance are among the most used tech-
niques for investigating molecular and electronic structure. Nuclear magnetic reso-
nance (NMR) parameters are of great interest in chemistry, biology and solid-state
physics and their computation for any of the standard models of quantum chemistry
constitute a significant challenge [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Calculations
involving a magnetic field should preserve gauge invariance. This is conveniently ac-
complished by using gauge including atomic orbitals (GIAOs) [4, 6, 14], constructed
using atom-centered basis functions with explicit field dependence.

In ab initio calculations, each molecular orbital (MO) is built from a linear com-
bination of atomic orbitals (LCAO). Thus, the choice of reliable basis functions is
of primary importance. Magnetic properties are sensitive to the quality of the basis
set due to many contributing physical phenomena arising from both the vicinity of
the nucleus and from the valence region. For this reason, it is highly desirable to
use exponential type functions (ETFs) which are better suited than Gaussian type
functions (GTFs) [15, 16] to represent electron wave functions near the nucleus and
at long range. Among ETFs, Slater type functions (STFs) [17] and B functions [18]
are undoubtedly the most popular. ETFs decay exponentially for large distances [19]
and satisfy Kato’s conditions for exact solutions of the appropriate Schrödinger equa-
tion [20]. Although interest in using ETFs in the computation of NMR parameters is
increasing [10, 9, 11], no effort has yet been dedicated to their analytical treatment
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over ETFs. Straightforward numerical integration was used for the computation of
integrals associated with these parameters.

Of the NMR parameters, the nuclear shielding tensor is of utmost importance.
The main difficulty in the calculation of the shielding tensor arises from the operators
associated with these parameters which lead to extremely complicated integrals that
are not present in the usual ab initio Hartree-Fock calculations. An example of such

operators is
(~uα×~rjν)·(~uβ×~rjN )

r3jN
, where ~uα and ~uβ are unitary vectors of the cartesian

referential, and ~rjN and ~rjν are the vectors separating the jth electron from the
N th and the νth nuclei respectively. The finite-perturbation method [7] can be used
to compute the NMR parameters [21], but the numerical differentiation can be very
unstable and this is why analytical development has to be used in such calculations [22,
23, 24].

In [22], we used properties of unormalized STFs and B functions, along with the
Fourier transform method [25, 26] to derive analytical formulae for three-center nu-
clear shielding tensor integrals. These analytical formulae involve semi-infinite spher-
ical Bessel integrals have proven to be a computational challenge.

The present contribution pertains to the analytical development of the one-center
case of the shielding tensor integrals. The proposed approach uses B functions as a
basis of atomic orbitals, which are better suited for the Fourier transform formalism
than STFs. This leads to considerable simplifications in the calculation. The obtained
formulae involve semi-infinite integrals which we were able to solve analytically using
Cauchy’s residue theorem. The analytical formulae derived for the one-center shield-
ing tensor integrals does not require any numerical integration and can be computed
to machine accuracy.

2. General definitions and properties

The B functions Bmn,l(ζ, ~r) are defined by [18]:

Bmn,l(ζ, ~r) =
(ζr)l

2n+l(n+ l)!
k̂n− 1

2
(ζr)Y ml (θ~r, ϕ~r), (2.1)

where n, l, and m are the quantum numbers and k̂n− 1
2
(z) stands for the reduced

spherical Bessel function of the second kind and is given by [27, 28]:

k̂n+ 1
2
(z) = zn e−z

n∑
j=0

(n+ j)!

j! (n− j)!
1

(2 z)j
(2.2)

=

√
2

π
zn+

1
2Kn+ 1

2
(z), (2.3)

where Kn+ 1
2
(z) is the modified Bessel function of the second kind of order n+ 1

2 [29].

The surface spherical harmonic Y ml (θ~r, ϕ~r) is defined explicitly using the Condon-
Shortley phase convention for non-negative values of m as follows [30, 31]:

Y ml (θ~r, ϕ~r) = (−1)m
[

(2l + 1)(l −m)!

4π(l +m)!

] 1
2

Pml (cos(θ~r)) eimϕ~r , (2.4)

where Pml (x) is the associated Legendre polynomial of lth degree and mth order.
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Unormalized Slater type functions (STFs) are defined by [17]:

χmn,l(ζ, ~r) = rn−1 e−ζr Y ml (θ~r, ϕ~r). (2.5)

Unormalized STFs can be expressed as finite linear combinations ofB functions [18]:

χmn,l(ζ, ~r) =
1

ζn−1

n−l∑
p=p̃

(−1)n−l−p 22p+2l−n (l + p)!

(2p− n+ l)! (n− l − p)!
Bmp,l(ζ, ~r), (2.6)

where:

p̃ =


n− l

2
if n− l is even

n− l + 1

2
if n− l is odd.

(2.7)

Gaunt coefficients are defined by [32, 33]:

〈l1m1|l2m2|l3m3〉 =

∫ 2π

0

∫ π

0

[Y m1

l1
(θ, ϕ)]∗ Y m2

l2
(θ, ϕ)Y m3

l3
(θ, ϕ) sin(θ) dθ dϕ. (2.8)

The Gaunt coefficients linearize the product of two spherical harmonics:

[
Y m1

l1
(θ, ϕ)

]∗
Y m2

l2
(θ, ϕ) =

l1+l2∑
l=lmin,2

〈l2m2|l1m1|l m2 −m1〉Y m2−m1

l (θ, ϕ), (2.9)

where the subscript l = lmin, 2 in the summation symbol implies that the summation
index l runs in steps of two. The constant lmin is given by [33]:

lmin =

{
max(|l1 − l2|, |m2 −m1|) if l1 + l2 + max(|l1 − l2|, |m2 −m1|) is even
max(|l1 − l2|, |m2 −m1|) + 1 if l1 + l2 + max(|l1 − l2|, |m2 −m1|) is odd.

(2.10)
A useful property of spherical harmonics is given by:

Y ml (θ, ϕ) = (−1)m
[
Y −ml (θ, ϕ)

]∗
. (2.11)

The orthogonality relations of spherical harmonics are defined by:∫ π

0

∫ 2π

0

[Y m1

l1
(θ, ϕ)]∗Y m2

l2
(θ, ϕ) sin(θ) dθ dϕ = δl1l2δm1m2 (2.12)

where δa,b represents the Kronecker delta function given by

δa,b =

{
1 if a = b
0 if a 6= b

A given function f(~r) and its Fourier transform f̄(~k) are connected by the symmetric
relationships:

f̄(~k) = (2π)−3/2
∫
~r

e i
~k·~r f(~r) d~r and f(~r) = (2π)−3/2

∫
~k

e−i
~k·~r f̄(~k) d~k.

(2.13)
The Fourier integral representation of the Coulomb operator is given by [34]:

1

|~r|
=

1

2π2

∫
~k

e−i
~k ·~r

k2
d~k. (2.14)



THE NMR SHIELDING TENSOR 57

The cartesian coordinates of a vector ~r can be expressed in spherical polar coordinates
as a linear combination of spherical harmonics as follows:

ru = r

1∑
m=−1

cu,m Y
m
1 (θ~r, φ~r), (2.15)

where u ∈ {x, y, z} and the coefficients cu,m are given by:
cx,−1 =

√
2π
3 , cy,−1 = i

√
2π
3 and cz,−1 = 0

cx,0 = 0, cy,0 = 0 and cz,0 =
√

4π
3

cx,1 = −
√

2π
3 , cy,1 = i

√
2π
3 and cz,1 = 0.

(2.16)

The Pochhammer symbol (α)n is defined by:

(α)n =


(α)n = 1 if n = 0

(α)n = α (α+ 1) (α+ 2) . . . (α+ n− 1) =
Γ(α+ n)

Γ(α)
if n ≤ −α

(α)n = 0 if n ≥ −α+ 1,
(2.17)

where Γ stands for the Gamma function. For n ∈ N:

Γ(n+ 1) = n! and Γ

(
n+

1

2

)
=

(2n)!

22n n!

√
π. (2.18)

3. Nuclear shielding tensor integrals

In the presence of an external uniform magnetic field ~B0, the electronic non-
relativistic Hamiltonian for a system of n electrons and N nuclei is given as a sum-
mation over all n electrons of (in atomic units):

H =

n∑
j=1

[
1

2
~p 2
j +

N∑
K=1

ZK
rjK

]
+

n∑
j=1

n∑
k<j

1

rjk
, (3.1)

where the electron momentum ~pj is given by:

~pj =
[
−i ~∇j + e ~A(j)

]
where ~A(j) =

1

2

(
~B0 × ~rj0

)
+
µ0

4π

N∑
K=1

~µK × ~rjK
r3jK

,(3.2)

where ~A(j) stands for the vector potential induced by the nuclear moments ~µK and

the external uniform magnetic field ~B0, µ0 stands for dielectric permittivity, ZK is
the atomic number of nucleus K, ~rj0 is the vector distance to the arbitrary gauge

origin and where ~rjK = ~rj− ~RK , ~rjk = ~rj−~rk. Here ~rj represents the vector position

of the electron j, ~rk represents the vector position of the electron k, and ~RK is the
vector position of the nucleus K.

Molecular magnetic properties appear as second order perturbative energy correc-
tions. These properties may be expressed as derivatives of the molecular energy with
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respect to the nuclear dipole moment and the external field. In the case of nuclear
magnetic shielding tensor, the expression is given by:

σNαβ =

∂2
〈

0
∣∣∣H({~µ}, ~B0)

∣∣∣ 0〉
∂B0,α∂µN,β


{~µ=~0}, ~B0=~0

, (3.3)

where {~µ} stands for the nuclear magnetic moments, ~B0 is the external magnetic

field, and H({~µ}, ~B0) = H is the total electronic hamiltonian in the presence of the
magnetic perturbations. |0 > is the ground state wave function. The parameters α
and β stand for the cartesian coordinates.

A coupled perturbed Hartree-Fock (CPHF) treatment of the equation (3.3) leads
to a more explicit expression of the nuclear magnetic shielding tensor [35, 5, 36]:

σNαβ = Tr
[
P (0)T · h(2BµN,αβ) + P (1Bα)

T

· h(1µN, β)
]
, (3.4)

where P (0)T and P (1Bα)
T

are the transpose density matrix of zero order and first order
with respect to the external magnetic field. h(1µN, β) is the core hamiltonian matrix of
the first order with respect to nuclear dipole moment. h(2BµN,αβ) is the second order
one-electron hamiltonian matrix with respect to Bα and µβ . The notation Tr stands
for the trace of the matrix.

Using GIAO, core hamiltonian terms of second orders have the following expres-
sions:

h
(2BµN,αβ)
µν =

[(
∂2h

∂Bα∂µN, β

)
~B=~0, {~µ=~0}

]
µν

=
i

2 c2

[
Σαµν

〈
χµ

∣∣∣∣∣~uβ · ~LNr3jN

∣∣∣∣∣χν
〉

+
1

2

〈
χµ

∣∣∣∣∣Πα
µν

~uβ · ~LN
r3jN

∣∣∣∣∣χν
〉]

+
1

2c2

〈
χµ

∣∣∣∣∣ (~uα × ~rjν) · (~uβ × ~rjN )

r3jN

∣∣∣∣∣χν
〉
, (3.5)

where:

Σαµν =
∣∣∣~Rµ × ~Rν

∣∣∣
α

and Πα
µν =

∣∣∣(~Rµ − ~Rν)× (~rjµ + ~rjν)
∣∣∣
α
,

where ~LN = −i ~rjN × ~∇ is the angular momentum operator. Here ~uα and ~uβ are
unitary vectors of the cartesian referential.

In [22], we have developed compact analytical formulae for the one electron three-
center nuclear shielding tensor integrals, involved in (3.5) and which are given by:〈

χµ

∣∣∣∣∣ (~uα × ~rjν) · (~uβ × ~rjN )

r3jN

∣∣∣∣∣χν
〉

=

〈
χµ

∣∣∣∣∣~rjν · ~rjN δαβ − rjN,β rjν,αr3jN

∣∣∣∣∣χν
〉
. (3.6)

The main challenge for their analytical development arises from the presence of
1

r3jN
in the operator. In [22], we used properties of unormalized STFs to express the

three-center integral as a linear combination of integrals of the form :〈
χµ

∣∣∣∣∣YM1 (θ~rjN , ϕ~rjN )

r2jN

∣∣∣∣∣χν
〉

with M = −1, 0, 1. (3.7)
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Then, we have expressed the above integral as a linear combination of integrals over
B functions using (2.6), which enables the use of the Fourier transform formalism.
We have derived the Fourier transform of the operator in (3.6) which is given by:(

YM1 (θ~rjN , φ~rjN )

r2jN

)
(~k) = −i

√
2

π

YM1 (θ~k, φ~k)

k
. (3.8)

In the present contribution, we investigate one-center integrals over B functions.

4. One-center nuclear shielding tensor integrals over B functions

If we let ~r = ~rjN , the one-center nuclear shielding tensor integrals over B functions
are given by:

I =
〈
Bm1

n1,l1
(ζ1, ~rjN ) | L(~r) |Bm2

n2,l2
(ζ2, ~rjN )

〉
~r

=

∫
~r

[
Bm1

n1,l1
(ζ1, ~r)

]∗
L(~r) Bm2

n2,l2
(ζ2, ~r) d~r, (4.1)

where the operator L(~r) is given by:

L(~r) =
~r · ~r δαβ − rβ rα

r3

=


r2 − rα rα

r3
=

1

r
+ rα

∂

∂rα

(1

r

)
=

∂

∂rα

(
rα

1

r

)
if α = β

−rβ rα
r3

= rβ
∂

∂rα

(
1

r

)
if α 6= β.

(4.2)

By introducing the Fourier transform of the operator L(~r) given by:

L(~r) = (2π)−3/2
∫
~k

L(~k) e−i
~k ·~r d~k, (4.3)

in the integral (4.1), we obtain:

I = (2π)−3/2
∫
~k

L(~k)

[∫
~r

[
Bm1

n1,l1
(ζ1, ~r)

]∗
e−i

~k ·~r Bm2

n2,l2
(ζ2, ~r) d~r

]
d~k

= (2π)−3/2
∫
~k

L(~k)
〈
Bm1

n1,l1
(ζ1, ~r)

∣∣∣e−i~k ·~r ∣∣∣Bm2

n2,l2
(ζ2, ~r)

〉
~r
d~k. (4.4)

In (4.3), L(~k) stands for the Fourier transfom of L(~r).
To analytically develop the integral in (4.4) using the Fourier transform formal-

ism [25, 26], we would need to derive an analytical expression for L(~k) the Fourier
transform of the operator L(~r) (4.2).

Let us first start with the case where α = β. We have:

L(~k) =

[
∂

∂rα

(
rα

1

r

)]
(~k)

= (2π)−3/2
∫
~r

∂

∂rα

(
rα

1

r

)
e−i

~k·~r d~r. (4.5)
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Integration by parts, leads to:

L(~k) = (2π)−3/2
∫
~r

i kα rα
1

r
e−i

~k·~r d~r. (4.6)

Using the fact that rα e
−i~k·~r =

∂

∂kα

[
e−i

~k·~r
]
, we obtain:

L(~k) = − kα (2π)−3/2
∫
~r

1

r

∂

∂kα

[
e−i

~k·~r
]
d~r

= − kα
∂

∂kα

[(
1

r

)
(~k)

]
. (4.7)

Using the Fourier transform of the Coulomb operator which given by (2.14), we
obtain:

L(~k) = − kα
∂

∂kα

[√
2

π

1

k2

]

=

√
2

π

2 k2α
k4

. (4.8)

In the case where α and β do not represent the same Cartesian coordinate, that is
α 6= β, we have:

L(~k) =

[
rβ

∂

∂rα

(
1

r

)]
(~k)

= (2π)−3/2
∫
~r

rβ
∂

∂rα

(
1

r

)
e−i

~k·~r d~r. (4.9)

Integration by parts, again, leads to:

L(~k) = −(2π)−3/2
∫
~r

1

r

∂

∂rα

[
rβ e

−i~k·~r
]
d~r

= −(2π)−3/2
∫
rν

∫
rβ

rβ

[∫
rα

1

r

∂

∂rα

[
e−i

~k·~r
]
drα

]
drβ drν

= −(2π)−3/2
∫
rν

∫
rβ

rβ

[∫
rα

1

r

[
−i kα e−i

~k·~r
]
drα

]
drβ drν

= kα (2π)−3/2
∫
rν

∫
rα

[∫
rβ

1

r

[
i rβ e

−i~k·~r
]
drβ

]
drα drν , (4.10)

where rα, rβ and rν represent the cartesian components of the vector ~r.

Using again the fact that rβ e
−i~k·~r =

∂

∂kβ

[
e−i

~k·~r
]
, we obtain:

L(~k) = −kα (2π)−3/2
∫
rν

∫
rα

∫
rβ

1

r

[
∂

∂kβ
e−i

~k·~r
]
drβ drα drν

= −kα
∂

∂kβ

[
(2π)−3/2

∫
~r

1

r
e−i

~k·~r d~r

]
= −kα

∂

∂kβ

[(
1

r

)
(~k)

]
. (4.11)
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From this it follows that:

L(~k) = −kα
∂

∂kβ

[√
2

π

1

k2

]

=

√
2

π

2 kα kβ
k4

. (4.12)

The Fourier transform L of the operator L is given by:

L(~k) =

√
2

π

2 kα kβ
k4

for α, β ∈ {x, y, z}. (4.13)

5. Fourier transform formalism and the analytical development

Substituting (4.13) in (4.4), we obtain:

I = (2π)−3/2
∫
~k

√
2

π

2 kα kβ
k4

〈
Bm1

n1,l1
(ζ1, ~r)

∣∣∣e−i~k ·~r ∣∣∣Bm2

n2,l2
(ζ2, ~r)

〉
~r
d~k. (5.1)

Let us now consider the term T =
〈
Bm1

n1l1
(ζ1, ~r)

∣∣∣e−i~k ·~r∣∣∣Bm2

n2l2
(ζ2, ~r)

〉
~r

involved in

the above equation (5.1).
In the integral T , the two B functions are centered at the same point and the

radial part of their product is given by [37]:

T =

√
π ζl11 ζl22 ζl1+l2−1s

22n1+l1+2n2+l2+1 (n1 + l1)! (n2 + l2)!

l1+l2∑
l=lmin,2

(−i)l

(2 ζs)l
〈l1m1|l2m2|lm1 −m2〉

×
n1+n2∑
τ=2

τ2∑
ς=τ1

2τ (2n1 − ς − 1)! (2n2 − τ + ς − 1)! ζς−11 ζτ−ς−12 ζτs Γ(τ + l1 + l2 + l + 1)

(ς − 1)! (n1 − ς)! (τ − ς − 1)! (n2 − τ + ς)! Γ(l + 3
2 )

×
η′∑
r=0

(−1)r (η2 )r (η+1
2 )r

(l + 3
2 )r r! ζ2rs

kl+2r

(ζ2s + k2)
τ+l1+l2

[Y m1−m2

l (θ~k, ϕ~k)]∗, (5.2)

where τ1 = max(1, τ − n2), τ2 = min(n1, τ − 1), ζs = ζ1 + ζ2, η = l − τ − l1 − l2 + 1
and η′ = −η2 if η is even, otherwise η′ = −η+1

2 .
The cartesian coordinates of a vector ~r can be expressed in spherical polar coordi-

nates as a linear combination of spherical harmonics as follows:

ru = r

1∑
m=−1

cu,m Y
m
1 (θ~r, φ~r), (5.3)

By using (5.3), we can express the term
kα kβ
k4

in the Fourier transfor L(~k) in

spherical polar coordinates as a linear combination of spherical harmonics as follows:

kαkβ
k4

=
1

k2

1∑
m′=−1

1∑
m′′=−1

cα,m′ cβ,m′′ Y m
′

1 (θ~r, φ~r)Y
m′′

1 (θ~r, φ~r). (5.4)
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Using (2.11) along with (2.10), we write the above equation as follows:

kαkβ
k4

=
1

k2

1∑
m′=−1

1∑
m′′=−1

2∑
λ=λmin,2

(−1)m
′
cα,m′ cµ,m′′ Gfm′′,m′,λm′′−m′ Y m

′′−m′

λ (θ~k, φ~k),

(5.5)
where, Gfm′′,m′,λm′′−m′ = 〈1m′′|1m′|λm′′ −m′〉

λmin =

{ |m′′ −m′| if |m′′ −m′| is even

|m′′ −m′|+ 1 if |m′′ −m′| is odd.
(5.6)

The integration of the angular parts of equations (5.5) and (5.2) is given by:∫ 2π

0

∫ π

0

[Y m1−m2

l (θ~k, ϕ~k)]∗ Y m
′′−m′

λ (θ~k, φ~k) sin(θ) dθ dϕ = δl,λ δm1−m2,m′′−m′ .

(5.7)
Using equations (5.2) and (5.5) and taking into account the result given by (5.7),

we obtain the following expression for I:

I =
ζl11 ζl22 ζl1+l2−1s

π3/2 22n1+l1+2n2+l2+2 (n1 + l1)! (n2 + l2)!

1∑
m′=−1

1∑
m′′=−1

(−1)m
′
cα,m′ cβ,m′′

×
2∑

λ=λmin,2

l1+l2∑
l=lmin,2

(−i)l

(2ζs)
l
Gfm′′,m′,λm′′−m′ Gfl1m1,l2m2,lm1−m2δl,λ δm1−m2,m′′−m′

×
n1+n2∑
τ=2

τ2∑
ς=τ1

Q(τ, ς, l)×
η′∑
r=0

(−1)r
(η2 )r (η+1

2 )r

(l + 3
2 )r r! ζ2rs

∫ ∞
0

kl+2r

(ζ2s + k2)
l1+l2+τ

dk, (5.8)

where, Gfl1m1,l2m2,lm1−m2
= 〈l1m1|l2m2|lm1 −m2〉

and,

Q(τ, ς, l) =
2τ (2n1 − ς − 1)! (2n2 − τ + ς − 1)! ζς−11 ζτ−ς−12 ζτs Γ(τ + l1 + l2 + l + 1)

(ς − 1)! (n1 − ς)! (τ − ς − 1)! (n2 − τ + ς)! Γ(l + 3
2 )

which can be simplified to:

I =
ζl11 ζl22 ζl1+l2−1s

π3/2 22n1+l1+2n2+l2+2 (n1 + l1)! (n2 + l2)!

1∑
m′=−1

1∑
m′′=−1

(−1)m
′
cα,m′ cβ,m′′

×
2∑

l=lmin,2

(−i)l

(2ζs)
l
〈1m′′|1m′|l m′′ −m′〉 〈l1m1|l2m2|lm1 −m2〉 δm1−m2,m′′−m′

×
n1+n2∑
τ=2

τ2∑
ς=τ1

Q(τ, ς, l)×
η′∑
r=0

(−1)r
(η2 )r (η+1

2 )r

(l + 3
2 )r r!ζ2rs

∫ ∞
0

kl+2r

(ζ2s + k2)
l1+l2+τ

dk. (5.9)

Now, let us consider the semi-infinite integrals involved in (5.9), and which will be

referred to as Ĩκ(ζs):

Ĩκ(ζs) =

∫ ∞
0

kl+2r

(ζ2s + k2)
l1+l2+τ

dk with κ = l1 + l2 + τ. (5.10)

In order to analytically develop the semi-infinite integrals Ĩκ(ζs), we follow a similar
development that we used in [23] for first order relativistic integrals. We first consider
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Ĩ1(ζs):

Ĩ1(ζs) =

∫ ∞
0

kl+2r

ζ2s + k2
dk. (5.11)

By applying the following operator:

1

(−2)κ−1Γ(κ)

(
∂

ζs ∂ζs

)κ−1
, (5.12)

to Ĩ1(ζs), we obtain the semi-infinite integrals Ĩκ(ζs). In other words:

1

(−2)κ−1Γ(κ)

(
∂

ζs ∂ζs

)κ−1
Ĩ1(ζs) = Ĩκ(ζs). (5.13)

Since l is an even number, the integrand of Ĩ1(ζs) is an even function, which will
be denoted by:

f(z) =
zl+2r

ζ2s + z2
with z = k + i y. (5.14)

By considering a positively-oriented circular contour above the real axis with radius
R > ζs joined at its two ends by the line along the real axis, and by applying Cauchy’s
residue theorem and taking the limit as R→∞, we can write:

2

∫ ∞
0

f(k) dk = 2πi Res
z=iζs

f(z). (5.15)

By developing further, we obtain the formula:∫ ∞
0

kl+2r

ζ2s + k2
dk =

π il+2r

2
ζl+2r−1
s . (5.16)

By applying the operator given by (5.12) to both sides of the above equation and
simplifying, we obtain:

Ĩκ(ζs) =

∫ ∞
0

kl+2r

(ζ2s + k2)l1+l2+τ
dk =

π il+2r

2

(−r − l−1
2 )l1+l2+τ−1

Γ(l1 + l2 + τ)
ζl+2r−2l1−2l2−2τ+1
s .

(5.17)
Therefore, by substituting (5.17) in (5.9) and simplifying terms, we finally obtain:

I =
ζl11 ζl22 ζ−l1−l2s√

π 22n1+l1+2n2+l2+3 (n1 + l1)! (n2 + l2)!

1∑
m3=−1

1∑
m4=−1

(−1)m3 cα,m3
cβ,m4

×
2∑

l=lmin,2

2−l 〈1m4|1m3|l m4 −m3〉 〈l1m1|l2m2|lm1 −m2〉 δm1−m2,m4−m3

×
n1+n2∑
τ=2

τ2∑
ς=τ1

2τ ζς−11 ζτ−ς−12

ζτs

(2n1 − ς − 1)! (2n2 − τ + ς − 1)! (τ + l1 + l2)l+1

(ς − 1)! (n1 − ς)! (τ − ς − 1)! (n2 − τ + ς)! Γ(l + 3
2 )

×
η′∑
r=0

(η2 )r (η+1
2 )r (−r − l−1

2 )l1+l2+τ−1

(l + 3
2 )r r!

. (5.18)
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6. Conclusion

In this paper, we show that the Fourier integral transformation can be applied
for the analytical development of the one-center integrals that appear in the second
order non relativistic calculations of the nuclear shielding tensor using B function as a
basis set of atomic orbitals. The obtained analytical expressions involve semi-infinite
integrals which we solved analytically using Cauchy’s residue theorem. This leads to
compact formulae which can be computed to machine precision without computational
difficulty.

7. Numerical Tables

In Tables 1 and 2, we present values for the integrals I of equation (5.18). Table 1,
we have α = x and β = z, and in Table 2, we have α = y and β = z.

For the numerical evaluation of Gaunt coefficients which occur in the complete
expressions of the integrals under consideration, we use the subroutine GAUNT.F
developed by Weniger et al. [33]. The spherical harmonics Y ml (θ, ϕ) are computed
using the recurrence formulae presented in [33].

In all Tables, the numbers in parentheses represent powers of 10.

Table 1. Evaluation of I (5.18) for α = x and β = z.
n1 l1 m1 ζ1 n2 l2 m2 ζ2 I
2 1 0 0.125 2 1 -1 0.125 .300398510436534(-3)
3 2 -1 0.125 2 1 0 0.125 .850537627015333(-4)
3 2 2 0.125 2 1 1 0.125 -.120284184743371(-3)
3 2 2 0.125 3 2 1 0.125 -.323872527763475(-4)
3 2 -1 0.125 3 2 0 0.125 .132220405787649(-4)
3 2 -1 0.125 3 2 -2 0.125 .323872527763475(-4)
4 3 2 0.125 3 2 1 0.125 -.106263923365582(-4)
4 3 3 0.125 3 2 2 0.125 -.130146195155945(-4)
4 3 3 0.125 4 3 2 0.125 -.297056955276114(-5)
5 4 2 0.125 4 3 1 0.125 -.952021208326728(-6)
5 4 4 0.125 4 3 3 0.125 -.130070859331645(-5)
5 4 3 0.125 4 3 2 0.125 -.112644668473277(-5)
5 4 4 0.125 4 3 3 0.125 -.130070859331645(-5)
6 5 2 0.125 5 3 1 0.125 -.196767017372175(-6)
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