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GBS operators of Schurer-Stancu type
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In the memory of Professor E. Dobrescu

Abstract. If p ≥ 0, q ≥ 0 are given positive integers and α1, β1, α2, β2 are real parame-
ters satisfying 0 ≤ α1 ≤ β1, 0 ≤ α2 ≤ β2, in ([9]) was constructed the bivariate Schurer-

Stancu operator S̃
(α1,β1,α2,β2)
m,n,p,q : C([0, 1 + p] × [0, 1 + q]) → C([0, 1] × [0, 1]) defined for any

f ∈ C([0, 1 + p] × [0, 1 + q]) and any m, n ∈ N by(
S̃

(α1,β1,α2,β2)
m,n,p,q f

)
(x, y) =

=
∑m+p

k=0

∑n+q

j=0
p̃mk(x)p̃nj(y)f

(
k + α1

m + β1
,
j + α2

n + β2

)
where p̃m,k(n), p̃nj(y) are the fundamental Schurer polynomials and approximation properties
of this operator were established.
Denoting by Cb([0, 1+p]× [0, 1+q]) the space of B-continuous real valued functions defined on

[0, 1+p]×[0, 1+q] the GBS operator associated to S̃
(α1,β1,α2,β2)
m,n,p,q is constructed. This operator,

denoted by Ũ
(α1,β1,α2,β2)
m,n,p,q applies the space Cb([0, 1+ p]× [0, 1+ q]) into Cb([0, 1]× [0, 1]) and

it is defined for any f ∈ Cb([0, 1 + p] × [0, 1 + q]) and any m, n ∈ N by(
Ũ

(α1,β1,p1,q1)
m,n,p,q f

)
(x, y) =

∑m

k=0

∑n

j=0
p̃m,k(x)p̃nj(y)×

× {f(k/m, y) + f(x, j/n) − f(k/m, j/n)}
Some approximation properties (concerning a convergence theorem and the approximation

order, in terms of mixed modulus of smoothness), for the sequence
{

Ũ
(α1,β1,α2,β2)
m,n,p,q f

}
m,n∈N

are established.
Note that for p = q = 0 and α1 = β1 = α2 = β2 = 0 our GBS operator reduces to the GBS
operator of Bernstein type, constructed in 1966 by E. Dobrescu and I. Matei ([15]).
The paper is devoted to the memory of the GREAT Romanian Mathematician, Professor
Eugen Dobrescu, disappeared premature in 1993.
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1. Preliminaries

Let p ≥ 0 be a given integer. In 1962 F. Schurer (see ([18])) constructed and studied
the positive and linear operator B̃m,p :
C([0, 1 + p]) → C([0, 1]), which associates to any function f ∈ C([0, 1 + p]) the
polynomial B̃m,pf defined by(

B̃m,pf
)

(x, y) =
∑m+p

k=0
p̃m,k(x)f(k/m) (1)
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where p̃m,k(x) are the fundamental Schurer polynomials.
Extensions of the operator (1.1) to the case of bivariate functions were studied in our
earlier papers ([8]), ([9]) and ([10]).

In 1968, D.D. Stancu ([19]) constructed and studied a linear and positive operator
depending on two non-negative real parameters α and β which satisfy the condition
0 ≤ α ≤ β. This operator, denoted by P

(α,β)
m , associates to any function f ∈ C([0, 1])

the polynomial P
(α,β)
m f , defined by(

P (α,β)
m f

)
(x) = pm,k(x)f

(
k + α

m + β

)
(2)

where pm,k(x) are the fundamental Bernstein polynomials.
The operator (1.2) is known in mathematical literature as ”the Bernstein-Stancu
operator”.
Extensions of the operator (1.2) to the case of bivariate functions were constructed
by F. Stancu ([23]) and D. Bărbosu ([5], [6], [9]).

Considering a given integer p ≥ 0 and two real parameters α and β which satisfy
the condition 0 ≤ α ≤ β, in our recent paper ([11]) was constructed the linear and
positive operator S̃

(α,β)
m,p , defined for any f ∈ C([0, 1 + p]) and any m ∈ N by(

S̃(α,β)
m,p f

)
(x) =

∑m+p

k=0
p̃m,k(x)f

(
k + α

m + β

)
(3)

The operator (1.3) was called ”Schurer-Stancu type operator”, because for α = β = 0
it reduces to the operator (1.1) and for p = 0, it reduces to the operator (1.2). If
p = 0, α = β = 0, the operator (1.3) is the classical Bernstein operator.

Considering two given intergers p ≥ 0, q ≥ 0 and four real parameters α1, β1, α2, β2

satisfying the conditions 0 ≤ α1 ≤ β1 and 0 ≤ α2 ≤ β2, in the paper ([9]) we
constructed the bivariate operator of Schurer-Stancu type S̃

(α1,β1,α2,β2)
m,n,p,q : C1([0, 1 +

p]× [0, 1 + q]) → C([0, 1]× [0, 1]), defined for any f ∈ C([0, 1 + p]× [0, 1 + q]) and any
m,n ∈ N by(

S̃(α1,β1,p1,q1)
m,n,p,q f

)
(x, y) =

∑m+p

k=0

∑n+q

j=0
p̃mk(x)p̃n,j(y) ×

· f

(
k + α1

m + β1
,
j + α2

n + β2

)
(4)

Some approximation properties of (1.3) were studied in the same paper ([9]).
Clearly, for p = q = 0 the operator (1.4) reduces to the Stancu bivariate operator,
studied by F. Stancu ([23)] and D. Bărbosu ([5]).
For α1 = α2 = β1 = β2 = 0, the operator (1.4) is the bivariate Schurer type operator
studied in our earlier paper ([10]).

The aim of the present paper is to extend the operator (1.4) to the case B-
continuous (Bögel continuous) functions. More exactly, we shall present a GBS
(Generalized Boolean Sum) operator of Schurer-Stancu type and some approxima-
tion properties of this operator.
The term of ”B-continuous function” was introduced by K. Bögel (see ([12]), [13])).
One of the first result concerning the approximation of this kind of functions is due
to E. Dobrescu and I. Matei ([15]).

An important ”test function theorem”, (the analogous of the well known Korovkin
theorem), for approximation of B-continuous functions using GBS-operators is due to
C. Badea, I. Badea and H.H. Gonska ([2]).
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The analogous of first order modulus of smoothness for univariate functions is
the ”mixed modulus of smoothness”, introduced by I. Badea ([4]). This modulus
is used for evaluating the approximation order of B-continuous functions using GBS
operators. The analogous of well-known Shisha-Mond theorem ([17]) for B-continuous
functions was established by H.H. Gonska ([16]), C. Badea and C. Cottin ([3]).

2. GBS operators of Schurer-Stancu type

Let p ≥ 0, q ≥ 0 be given integers and let us to denote by
Cb([0, 1+p]× [0, 1+ q]) the space of real valued functions B-continuous on [0, 1+p]×
[0, 1 + q].

Next, we consider four non-negative parameters α1, β1, α2, β2 satisfying the condi-
tions 0 ≤ α1 ≤ β1, 0 ≤ α2 ≤ β2. The parametric extensions of the Schurer-Stancu
type operators (1.4) are defined respectively by(

xS̃(α1,β1)
m,p f

)
(x, y) =

∑m+p

k=0
p̃m,k(x)f(k/m, y) (5)(

yS̃(α2,β2)
n,q f

)
(x, y) =

∑n+q

j=0
p̃n,j(y)f(x, j/n) (6)

It is easy to see that xS̃
(α1,β1)
m,p and yS̃

(α2,β2)
n,q are linear and positive operator (see

([9])). They commute on C([0, 1 + p] × [0, 1 + q]) and their product is the bivariate
Schurer-Stancu type operator S

(α1,β1,α2,β2)
m,n,p,q : C([0, 1+p]×[0, 1+q]) → C([0, 1]×[0, 1]),

defined for any f ∈ C([0, 1 + p] × [0, 1 + q]) and any m,n ∈ N by(
Sα1,β1,α2,β2)

m,n,p,q f
)

(x, y) =
∑m+p

k=0

∑n+q

j=0
p̃m,k(x)p̃n,j(y) ×

× f

(
k + α1

m + β1
,
j + α2

n + β2

)
(7)

In ([9]) were proved, among others, the following properties of the operator (2.3).

Lemma 2.1. The operator (2.3) is linear and positive.

Lemma 2.2. If eij(s, t) = sitj (i, j ∈ N, 0 ≤ i + j ≤ 2) are the test functions, the
operator (2.3) verifies

S̃(α1,β1,α2,β2)
m,n,p,q (e00;x, y) = 1 (8)

S̃(α1,β1,α2,β2)
m,n,p,q (e10;x, y) =

m + p

m + β1
x +

α1

m + β2
(9)

S̃(α1,β1,α2,β2)
m,n,p,q (e0,1;x, y) =

n + q

n + β2
y +

α2

n + β2
(10)

S̃(α1,β1,α2,β2)
m,n,p,q (e20;x, y) =

1
(m + β1)2

{
(m + p)2x2 + (m + p)x(1 − x)+

+ 2α1
m(m + p)
m + β1

x +
α2

1(3m + β1)
m + β1

}
(11)

S̃(α1,β1,α2,β2)
m,n,p,q (e02;x, y) =

1
(n + β2)2

{
(n + q)2y2 + (n + q)y(1 − y)+

+ 2α2
n(n + q)
n + β2

y +
α2

2(3n + β2)
n + β2

}
(12)
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Definition 2.1. Let Ũ
(α1,β1,α2,β2)
m,n,p,q : Cb([0, 1 + p] × [0, 1 + q]) → Cb([0, 1] × [0, 1]) be

the boolean sum of (2.1) and (2.2), i.e.

Ũ (α1,β1,α2,β2)
m,n,p,q =x S̃(α1,β1)

m,p +y S̃α2,β2
n,q − S̃(α1,β1,α2,β2)

m,n,p,q (13)

The operator (2.9) will be called GBS operator of Schurer-Stancu type.

Lemma 2.3. The GBS operator of Schurer-Stancu type is defined for any f ∈
Cb([0, 1 + p] × [0, 1 + q]) by(

Ũ (α1,β1,α2,β2)
m,n,p,q f

)
(x, y) =

=
∑m+p

k=0

∑n+q

j=0
p̃m,k(x)p̃n,j(y)

{
f

(
k + α1

m + p
, y

)
+ f

(
x,

j + α2

n + q

)
−

− f

(
k + α1

m + p
,
j + α2

n + q

)}
(14)

Proof. The assertion follows by direct computation from (2.9), taking into account of
Lemma 2.2 (the identity (2.4)). �

Remark 2.1.
(1) For p = q = 0, the operator (2.10) is the GBS operator of Stancu type, introduced

in our paper ([6])
(2) For α = β = 0, the operator (2.10) is the GBS operator of Schurer type, intro-

duced in our paper ([8])
(3) For α = β = 0 and p = q = 0, the operator (2.10) is the GBS operator of

Bernstein type, introduced by E. Dobrescu and I. Matei ([15]).

Theorem 2.1. For any f ∈ Cb([0, 1+p]×[0, 1+q]) the sequence
{

Ũ
(α1,β1,α2,β2)
m,n,p,q f

}
m,n∈N

converges to f uniformly on [0, 1] × [0, 1] as m and n tend to infinity.

Proof. From Lemma 2.1 and Lemma 2.2 (the identity (2.4)) follows that S̃
(α1,β1,α2,β2)
m,n,p,q

is a linear positive operator, reproducing the constant functions.
Taking into account of Lemma 2.2 (the identities (2.5), (2.6), (2.7) and (2.8)) we get:

lim
m,n→∞ S̃(α1,β1,α2,β2)

m,n,p,q (e10;x, y) = x

lim
m,n→∞ S̃(α1,β1,α2,β2)

m,n,p,q (e01;x, y) = y

lim
m,n→∞ S̃(α1,β1,α2,β2)

m,n,p,q (e20 + e02;x, y) = x2 + y2,

uniformly on [0, 1] × [0, 1].
We can apply the ”test functions theorem” due to C. Badea, I. Badea and H.H.
Gonska ([2]) and we arrive to desired result. �

In what follows ωmixed denotes the ”mixed modulus of smoothness” (see ([4]), ([3]),
([16])) and we suppose known the variant of Shisha-Mond theorem for B-continuous
functions (see ([3]), ([6])).

Theorem 2.2. For any f ∈ Cb([0, 1+p])×[0, 1+q]), in each point (x, y) ∈ [0, 1]×[0, 1],
the operator (2.10) verifies∣∣∣(Ũ (α1,β1,α2,β2)

m,n,p,q f
)

(x, y) − f(x, y)
∣∣∣ ≤ 4ωmixed(δm,p,α1,β1,x δn,q,α2,β2,y) (15)
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where

δ1,m,p,α1,β1,x =
(p − β1)2

(m + β1)2
+

(m + p)
(m + β1)2

x(1 − x) +

+
2α1(mp − 2mβ1 − β2

1)
(m + β1)3

x +
α2

1(3m + p)
(m + β2)3

(16)

δ2,n,q,α2,β2,y =
(q − β2)2

(n + β2)2
+

(n + q)
(n + β2)2

y(1 − y) +

+
2α2(nq − 2nβ2 − β2)

(n + β2)2
y +

α2
2(3n + q)

(n + β2)2
(17)

Proof. Applying the Shisha-Mond type theorem for B-continuous functions (see ([3]),
([15])) we get∣∣∣(Ũ (α1,β1,α2,β2)

m,n,p,q f
)

(x, y)
∣∣∣ ≤

≤
(

1 + δ−1
1

√
L

(α1,β1,α2,β2)
m,n,p,q ((· − x)2;x, y) + δ−1

2

√
L

(α1,β1,α2,β2)
m,n,p,q ((∗ − y)2;x, y)+

+ δ−1
1 δ−2

2

√
L

(α1,β1,α2,β2)
m,n,p,q ((· − x)2(∗ − y)2;x, y)

)
ωmixed(δ1, δ2) (18)

for any δ1 > 0, δ2 > 0.
Next, taking into account of Lemma 2.2 and choosing δ1 = δm,p,α1,β1,x, δ2 = δn,q,α2,β2,y

in (2.15), we arrive to the desired inequality (2.11). �
Corollary 2.3. For any f ∈ Cb([0, 1 + p] × [0, 1 + q]), any (x, y) ∈ [0, 1] × [0, 1], the
GBS operator of Schurer-Stancu type verify:∣∣∣(Ũ (α1,β1,α2,β2)

m,n,p,q f
)

(x, y) − f(x, y)
∣∣∣ ≤ 4ωmixed(δ1, δ2) (19)

where
δ1 = max

x∈[0,1]
δm,p,α1,β1,x, δ2 = max

y∈[0,1]
δn,q,α2,β2,y (20)

and β1, β2 satisfy (2.14).

Proof. The assertion follows from (2.11), taking into account that the mixed modulus
of smoothness is monotonous increasing with respect the
natural order relation from R

2, i.e.
(∀) (δ1, δ2), (δ′1, δ

′
2) ∈ [0, b − a] × [0, d − c], δ1 < δ′1, δ2 < δ′2 ⇒

⇒ ωmixed(δ1, δ2) ≤ ωmixed(δ′1, δ
′
2). �

Remark 2.2.
(i) The theorem 2.2 give us the order of local approximation (in each point (x, y) ∈

[0, 1]×[0, 1]) while Corollary 2.3 give the order of global approximation of B-continuous
function f by Ũ

(α1,β1,α2,β2)
m,n,p,q

(ii) Naturally, the inequalities (2.11) and (2.16) can be more detailed, depending
on the relations between the parameters α1, β1, α2, β2, p, q

(iii) As consequences of Theorem 2.1 and Theorem 2.2, for p = q = 0, we obtain
approximation properties of the GBS operator of Stancu type, introduced and studied
in ([6])

(iv) For α1 = β1 = 0, α2 = β2 = 0, as consequences of Theorem 2.1 and Theorem
2.2, we get approximation properties of the GBS operator of Schurer type, introduced
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and studied in ([8])

(v) For α1 = β1 = 0, α2 = β2 = 0, p = q = 0, we get approximation properties
of the GBS operator of Bernstein type, introduced by E. Dobrescu and I. Matei (see
([15])) and studied also by I. Badea (see ([3])) and many others.
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[11] K. Bögel, Mehrdimensionale Differention von Funktionen mehrer Väränderlicher, J. Reine

Angew. Math., 170, 197-217 (1934).
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Bolyai”, 14, 31-45 (1969) (Romanian).

[20] D.D. Stancu, Curs şi culegere de probleme de analiză numerică, I, Cluj-Napoca, Lito. Univ.
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