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Stochastic properties of a learning algorithm based on an
aggregation operator

Petrică Badea

Abstract. One of the most used aggregation operators in artificial intelligence is the ”proba-
bilistic OR”, or POR. If a certain fact has a double estimated confidence through real positive
and subunit numbers a and b, then, the overall confidence of that fact is POR(a, b) = a+b−ab.
POR is an associative function and three or more confidence factors can be aggregated sequen-
tially into an overall confidence factor. When the number of estimations grows up indefinitely
one can ask about limit properties of POR. This operator is not a learning algorithm and the
paper proposes a learning algorithm based on it. A sequence of random variables using POR
like the reward side of a learning and another operator like punish side is defined and it’s
properties are studied. The proposed algorithm is showed to converge to some simple proba-
bility provided certain simple conditions are accomplished. Finally, a comparison between the
proposed algorithm and the classic estimator is given.
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1. Introduction

Artificial intelligence is very often dealing with uncertainty. Handling this concept,
different authors have made very different proposals which encapsulate it. One of the
most used aggregation operators in artificial intelligence is the ”probabilistic OR”, or
POR. If a certain fact from reality is uncertain and two or more experts try to estimate
it’s degree of certainty, then that fact has two or more estimated confidences. These
are estimations through real positive and subunit numbers a, b, c, and so on. If we have
exactly two experts, then, the overall confidence of that fact is POR(a, b) = a+b−ab.
POR is an associative function and three or more confidence factors can be aggregated
sequentially into an overall confidence factor. When the number of estimations grows
up indefinitely one can ask about limit properties of POR. It can be interpreted a little
bit different writing it’s formula as POR(a, b) = a + b(1 − a). This means that if a
certain expert gives the estimation a, the opinion of the second expert is increasing our
confidence a, about the fact, by a fraction of the difference to unity of a. The fraction
of the difference is given by the second estimation, b. More specifically, the result is the
first estimation a, increased by the fraction b of (1−a). Thinking like this, in learning
terms, all can be trivial because the composition of an indefinitely increasing number
of estimations, can be convergent when simple conditions are accomplished, but the
”reward-punish” paradigm is not encapsulated. We can think a little different: what
if a certain expert says the fact is NOT true with a certainty of say, c ∈ [0, 1]? More
precisely, what is the certainty of a fact, if an expert says Y ES with the certainty of
a, and the other says NOT , with the degree of certainty b? A simple way of answering
this question is to put CON(a, b) = a − b(0 − a). This formula looks closely related
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to the POR fromula, except for the substracting operation instead of summation and
the replacement of the number 1 (meaning: TRUE), with 0 (meaning: FALSE). So
in a long run problem, the way of acting is like this: at every step, the actual value of
confidence is increased using POR formula, if an expert say Y ES, and is decreased
using CON formula if the expert says NO. However, in practice, this problem is out
of subject since usually only a small number of experts can estimate a certain fact in
the same time. Furthermore, it is rather unlikely for some researcher to combine such
a way two or more confidence factors, even if a contradiction ocures. The problem
of learning from data arises the following question: when n events are in favor of a
certain fact, out of m, and their probability is rather equal, what certainty factor
should we assign to that fact? The fraction n

m is the most used and the more rational
estimation of the certainty factor. What if the m events come out sequentially? How
we should take into account every occurency of such an event? A simple way to deal
with this question is to use the ”little expert” paradigm: every event is increasing a
learning factor if it is in favor of the studied fact and decreases this learning factor if
the opposite is true. More precisely: this way of thinking is represented by a sequence
of independent variables (ξk)k≥0, defined through sequences of positive real numbers
falling into the unit interval (ρk)k≥0 and (ηk)k≥0 by relations:

ξk+1 =
{

ξk + (1 − ξk)ρk , if zk = 1 ,
ξk − ηkξk , if zk = 0 ,

where

zk+1 =
{

1 , with probability p ,
0 , with probability 1 − p ,

for fixed values c, p ∈ [0, 1], ξ0 = c. The expectation and the variance are calculated
and their properties are studied.

This paper is showing that provided some conditions are accomplished, the random
variable ξk, tends to the probability of an event to be in favor of the studied fact.
In fact, in certain conditions, ξk is an unbiased estimation of this probability. This
probability may be estimated classically, simply by taking the ratio of the number of
events in favor of the fact, out of the total number of events which occurs. This paper
demonstrates that the learned ξk often tends to this probability.

2. Main results

Theorem 2.1. Let (ρk)k≥0, (ηk)k≥0 two sequences of real positive numbers and ρ0 <
1, η0 < 1. Let (ξk)k≥0, a sequence of independent random variables defined by:

ξk+1 =
{

ξk + (1 − ξk)ρk , if zk = 1 ,
ξk − ηkξk , if zk = 0 ,

(1)

zk+1 =
{

1 , with probability p ,
0 , with probability 1 − p ,

and let ξ0 = c ∈ [0, 1] and q = 1 − p.
Then, one can calculate iteratively the expectation and the variance of ξk as:

E(ξk+1) = E(ξk)(p(1 − ρk) + q(1 − ηk)) + pρk (2)

D2(ξk+1) = D2(ξk)(p(1 − ρk)2 + q(1 − ηk)2) + pqρ2
k +

+(ηk − ρk)pqE(ξk)(E(ξk)(ηk − ρk) − 2ρk), (3)
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for k > 0.

Proof. Following the definition of ξk, the demonstration of the first relation is straight-
forward:

E(ξk+1) = pE(ξk + (1 − ξk)ρk) + qE(ξk − ηkξk) =

= pE(ξk)(1 − ρk) + pρk + qE(ξk)(1 − ηk) =

= E(ξk)(p(1 − ρk) + q(1 − ηk)) + pρk

In order to demonstrate the second relation, let the square of ξk+1 to be:

ξ2
k+1 =

{
ξ2
k(1 − ρk)2 + 2ξkρk(1 − ρk) + ρ2

k , if zk = 1 ,
ξ2
k(1 − ηk)2 , if zk = 0 ,

obtained simply, by squaring the relation (1). The first step is the calculus of E(ξ2
k+1):

E(ξ2
k+1) = E(ξ2

k)(p(1 − ρk)2 + q(1 − ρk)2) + 2E(ξk)pρk(1 − ρk) + pρ2
k

On the other hand, the square of the relation (2) gives:

E2(ξk+1) = E2(ξk)(p(1− ρk) + q(1− ρk))2 + 2E(ξk)pρk(p(1− ρk) + q(1− ηk)) + p2ρ2
k

Now, one can calculate the variance of ξk+1 as:

D2(ξ2
k+1) = E(ξ2

k+1) − E2(ξ2
k+1) = E(ξ2

k)(p(1 − ρk)2 + q(1 − ηk)2)−
−E2(ξk)(p2(1 − ρk)2 + q2(1 − ηk)2 + 2pq(1 − ρk)(1 − ηk))+

+2E(ξk)pρk((1 − ρk) − p(1 − ρk) − q(1 − ηk)) + pρ2
k − p2ρ2

k =

= p(1 − ρk)2(E(ξ2
k) − pE2(ξk)) + q(1 − ηk)2(E(ξ2

k) − qE2(ξk))−
−2pqE2(ξk)(1 − ρk)(1 − ηk) + 2E(ξk)pρkq(ηk − ρk) + pqρ2

k =

= p(1 − ρk)2(D2(ξk) + qE2(ξk)) + q(1 − ηk)2(D2(ξk) + pE2(ξk))−
−2pqE2(ξk)(1 − ρk)(1 − ξk) + 2pqρkE(ξk)(ηk − ρk) + pqρ2

k =

= D2(ξk)(p(1 − ρ)k)2 + q(1 − ηk)2) + E2(ξk)pq((1 − ρk)2 + (1 − ηk)2))−
−2pqE2(ξk)(1 − ρk)(1 − ηk) + 2pqρkE(ξk)(ηk − ρk) + pqρ2

k =

= D2(ξk)(p(1 − ρ)k)2 + q(1 − ηk)2) + pqρ2
k + Q

Where:

Q = E2(ξk)pq((1−ρk)2+(1−ηk)2))−2pqE2(ξk)(1−ρk)(1−ηk)+2pqρkE(ξk)(ηk−ρk)

If one can show that:

Q = (ηk − ρk)pqE(ξk)(E(ξk)(ηk − ρk) + 2ρk)

the demonstration is done. In fact, taking the expression of Q, it follows that:

Q = E2(ξk)pq((1−ρk)2+(1−ηk)2))−2pqE2(ξk)(1−ρk)(1−ηk)+2pqρkE(ξk)(ηk−ρk) =

= E2(ξk)pq((1 − ρk) − (1 − ηk))2 + 2pqρkE(ρk)(ηk − ρk) =

= E2(ξk)pq(ηk − ρk)2 + 2pqρkE(ξk)(ηk − ρk) =

= (ηk − ρk)pqE(ξk)(E(ξk)(ηk − ρk) + 2ρk)

The last expression equals Q and demonstrate the theorem. �
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Corollary 2.1. If the sequences (ρk)k>0 and (ηk)k>0 are both convergent to real
positive and subunit numbers ρ and, respectively, η, then the limit of expected value
and of the variance of ξk are as follows:

E(ξk) −→ pρ

pρ + qη
(4)

D2(ξk) −→
pq( ρη

pρ+qη )2

1 − (p(1 − ρ)2 + q(1 − η)2)
(5)

Proof. From the previous theorem, taking the equation (2) we obtain:

lim
n→∞E(ξk+1) = lim

n→∞(E(ξk)(p(1 − ρk) + q(1 − ηk)) + pρk)

lim
n→∞E(ξk+1) = lim

n→∞E(ξk)(p(1 − lim
n→∞ ρk) + q(1 − lim

n→∞ ηk)) + p lim
n→∞ ρk

E = E(p(1 − ρ) + q(1 − η)) + pρ

E =
pρ

pρ + qη

Using equation (3), it is easy to see that taking the limit, we have the following
calculus:

D2 = D2(p(1 − ρ)2 + q(1 − η)2) + pq
η − ρ

pρ + qη
(
pρ(η − ρ)
pρ + qη

+ 2ρ) + pqρ2

This is equivalent to:

D2(1 − (p(1 − ρ)2) + q(1 − η)2) = pq(
(η − ρ)2p2ρ2

(pρ + qη)2
+ 2ρ

(η − ρ)pρ

pρ + qη
+ ρ2)

Or, by compacting the terms:

D2(1 − (p(1 − ρ)2) + q(1 − η)2) = pq(
(η − ρ)pρ

pρ + qη
+ ρ)2

Because it is easy to see that it is true the relation:

(η − ρ)pρ

pρ + qη
+ ρ =

ρη

pρ + qη
,

it follows that the limit of the variance is:

D2 =
pq( ρη

pρ+qη )2

1 − (p(1 − ρ)2 + q(1 − η)2)
.

�

Corollary 2.2. If the sequences in corollary 2.1 are convergent to the same value,
denoted by ρ, then the limit of the expected value and of the variance of ξk, when k
tends to infinity are:

lim
k→∞

E(ξk) = p

lim
k→∞

D2(ξk) =
pqρ

2 − ρ

Proof. The proof is trivial, since it is sufficient to replace in equations (4) and (5) the
value of η with ρ. �
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Corollary 2.3. Let (ρk)k≥0, a sequence of real positive numbers and ρk < 1
k+1 , for

k = 1, ....n, n ∈ N . Let (ξk)k≥0, a sequence of independent random variables defined
by:

ξk+1 =
{

ξk + (1 − ξk)ρk , if zk = 1 ,
ξk − ρkξk , if zk = 0 ,

(6)

zk+1 =
{

1 , with probability p ,
0 , with probability 1 − p ,

Then, the variance of ξk is inferior to the variance of the classic estimator, for k <=
n.

Proof. Firstly, it has to be observed from the main theorem that for ρk = ηk, the
variance of ξk follows the formula:

D2(ξk+1) = D2(ξk)(1 − ρk)2 + pqρ2
k

On the other hand, it is easy to see that D2(ξ0) = 0 and D2(ξ1) = pqρ0. A trivial
induction shows that we have the following formulas:

D2(ξk+1) = pqf(ρ0, ρ1, ....ρk) = pqfk+1

fk+1 = fk(1 − ρk)2 + ρ2
k

Since f1 = ρ0 < 1 = 1
1 , and suppose that fk < 1

k , for any integer between 1 and k,
let show that we can choose a value for ρk, such that fk+1 < 1

k+1 . Indeed, the last
inequality means that:

fk(1 − ρk)2 + ρ2
k <

1
k + 1

The attached second degree equation in ρk, has always two distinct roots, because of
the fact that it’s discriminant is positive:

∆ =
1 − kfk

k + 1
> 0

as induction hypothesis says. The two distinct roots of the attached equation are:

fk1 =
fk − ( 1−kfk

k+1 )
1
2

fk + 1

fk2 =
fk + (1−kfk

k+1 )
1
2

fk + 1
Because the second root is strictly positive, the choice for ρk such that fk+1 < 1

k+1

is straightforward. In fact, similar inequalities are valid for ρk: provided ρk < 1
k+1 , it

is true that:
ρk − ( 1−kρk

k+1 )
1
2

ρk + 1
< 1

In fact, ρk must be inside the interval [0,
ρk−(

1−kρk
k+1 )

1
2

ρk+1 ]. Finally, let take again the
inequality:

fk(1 − ρk)2 + ρ2
k <

1
k + 1

and recall that:
D2(ξk+1) = pqf(ρ0, ρ1, ....ρk) = pqfk+1

This means that:
D2(ξk+1) < pq

1
k + 1
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This last inequality demonstrates the corollary, because it simply says that the vari-
ance of ξk is lower that the variance of the classic estimation. �

The last corollary shows that for a finite number of steps, the estimation of the
probability of a fact given by ξk, is less dispersed than the classic one. This result is
not as surprising as it seems to be, because sooner or later, in the learning process,
the classic estimation became to be less dispersed. The great importance of this result
is that the learning algorithm using ξk formula, may be maintained to be more stable
for a little number of steps. This mike be very important in a learning process with
a great number of parameters to be estimated, when it is well known that the classic
probability needs a great number of steps until a certain stability appears.
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