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Numerical study of an exothermic reaction with convective
boundary conditions
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Abstract. In this work, we used a finite element method to solve the boundary value problem

governing the ignition of a solid reactant undergoing slow oxidation for some non-class A
geometries (infinite square rod and cube). We also examine the effect of Frank-Kamenetskii

parameter on bifurcation and thermal stability by means of the block Lanczos method.
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1. Introduction

Energetic materials are a class of material that can release in a short time a high
amount chemical energy stored in their molecular structure. The problem of self-
ignition of energetic materials is of great importance in the field of thermal hazard
of storage of explosives and pyrotechnics. The self ignition occurs by self-heating as
a result of increase in temperature due to exothermic internal reactions. This leads
to a release of heat, accompanied by a rise in temperature and a high velocity of
thermal decomposition. Very often, this process causes a thermal runaway generating
an explosion which can give rise to a devastating detonation.

In many problems of practical importance in the combustion theory, the critical
values associated with thermal runaway are related either to the determination of the
critical ambient temperature or to the critical initial temperature. This constitutes
the structural basis for thermal stability of energetic materials.

This phenomenon was initially studied analytically by Frank-Kamenetskii [1] who
developed the quasi-stationary theory of thermal explosion for determining the critical
conditions for self-ignition of explosive hazardous materials.

After the pioneer work of Frank-Kamenetskii, various aspects of this phenomenon
were studied intensively by many authors during past several decades, (see for exam-
ples refs [2-7]). When reactant consumption is neglected, the equation for the heat
balance in a bounded domain Ω, can be written as:

k∆T + C0QA exp(− E

RT
) = c

∂T

∂t
in Ω (1)
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with the boundary condition

k
∂T

∂n
+H(T − Ta) = 0 on ∂Ω, (2)

where T is the absolute temperature, k is the thermal conductivity, c is the thermal
capacity, C0 is the initial concentration of the reactant species assumed to be constant,
Q is the heat of reaction.

According to the Arrhenius law, the rate constant on the absolute temperature has
the form A exp(− E

RT ), where E is the activation energy, R the universal gas constant
and A is the pre-exponential factor, Ta is the ambient temperature, H is the heat
transfer coefficient. ∂T

∂n is the normal derivative of the temperature, n is the outward
normal vector on the boundary.

Following Balakrishnan et al. [4], we introduce the following dimensionless vari-
ables in Eq. (1):

u = (
E

RT 2
a

)(T − Ta), ε = (
RTa
E

), Bi =
Ha0

k
, δ =

QσAEa2
0

kRT 2
a

exp(− E

RTa
)

and obtain the dimensionless governing equation together with the appropriate bound-
ary condition as:

∆u+ δ exp(
u

1 + εu
) = 0 on Ω, (3)

∂u

∂n
+Biu = 0 on ∂Ω, (4)

δ is the Frank-Kamenetskii parameter, Bi is the Biot number and a0 is some charac-
teristic length scale of the problem.

One of the most commonly used formulation is to adopt the approximation of
Frank-Kamenetskii leading to a linearized exponential Arrhenius law, in which ε is
supposed so small to be neglected. So the problem (3-4) is reduced to the following
nonlinear eigenvalue problem:{

∆u+ δ exp(u) = 0 x ∈ Ω,

∂u
∂n +Biu = 0 x ∈ ∂Ω.

(5)

The problem (5) has been studied both analytically and numerically by various
authors, for simple class A geometries (infinite cylinder, infinite slab, and a sphere)
and also for some non class A geometries. Thermal ignition in all these geometries
can be formulated using a single variable [1, 4, 8-9].

Thermal stability analysis in the theory of combustion, with or without considera-
tion of consumption and diffusion of the reactant, has generally been performed using
the Frank-Kamenetskii number as a parameter of bifurcation, ε is kept fixed. But
this number dissimulates the role of the most practically significant control variable,
namely the ambient temperature. Several authors [10-13] have assessed thermal igni-
tion models with regard to multiplicity and stability of these steady states using the
dimensionless ambient temperature.

In terms of the following dimensionless quantities:

u =
RT

E
,U =

RTa
E

, λ =
Ra2

0QC0A

KE
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the governing steady state of heat balance are reduced to:{
∆u+ λ exp(− 1

u ) = 0 x ∈ Ω,

∂u
∂n +Bi(u− U) = 0 x ∈ ∂Ω.

(6)

The aim is to determine the critical value of U , say Ucrit, beyond which multiple
solutions of the problem (6) occur.

In this paper, we first show how to use the finite element method to find an ap-
proximation of the solution of the problem (6). This can be done using a fixed point
iteration method that we will describe below. Then, we deal with the study of the
stability and bifurcation using the block Lanczos algorithm.

2. Computational method

2.1. Variational Formulation. In this section we first derive a variational formula-
tion of the boundary value problem (6.1) subject to Robin boundary condition (6.2).

We multiply the equation (6.1) by a test function v ∈ H1(Ω), integrate and use
Green’s formula to obtain:∫

Ω

∇u∇v dx+Bi

∫
∂Ω

u vdS+

∫
Ω

λ exp(− 1

u
) vdx = BiU

∫
∂Ω

vdS, ∀v ∈ H1(Ω) (7)

It is obvious that the left term of this expression is not a bilinear form. Therefore the
Lax-Milgram theorem cannot be applied here.

To solve this problem, we must linearize (6) in order to bring the solution to a
series of linear problems converging to the solution of the initial nonlinear problem.
We have several approaches to deal with such problems in particular Picard’s method
or Newton’s method. In this work, an efficient finite element procedure based on
Picard’s method is developed for analyzing the problem (6).

2.2. Picard’s method. Picard’s method ca be used as an alternative way for solving
a nonlinear PDE problem.

We here briefly recall the principle of Picard’s method (or successive iterations),
which is a variant of the fixed-point method.

Let the matrix system:

Ku = f (8)

as a result of the finite element discretization of a non-linear problem, where K is the
stiffness matrix, u the unknown vector and f the ‘load vector’. K may be linear or
not.

The residue R, which is defined by: R = f −Ku is a measure of the distance from
the solution.

The methods of solving nonlinear systems are all iterative. At every step, we
calculate du, the solution increment defined by: du = ui+1−ui , where i is the index
of the iteration.

We study the convergence of the system by successive approximations. This con-
vergence can be measured by a standard of the increment or a norm of R du. The
solution increment can also be seen as a descent direction, down to the zero residue,
i.e. to the solution.



70 H. BIYADI, M. ER-RIANI, AND M. EL JARROUDI

The method of Picard is a fixed point method [14]. It is defined by:

K(ui)ui+1 = f(ui) given u0 (9)

which can also be written as:

K(ui)du = R(ui)

for the solution increment du.
An accuracy of ε is required and the process may be terminated by setting the

criterion:
max ‖ui+1 − ui‖ < ε

where ‖ . ‖ is the Euclidian norm.
Rather than being recalculated at each iteration, the matrix K can be maintained

constant over a number of sub-iterations.
When convergence of this procedure occurs, then the solution satisfies (8). The

advantage of this method lies in the existence of a large enough radius of convergence
that allows us not to worry too much about the initial approximation. In return,
its convergence rate remains often too slow for practical applications of interest. We
can then use a relaxation method speeding a little bit the scheme (9). The latter is
defined as follows: {

K(ui)(u∗ = F(ui), u0 given
ui+1 = αui+1 + (1− α)u∗, 0 ≤ α ≤ 1.

(10)

2.3. Method of solution. After the choice of appropriate finite elements by a
method adapted from discretization in space, the system of nonlinear equations re-
sulting system (7) is solved using Picard’s method.

The discrete problem arises as usual by restricting V = H1(Ω) to a discrete space
Vh according to some mesh with some element type. Similarly, we let ud be the
discrete solution, so the discrete nonlinear problem is then written as:
Find ud such that:

F (ud, v) = L(v), ∀v ∈ Vh,
with ud =

∑N
j=1 αjΦj where Φj are some basic shape functions. Since F is a nonlinear

function of ud, the variational statement gives rise to a system of nonlinear algebraic
equations.

We simply use a known previous solution in the nonlinear terms so that these terms
become linear in the unknown ud.

More precisely, given a solution uk from iteration k, we seek a new (hopefully
improved) solution uk+1 in iteration k + 1 such that uk+1 solves the linear problem,{

∆uk+1 + λ exp( − 1
uk ) = 0 x ∈ Ω,

∂uk+1

∂n +Bi(uk+1 − U) = 0 x ∈ ∂Ω.
(11)

The iterations require an initial guess u0. The hope is that uk −→ ud as k →∞, and
that uk+1 is sufficiently close to the exact solution ud of the discrete problem after
just a few iterations.

We can easily formulate a variational problem for uk+1 from the last equation.
Equivalently, we can approximate e−

1
u to obtain the same linear variational problem.

Therefore, the problem consists of seeking uk+1 ∈ Vh such that:

a(uk+1, v) = L(v) , ∀v ∈ Vh (12)
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with:

a(uk+1, v) =

∫
Ω

∇uk+1∇v dx+Bi

∫
∂Ω

uk+1 vdS,

L(v) = BiU

∫
∂Ω

vdS − λ
∫

Ω

v exp(− 1

uk
) dx.

The iterations can be stopped when ε =‖ uk+1 − uk ‖< tol where tol is a small
tolerance, or when the number of iterations exceed some critical limit. The latter
case will pick up divergence of the method or unacceptable slow convergence.

Note that the existence and uniqueness of the solution of problem (12) is established
through the Lax-Milgram theorem [15]. Thus, Picard’s linearization reads as follows:

Find uk+1 such that:∫
Ω

∇uk+1∇v dx+Bi

∫
∂Ω

uk+1vdS = BiU

∫
∂Ω

vdS − λ
∫

Ω

v exp(− 1

uk
) dx,

∀v ∈ Vh, given u0.

3. Stability and bifurcation

3.1. Lanczos method. The Lanczos algorithm was originally proposed by Lanczos
as a method for the computation of eigenvalues of symmetric and non-symmetric
matrices. The idea was to reduce a general matrix to a tridiagonal form, from which
the eigenvalues could be easily determined, For symmetric matrices, the Lanczos
algorithm has been studied extensively ([16]- [17]).
Let H =

∫
Ω

1
2 (∇u)2−λG(u))dx the functional related to (6.1) where G is a primitive

of exp(− 1
u ) .

The Rayleigh quotient is defined as:

R(x) =
xTJx

xTMx
, (13)

where J is the Hessian, or energy sensitivity, matrix (Jij = ∂2H
∂αi∂αj

), M is the basis

function overlap matrix (Mij =
∫
φiφj). Both J and M are symmetric. Moreover,

M usually called ‘mass matrix’ in finite element literature is positive definite. We are
concerned by the minimum of the Rayleigh quotient R(x) given by the iem eigenvalue
αi:

βi = min
xTJx

xTMx
. (14)

The minimization problem (14) is readily converted to a constrained generalized eigen-
problem:

Jxi = βiMxi. (15)

where the eigenvalues are necessarily real. It is convenient to order them from the
smallest to the largest. Negative eigenvalues signal instability with respect to infin-
itesimal variations of u described by the corresponding eigenvector xi. Established
techniques of matrix transformation for solving (15) (see, for example [18]) destroy
matrix sparsity and afterwards require storage of both J and M . Few computers
have a large enough central memory to contain the entire problem, and so iterative
methods must be used.



72 H. BIYADI, M. ER-RIANI, AND M. EL JARROUDI

For (15) we prefer the block-Lanczos method developed by Golub and Underwood
[19] and adapted as explained below. For the simple eigenproblem:

Azi = µizi, i = 0, ..., N, (16)

where A is a positive definite and symmetric matrix, the method computes the lowest
several eigenvalues and their eigenvectors. In each iteration the only operation in-
volving A is multiplication by a vector, and thus any sparsity of A is preserved. The
rate at which the method converges on an eigenvalue depends on the initial estimate
of the eigenvector, on the spacings of the eigenvalues, and on their spread |βN − β1|
[20].

To convert (15) to the standard form (16) we transform it by means of the relations

Ĵ = J + sM = LLT , s > 0, (17)

1

µi
= βi + s, (18)

where s is chosen large enough that Ĵ is positive definite, and where L is the lower

triangular matrix resulting from a Cholesky factorization of Ĵ .
The result is:

LLTxi =
1

µi
Mxi =⇒ µiL

Txi = L−1xiM. (19)

Posing yi = LTxi so (19) becomes :

µiyi = L−1MLT
−1

yi. (20)

The Lanczos method makes it possible to generate m vectors q1, ..., qm which are
orthonormal. So let Q be an orthonormal matrix formed by q1, ..., qm : Q = [q1, ..., qm]
matrix of N rows and m columns. By performing the variable change yi = Qzi the
expression (20) becomes

µiQzi = L−1MLT
−1

Qzi (21)

involved

µizi = Azi, where A = L−1MLT
−1

Q. (22)

The matrix A is positive definite and symmetric and its eigenvalues and eigenvectors
are found by the block-Lanczos method. The eigenvectors and eigenvalues of the
original form of the stability problem (14) are recovered from

xi = L−TQzi, βi = −s+
1

µi
. (23)

If A in (22) were actually formed it would not be sparse. However, this matrix is
not stored in the computer’s memory. Just the sparse matrices L and M are stored,
and the product of A with any vector is constructed by operations involving only
solution of triangular systems of equations and matrix-vector multiplications. Profile
storage methods [21] prove advantageous.

The eigenvectors xi are finite element approximations to the normal modes of the
absolute temperature, from which come J . The eigenvalues βi if positive are related
to the natural oscillation frequencies in the respective modes. Stability is of course
governed by the sign of the lowest eigenvalues β1 = 1

µ1
−s which, if negative, indicates

instability.
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3.2. Numerical results. In this section we first present the spatial discretization
using finite element method with P1 continuous piecewise linear functions. Then
we develop all the steps of the FreeFem++ code to solve the problem by using the
technique of mesh adaptation. At the end we present some numerical results.

To discretize (12), let Th denote a regular, quasi uniform triangulation of Ω with

triangles of maximum size h < 1. Let Vh =
{
vh ∈ C0(Ω), vh/T ∈ P1(T ),∀T ∈ Th

}
denote a finite dimensional subspace of H1(Ω) where P1 is the set of polynomials of
degrees ≤ 1 .

Let Ω be the rectangle [0, 1] × [0, 1], the triangulation Th of Ω is automatically
generated by using a FreeFem command.

Biot number (Bi) critical values λcrit
1 4,1
50 13,4
100 13,8
∞ 14,3

Table 1. Critical values for various Biot numbers.

We have applied Lancsoz algorithm to compute critical values of λ. We observe
that these values increase as the Biot number increases, the variation being shown in
Table 1.

In Figures 1-3, we notice that the critical value λcrit increases with the increase of
Bi.

These figures are obtained by using the Lanczos algorithm taking account the
solution obtained by FreeFem.

Figure 1. The critical value for Bi = 1.



74 H. BIYADI, M. ER-RIANI, AND M. EL JARROUDI

Figure 2. The critical value for Bi = 50,100.

Figure 3. The critical value for Bi = 100.

4. Conclusion

In this work, we have applied the Lanczos algorithm implemented together with
the finite element formulation for studying the thermal stability of an exothermic
explosion in some non class A geometries. In these calculations, we were particularly
interested in studying the effect of the Biot number on critical values of a specific
parameter governing a strong exothermic explosion.
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