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1. Introduction

According to Olver’s opinion [7], we consider that the 1-jet spaces and their duals
are the fundamental ambient mathematical spaces used in the study of classical and
quantum field theories in their Lagrangian and Hamiltonian approaches. For this
reason, we start our geometrical study considering a smooth real manifold Mn of
dimension n, whose local coordinates are (xi)i=1,n, and we construct the dual 1-jet

vector bundle (as time-dependent phase space of momenta [2], [6])

J1∗(R,M) ≡ R× T ∗M → R×M,

whose local coordinates are denoted by (t, xi, p1
i ). The transformations of coordinates

(t, xi, p1
i )←→ (t̃, x̃i, p̃1

i ) on the dual 1-jet space J1∗(R,M) are

t̃ = t̃ (t) , x̃i = x̃i
(
xj
)
, p̃1

i =
∂xj

∂x̃i
dt̃

dt
p1
j , (1)

where dt̃/dt 6= 0 and det(∂x̃i/∂xj) 6= 0. Consequently, in our dual jet geometrical
approach, we use a ”relativistic” time t. Comparatively, in Atanasiu, Miron and his
co-workers’ Hamiltonian approach (see [1], [4] and [5]), the authors use the trivial
bundle R× T ∗M over the base cotangent space T ∗M , whose coordinates induced by
T ∗M are

(
t, xi, pi

)
. Thus, the changes of coordinates on the trivial bundle

R× T ∗M → T ∗M

are given by

t̃ = t, x̃i = x̃i
(
xj
)
, p̃i =

∂xj

∂x̃i
pj , (2)

pointing out the absolute character of the time variable t.
In order to point out the more naturalness of our dual jet approach of time-

dependent Hamilton geometry, we underline that, from a geometrical point of view,
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the time-dependent Lagrangian theory from [5] relies on the geometrical study of the
energy action integral

E1(c(t)) =

∫ b

a

L(t, xi(t), yi = ẋi(t))dt

which has the impediment that it is dependent by the reparametrizations t ←→ t̃
of the same curve c. This is because L(t, xi, yi) is a function on the vector bundle
R × TM → M . This inconvenience is removed in the Finsler geometry by imposing
the 1-positive homogeneity condition L(t, xi, λyi) = λL(t, xi, yi), ∀ λ > 0. The second
way to remove this inconvenience of dependence of reparametrizations of the energy
action integral is to use the 1-jet space J1(R,M) ≡ R × TM and the energy action
integral (see [3])

E2(c(t)) =

∫ b

a

L(t, xi(t), yi1 = ẋi(t))
√
|h11(t)|dt,

where L(t, xi, yi1) is a function on the 1-jet vector bundle J1(R,M) −→ R ×M and
h11 is a semi-Riemannian metric on the time manifold R. Taking into account that,
via the Legendre duality of the Hamilton spaces with the Lagrange spaces, in the
book [5] is shown that the theory of Hamilton spaces has the same symmetry as the
Lagrange geometry, giving thus a geometrical framework for the Hamiltonian theory
of Analytical Mechanics, it follows that the more natural house for the study of the
time-dependent Hamilton geometry is the dual 1-jet space J1∗(R,M) which provides
an energy action integral independent by temporal reparametrizations of the same
curve.

The subsequent development of the time-dependent Hamilton geometry relies on
the following geometrical constructions: (1) the writing of the time dependent Hamil-
tonian H associated with the time-dependent Lagrangian function L(t, xi, yi1); (2) the
producing of a natural dual jet Hamiltonian nonlinear connection N (provided only
by the Hamiltonian H and intimately connected with the canonical nonlinear con-
nection produced by the Lagrangian function L, via its Euler-Lagrange equations);
(3) the construction of a natural Cartan canonical N -linear connection CΓ(N) on the
dual 1-jet space J1∗(R,M); (4) the computations of the adapted components of the
d-torsions and d-curvatures associated with the Cartan connection CΓ(N). Conse-
quently, the present paper is only a step in the forthcoming time-dependent Hamilton
geometry, creating geometrical foundations for the subsequent theory.

In this way, as an example, we will study in a subsequent paper, the dual jet
time-dependent Hamiltonian of electrodynamics (see [5] and [2])

H =
1

4mc
h11(t)ϕij(x)p1

i p
1
j −

e

m2c
A

(i)
(1)(x)p1

i +
e2

m3c
F (t, x), (3)

where A
(i)
(1)(x) is a d-tensor on J1∗(R,M) having the physical meaning of a poten-

tial d-tensor of an electromagnetic field, e is the charge of the test body and the

function F (t, x) is given by F (t, x) = h11(t)ϕij(x)A
(i)
(1)(x)A

(j)
(1)(x). This Hamiltonian

is important because it naturally generalizes (in a time-dependent way) the Hamil-
tonian that governs the physical domain of the autonomous (i.e., time-independent)
electrodynamics. The geometrization associated with this time-dependent Hamilton-
ian will consists of a canonical nonlinear connection N , a Cartan canonical N -linear
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connection CΓ(N) together with its adapted d-torsions and d-curvatures. All these
geometrical objects are provided only by the initial time-dependent Hamiltonian (3).

2. Nonlinear connections and adapted bases

In what follows, in order to locally study the linear connections on the dual 1-jet space

J1∗(R,M), we recall that a pair of local functions N =
(
N
1

(1)
(k)1, N2

(1)
(k)i

)
on J1∗(R,M),

which transform by the rules (see [6])

Ñ
1

(1)
(j)1 =N

1

(1)
(k)1

∂xk

∂x̃j
− dt

dt̃

∂p̃1
j

∂t
,

Ñ
2

(1)
(j)r = N

2

(1)
(k)i

dt̃

dt

∂xk

∂x̃j
∂xi

∂x̃r
− ∂x

i

∂x̃r
∂p̃1

j

∂xi
,

(4)

is called a nonlinear connection on the dual 1-jet bundle J1∗(R,M). Moreover, the

geometrical entity N
1

=

(
N
1

(1)
(j)1

)
(respectively N

2
=

(
N
2

(1)
(j)i

)
) is called a temporal

(respectively spatial) nonlinear connection on J1∗(R,M).

Example 2.1. The pair of local functions
0

N =

(
0

N
1

(1)
(i)1,

0

N
2

(1)
(i)j

)
, where

0

N
1

(1)
(i)1 = H1

11p
1
i ,

0

N
2

(1)
(i)j = −γkijp1

k, (5)

is called the canonical nonlinear connection on J1∗(R,M), associated with the pair of
semi-Riemannian metrics (h11(t), ϕij(x)). Note that H1

11(t) (respectively γkij(x)) are
the Christoffel symbols attached to the semi-Riemannian metrics h11(t) and ϕij(x).

The nonlinear connection N =
(
N
1

(1)
(k)1, N2

(1)
(k)i

)
is useful in order to construct the

adapted bases of vector and covector fields, namely{
δ

δt
,
δ

δxi
,
∂

∂p1
i

}
⊂ X

(
J1∗(R,M)

)
,

{
dt, dxi, δp1

i

}
⊂ X ∗

(
J1∗(R,M)

)
, (6)

where
δ

δt
=

∂

∂t
−N

1

(1)
(j)1

∂

∂p1
j

,
δ

δxi
=

∂

∂xi
−N

2

(1)
(j)i

∂

∂p1
j

,

δp1
i = dp1

i +N
1

(1)
(i)1dt+N

2

(1)
(i)jdx

j .

(7)

Remark 2.1. The adapted bases of vector and covector fields (6) are important
because, with respect to the coordinate transformations (1), their elements have the
local transformation laws as tensorial ones. For this reason, all future geometrical
objects from this paper, such as linear connections, torsions and curvatures, will be
locally described in adapted bases.

Obviously, the Lie algebra of vector fields on J1∗(R,M) decomposes in the direct
sum X

(
J1∗(R,M)

)
= X (HR)⊕X (HM )⊕X (W) , where

X (HR) = Span

{
δ

δt

}
, X (HM ) = Span

{
δ

δxi

}
, X (W) = Span

{
∂

∂p1
i

}
,
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while the Lie algebra of covector fields on J1∗(R,M) decomposes in the direct sum
X ∗
(
J1∗(R,M)

)
= X ∗ (HR)⊕X ∗ (HM )⊕X ∗ (W) , where

X ∗ (HR) = Span {dt} , X ∗ (HM ) = Span
{
dxi
}
, X ∗ (W) = Span

{
δp1

i

}
.

Definition 2.1. The distributions HR and HM are called the R-horizontal distri-
bution and M -horizontal distribution on J1∗(R,M). The distribution W is called
the vertical distribution on J1∗(R,M). Moreover, we denote by hR, hM and w the
corresponding projections associated with these distributions.

In applications, the Poisson brackets of the d-vector fields (6) are very important.
Consequently, by a direct calculus, we obtain

Proposition 2.1. The Poisson brackets of the d-vector fields of the adapted basis (6)
are given by [

δ

δt
,
δ

δt

]
= 0,

[
δ

δt
,
δ

δxk

]
= R

(1)
(i)1k

∂

∂p1
i

,[
δ

δt
,
∂

∂p1
k

]
= B

(1) (k)
(i)1(1)

∂

∂p1
i

,

[
δ

δxj
,
δ

δxk

]
= R

(1)
(i)jk

∂

∂p1
i

,[
δ

δxj
,
∂

∂p1
k

]
= B

(1) (k)
(i)j(1)

∂

∂p1
i

,

[
∂

∂p1
j

,
∂

∂p1
k

]
= 0,

(8)

where

R
(1)
(i)1k =

δN
1

(1)
(i)1

δxk
−
δN

2

(1)
(i)k

δt
, R

(1)
(i)jk =

δN
2

(1)
(i)j

δxk
−
δN

2

(1)
(i)k

δxj
,

B
(1) (k)
(i)1(1) =

∂N
1

(1)
(i)1

∂p1
k

, B
(1) (k)
(i)j(1) =

∂N
2

(1)
(i)j

∂p1
k

,

(9)

and N
1

(1)
(i)1 and N

2

(1)
(i)j are the coefficients of the given nonlinear connection N.

3. N-linear connections on the dual 1-jet space E∗ = J1∗(R,M)

A linear connection on E∗ = J1∗ (R,M) is an application D : X (E∗) × X (E∗) →
X (E∗) , (X,Y ) → DXY, having the properties: (1) DX1+X2

Y = DX1
Y + DX2

Y,
(2) DfXY = fDXY, (3) DX (Y1 + Y2) = DXY1 + DXY2, (4) DX (fY ) = X(f)Y +
fDXY, where X, X1, X2, Y1, Y2, Y ∈ X (E∗) and f ∈ F (E∗). Obviously, the linear
connection D on E∗ can be uniquely determined by twenty-seven local coefficients,
which are written in the adapted basis (6) in the form:

D δ

δt

δ

δt
= A1

11

δ

δt
+Ai

11

δ

δxi
+A

(1)
(i)11

∂

∂p1
i

, (10)

D δ

δt

δ

δxj
= A1

j1

δ

δt
+Ai

j1

δ

δxi
+A

(1)
(i)j1

∂

∂p1
i

,

−D δ

δt

∂

∂p1
j

= A
1(j)
(1)1

δ

δt
+A

i(j)
(1)1

δ

δxi
+A

(1)(j)
(i)(1)1

∂

∂p1
i

,
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D δ

δxk

δ

δt
= H1

1k

δ

δt
+Hi

1k

δ

δxi
+H

(1)
(i)1k

∂

∂p1
i

, (11)

D δ

δxk

δ

δxj
= H1

jk

δ

δt
+Hi

jk

δ

δxi
+H

(1)
(i)jk

∂

∂p1
i

,

−D δ

δxk

∂

∂p1
j

= H
1(j)
(1)k

δ

δt
+H

i(j)
(1)k

δ

δxi
+H

(1)(j)
(i)(1)k

∂

∂p1
i

,

D ∂

∂p1
k

δ

δt
= C

1(k)
1(1)

δ

δt
+ C

i(k)
1(1)

δ

δxi
+ C

(1) (k)
(i)1(1)

∂

∂p1
i

, (12)

D ∂

∂p1
k

δ

δxj
= C

1(k)
j(1)

δ

δt
+ C

i(k)
j(1)

δ

δxi
+ C

(1) (k)
(i)j(1)

∂

∂p1
i

,

−D ∂

∂p1
k

∂

∂p1
j

= C
1(j)(k)
(1)(1)

δ

δt
+ C

i(j)(k)
(1)(1)

δ

δxi
+ C

(1)(j)(k)
(i)(1)(1)

∂

∂p1
i

.

The big number of the adapted coefficients lead us to construct linear connections
whose number of coefficients is less. In this direction, let us consider a nonlinear
connection N on E∗.

Definition 3.1. A linear connection D on E∗ is called an N -linear connection if
it preserves by parallelism the R-horizontal, M -horizontal and vertical distributions
HR, HM and W on E∗.

It is obvious that now an N -linear connection is uniquely described by the adapted
basis of vector fields on E∗ with nine adapted coefficients given by the relations:

D δ

δt

δ

δt
= A1

11

δ

δt
, D δ

δt

δ

δxj
= Ai

j1

δ

δxi
, D δ

δt

∂

∂p1
j

= −A(1)(j)
(i)(1)1

∂

∂p1
i

,

D δ

δxk

δ

δt
= H1

1k

δ

δt
, D δ

δxk

δ

δxj
= Hi

jk

δ

δxi
, D δ

δxk

∂

∂p1
j

= −H(1)(j)
(i)(1)k

∂

∂p1
i

,

D ∂

∂p1
k

δ

δt
= C

1(k)
1(1)

δ

δt
, D ∂

∂p1
k

δ

δxj
= C

i(k)
j(1)

δ

δxi
, D ∂

∂p1
k

∂

∂p1
j

= −C(1)(j)(k)
(i)(1)(1)

∂

∂p1
i

.

Definition 3.2. The local functions

DΓ (N) =
(
A1

11, A
i
j1,−A

(1)(j)
(i)(1)1, H

1
1k, H

i
jk,−H

(1)(j)
(i)(1)k, C

1(k)
1(1) , C

i(k)
j(1),−C

(1)(j)(k)
(i)(1)(1)

)
(13)

are called the adapted coefficients of the N-linear connection D on E∗.

Taking into acount the tensorial transformation laws of the d-vector fields of the
adapted basis (6), by direct calculations, we obtain

Theorem 3.1. (i) With respect to the coordinate transformations (1) on E∗, the
adapted coefficients of the N -linear connection DΓ (N) obey the following transfor-
mation rules:
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(hR )



A1
11 = Ã1

11

dt̃

dt
+
dt

dt̃

d2t̃

dt2
,

Ai
j1 = Ãk

l1

∂xi

∂x̃k
∂x̃l

∂xj
dt̃

dt
,

A
(1)(j)
(i)(1)1 = Ã

(1)(l)
(k)(1)1

∂x̃k

∂xi
∂xj

∂x̃l
dt̃

dt
− δji

dt

dt̃

d2t̃

dt2
,

(hM )


H1

1k = H̃1
1l

∂x̃l

∂xk
,

H l
jk = H̃i

rs

∂x̃r

∂xj
∂x̃s

∂xk
∂xl

∂x̃i
+
∂xl

∂x̃i
∂2x̃i

∂xj∂xk
,

H
(1)(j)
(i)(1)k = H̃

(1)(l)
(r)(1)s

∂x̃r

∂xi
∂xj

∂x̃l
∂x̃s

∂xk
− ∂x̃r

∂xi
∂x̃s

∂xk
∂2xj

∂x̃r∂x̃s
,

( w )


C

1(k)
1(1) = C̃

1(r)
1(1)

∂xk

∂x̃r
dt̃

dt
,

C
i(k)
j(1) = C̃

r(s)
l(1)

∂xi

∂x̃r
∂x̃l

∂xj
∂xk

∂x̃s
dt̃

dt
,

C
(1)(j)(k)
(i)(1)(1) = C̃

(1)(r)(s)
(l)(1)(1)

∂x̃l

∂xi
∂xj

∂x̃r
∂xk

∂x̃s
dt̃

dt
.

(ii) Conversely, to give an N -linear connection D on E∗ is equivalent to give a set
of nine local coefficients DΓ (N) as in (13), which obey the rules described in (i).

Example 3.1. Let us consider the canonical nonlinear connection
0

N , which is given
by (5), associated with the semi-Riemannian metrics h11(t) and ϕij(x). Then, the
local components

BΓ

(
0

N

)
=
(
H1

11, 0, −A(1)(j)
(i)(1)1, 0, γijk, −H

(1)(j)
(i)(1)k, 0, 0, 0

)
(14)

where

A
(1)(j)
(i)(1)1 = −δjiH

1
11, H

(1)(j)
(i)(1)k = γjik, (15)

define an
0

N -linear connection on E∗, which is called the canonical
0

N -linear Berwald
connection attached to the metrics h11(t) and ϕij(x).

Let us consider that D is a fixed N -linear connection on E∗, defined by the adapted
coefficients (13). The linear connection DΓ (N) naturally induces derivations on the
set of d-tensor fields on the dual 1-jet space E∗. Starting from a d-vector field X ∈
X (E∗) and a d-tensor field T on E∗, locally expressed by

X = X1 δ

δt
+Xi δ

δxi
+X

(1)
(i)

∂

∂p1
i

,

T = T
1i(k)(1)...
1j(1)(l)...

δ

δt
⊗ δ

δxi
⊗ ∂

∂p1
l

⊗ dt⊗ dxj ⊗ δp1
k ⊗ ...,
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we obtain

DXT = X1D δ

δt

T +XsD δ

δxs

T +X
(1)
(s)D ∂

∂p1
s

T

=
{
X1T

1i(k)(1)...
1j(1)(l).../1 +XsT

1i(k)(1)...
1j(1)(l)...|s+

+X
(1)
(s)T

1i(k)(1)...
1j(1)(l)... |

(s)
(1)

} δ

δt
⊗ δ

δxi
⊗ ∂

∂p1
l

⊗ dt⊗ dxj ⊗ δp1
k ⊗ ...,

where

(hR )



T
1i(k)(1)...
1j(1)(l).../1 =

δT
1i(k)(1)...
1j(1)(l)...

δt
+ T

1i(k)(1)...
1j(1)(l)... A

1
11+

+T
1r(k)(1)...
1j(1)(l)... A

i
r1 + T

1i(r)(1)...
1j(1)(l)... A

(1)(k)
(r)(1)1 + ...−

−T 1i(k)(1)...
1j(1)(l)... A

1
11 − T

1i(k)(1)...
1r(1)(l)... A

r
j1−

−T 1i(k)(1)...
1j(1)(r)...A

(1)(r)
(l)(1)1 − ...,

(hM )



T
1i(k)(1)...
1j(1)(l)...|s =

δT
1i(k)(1)...
1j(1)(l)...

δxs
+ T

1i(k)(1)...
1j(1)(l)... H

1
1s+

+T
1r(k)(1)...
1j(1)(l)... H

i
rs + T

1i(r)(1)...
1j(1)(l)...H

(1)(k)
(r)(1)s + ...−

−T 1i(k)(1)...
1j(1)(l)... H

1
1s − T

1i(k)(1)...
1r(1)(l)... H

r
js−

−T 1i(k)(1)...
1j(1)(r)...H

(1)(r)
(l)(1)s − ...,

( w )



T
1i(k)(1)...
1j(1)(l)...

∣∣∣(s)
(1) =

∂T
1i(k)(1)...
1j(1)(l)...

∂p1
s

+ T
1i(k)(1)...
1j(1)(l)... C

1(s)
1(1)+

+T
1r(k)(1)...
1j(1)(l)... C

i(s)
r(1) + T

1i(r)(1)...
1j(1)(l)... C

(1)(k)(s)
(r)(1)(1) + ...−

−T 1i(k)(1)...
1j(1)(l)... C

1(s)
1(1) − T

1i(k)(1)...
1r(1)(l)... C

r(s)
j(1)−

−T 1i(k)(1)...
1j(1)(r)...C

(1)(r)(s)
(l)(1)(1) − ....

Definition 3.3. The local derivative operators ”/1”, ”|i” and ” |(i)(1) ” are called

the R-horizontal covariant derivative, the M -horizontal covariant derivative and the
vertical covariant derivative attached to the N -linear connection DΓ (N).

Remark 3.1. The operators ”/1”, ”|i” and ” |(i)(1) ” have the properties:

(i) They are distributive with respect to the addition of the d-tensor fields of the
same type.

(ii) They commute with the operation of contraction.
(iii) They verify the Leibniz rule with respect to the tensor product.

Remark 3.2. (i) If T = f(t, xk, p1
k) is a function on E∗, then the following expressions

of the local covariant derivatives are true:

f/1 =
δf

δt
=
∂f

∂t
−N

1

(1)
(i)1

∂f

∂p1
i

, f|j =
δf

δxj
=

∂f

∂xj
−N

2

(1)
(i)j

∂f

∂p1
i

, f |(i)(1) =
∂f

∂p1
i

.

(ii) If T = Y is a d-vector field on E∗, locally expressed by

Y = Y 1 δ

δt
+ Y i δ

δxi
+ Y

(1)
(i)

∂

∂p1
i

,
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then the following expressions of the local covariant derivatives are true:

(hR)



Y 1
/1 =

δY 1

δt
+ Y 1A1

11,

Y i
/1 =

δY i

δt
+ Y jAi

j1,

Y
(1)
(i)/1 =

δY
(1)
(i)

δt
− Y (1)

(j) A
(1)(j)
(i)(1)1,

(hM )



Y 1
|k =

δY 1

δxk
+ Y 1H1

1k,

Y i
|k =

δY i

δxk
+ Y jHi

jk,

Y
(1)
(i)|k =

δY
(1)
(i)

δxk
− Y (1)

(j) H
(1)(j)
(i)(1)k,

(w)



Y 1 |(k)
(1)=

∂Y 1

∂p1
k

+ Y 1C
1(k)
1(1) ,

Y i |(k)
(1)=

∂Y i

∂p1
k

+ Y jC
i(k)
j(1),

Y
(1)
(i) |

(k)
(1)=

∂Y
(1)
(i)

∂p1
k

− Y (1)
(j) C

(1)(j)(k)
(i)(1)(1) .

(iii) If T = ω is a d-covector field on E∗, locally expressed by

ω = ω1dt+ ωidx
i + ω

(i)
(1)δp

1
i ,

then the following expressions of the local covariant derivatives are true:

(hR)



ω1/1 =
δω1

δt
− ω1A

1
11,

ωi/1 =
δωi

δt
− ωjA

j
i1,

ω
(i)
(1)/1 =

δω
(i)
(1)

δt
+ ω

(j)
(1)A

(1)(i)
(j)(1)1,

(hM )



ω1|k =
δω1

δxk
− ω1H

1
1k,

ωi|k =
δωi

δxk
− ωjH

j
ik,

ω
(i)
(1)|k =

δω
(i)
(1)

δxk
+ ω

(j)
(1)H

(1)(i)
(j)(1)k,

(w)



ω1 |(k)
(1)=

∂ω1

∂p1
k

− ω1C
1(k)
1(1) ,

ωi |(k)
(1)=

∂ωi

∂p1
k

− ωjC
j(k)
i(1) ,

ω
(i)
(1) |

(k)
(1)=

∂ω
(i)
(1)

∂p1
k

+ ω
(j)
(1)C

(1)(i)(k)
(j)(1)(1).

Notation. In the particular case of the canonical Berwald
0

N -linear connection given
by (5), (14) and (15), associated with the semi-Riemannian metrics h11(t) and ϕij(x),

the local covariant derivatives are denoted by ”//1”, ”||i” and ” ‖(i)(1) ”.

Considering the canonical Liouville-Hamilton d-tensor field of momenta on E∗,
which is given by

C∗ = C(1)
(i)

∂

∂p1
i

= p1
i

∂

∂p1
i

,

by direct computations, we can give an application of this paragraph.

Definition 3.4. The d-tensor fields

∆
(1)
(i)1 = C(1)

(i)/1, ∆
(1)
(i)j = C(1)

(i)|j , ϑ
(1)(j)
(i)(1) = C(1)

(i) |
(j)
(1), (16)
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are called the momentum non-metrical deflection d-tensor fields attached to the N -
linear connection DΓ (N).

Proposition 3.2. The momentum deflection d-tensor fields on E∗, attached to the
N -linear connection DΓ (N) , have the expressions:

∆
(1)
(i)1 = −N

1

(1)
(i)1 −A

(1)(k)
(i)(1)1p

1
k, ∆

(1)
(i)j = −N

2

(1)
(i)j −H

(1)(k)
(i)(1)jp

1
k,

ϑ
(1)(j)
(i)(1) = δji − C

(1)(k)(j)
(i)(1)(1) p

1
k.

(17)

3.1. Torsion d-tensors. Let D be an N -linear connection on E∗. The torsion T of
D is given by

T (X,Y ) = DXY −DYX − [X,Y ] , ∀ X,Y ∈ X (E∗) . (18)

Let us suppose that the N -linear connection D is given in the adapted basis (6) by
the coefficients DΓ (N) from (13). In this context, we have

Theorem 3.3. The local torsion d-tensors of the N -linear connection D on E∗ have
the expressions:

hRT

(
δ

δt
,
δ

δt

)
= T 1

11

δ

δt
, hMT

(
δ

δt
,
δ

δt

)
= T k

11

δ

δxk
,

wT

(
δ

δt
,
δ

δt

)
= T

(1)
(r)11

∂

∂p1
r

,

hRT

(
δ

δxj
,
δ

δt

)
= T 1

1j

δ

δt
, hMT

(
δ

δxj
,
δ

δt

)
= T k

1j

δ

δxk
,

wT

(
δ

δxj
,
δ

δt

)
= T

(1)
(r)1j

∂

∂p1
r

,

hRT

(
∂

∂p1
j

,
δ

δt

)
= P

1(j)
1(1)

δ

δt
, hMT

(
∂

∂p1
j

,
δ

δt

)
= P

k(j)
1(1)

δ

δxk
,

wT

(
∂

∂p1
j

,
δ

δt

)
= P

(1) (j)
(r)1(1)

∂

∂p1
r

,

hRT

(
δ

δxj
,
δ

δxi

)
= T 1

ij

δ

δt
, hMT

(
δ

δxj
,
δ

δxi

)
= T k

ij

δ

δxk
,

wT

(
δ

δxj
,
δ

δxi

)
= T

(1)
(r)ij

∂

∂p1
r

,

hRT

(
∂

∂p1
j

,
δ

δxi

)
= P

1(j)
i(1)

δ

δt
, hMT

(
∂

∂p1
j

,
δ

δxi

)
= P

k(j)
i(1)

δ

δxk
,

wT

(
∂

∂p1
j

,
δ

δxi

)
= P

(1) (j)
(r)i(1)

∂

∂p1
r

,

hRT

(
∂

∂p1
j

,
∂

∂p1
i

)
= S

1(i)(j)
(1)(1)

δ

δt
, hMT

(
∂

∂p1
j

,
∂

∂p1
i

)
= S

k(i)(j)
(1)(1)

δ

δxk
,
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wT

(
∂

∂p1
j

,
∂

∂p1
i

)
= S

(1)(i)(j)
(r)(1)(1)

∂

∂p1
r

,

where 
T 1

11 = 0, T k
11 = 0, T

(1)
(r)11 = 0,

T 1
1j = H1

1j , T k
1j = −Ak

j1, T
(1)
(r)1j = R

(1)
(r)1j ,

P
1(j)
1(1) = C

1(j)
1(1) , P

k(j)
1(1) = 0, P

(1) (j)
(r)1(1) = B

(1) (j)
(r)1(1) +A

(1)(j)
(r)(1)1,

(19)

 T 1
ij = 0, T k

ij = Hk
ij −Hk

ji, T
(1)
(r)ij = R

(1)
(r)ij ,

T
1(j)
i(1) = 0, P

k(j)
i(1) = C

k(j)
i(1) , P

(1) (j)
(r)i(1) = B

(1) (j)
(r)i(1) +H

(1)(j)
(r)(1)i,

(20)

S
1(i)(j)
(1)(1) = 0, S

k(i)(j)
(1)(1) = 0, S

(1)(i)(j)
(r)(1)(1) = −

(
C

(1)(i)(j)
(r)(1)(1) − C

(1)(j)(i)
(r)(1)(1)

)
(21)

and the distinguished tensors

R
(1)
(r)1j , R

(1)
(r)ij , B

(1) (j)
(r)1(1), B

(1) (j)
(r)i(1)

are given by the formulas (9).

Proof. Taking into account the Poisson brackets formulas (8) and (9), together with
the local description in the adapted basis (6) of the N -linear connection DΓ (N) (see
(13)), we successively obtain

hRT

(
δ

δt
,
δ

δt

)
= hRD δ

δt

δ

δt
− hRD δ

δt

δ

δt
− hR

[
δ

δt
,
δ

δt

]
= 0.

Consequently, the first equality from (19) is true. In the sequel, we have

hMT

(
δ

δxj
,
δ

δt

)
= hMD δ

δxj

δ

δt
− hMD δ

δt

δ

δxj
− hM

[
δ

δxj
,
δ

δt

]
= −Ak

j1

δ

δxk
,

and the fifth equality from (19) is correct. Then, for example, we have

wT

(
∂

∂p1
j

,
δ

δt

)
= wD ∂

∂p1
j

δ

δt
− wD δ

δt

∂

∂p1
j

− w

[
∂

∂p1
j

,
δ

δt

]
=

=
(
A

(1)(j)
(r)(1)1 +B

(1) (j)
(r)1(1)

) ∂

∂p1
r

,

and the ninth equality from (19) is true. In the same manner, we obtain the other
equalities. �
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Corollary 3.4. The torsion T of an arbitrary N -linear connection D on E∗ is deter-
mined by ten effective local d-tensors of torsion, arranged in the following table:

hR hM w
hRhR 0 0 0

hMhR T 1
1j T k

1j R
(1)
(r)1j

whR P
1(j)
1(1) 0 P

(1) (j)
(r)1(1)

hMhM 0 T k
ij R

(1)
(r)ij

whM 0 P
k(j)
i(1) P

(1) (j)
(r)i(1)

ww 0 0 S
(1)(i)(j)
(r)(1)(1)

Example 3.2. For the canonical Berwald
0

N -linear connection given by (5), (14) and
(15), associated with the semi-Riemannian metrics h11(t) and ϕij(x), all d-tensors of

torsion vanish, except R
(1)
(r)ij = −Rs

rijp
1
s, where Rs

rij(x) are the local components of

the curvature tensor of the semi-Riemannian metric ϕij(x).

3.2. Curvature d-tensors. Let D be an N -linear connection on E∗. The curvature
R of D is given by

R (X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z, ∀ X,Y, Z ∈ X (E∗) . (22)

We will express R by his adapted components, taking into account the adapted
local decomposition of the vector fields on E∗. In this direction, firstly we prove

Theorem 3.5. The curvature tensor field R of the N -linear connection D on E∗ has
the properties:

hRR (X,Y )ZHM = 0, hRR (X,Y )ZW = 0, hMR (X,Y )ZHR = 0,
hMR (X,Y )ZW = 0, wR (X,Y )ZHR = 0, wR (X,Y )ZHM = 0,

(23)

R (X,Y )Z = hRR (X,Y )ZHR + hMR (X,Y )ZHM + wR (X,Y )ZW . (24)

Proof. Because the N -linear connection D preserves by parallelism theHR-horizontal,
HM -horizontal and vertical distributions, via the formula (22), the operator R (X,Y )
carries hR-horizontal (resp. hM -horizontal) vector fields into hR-horizontal (resp. hM -
horizontal) vector fields and the vertical vector fields into vertical vector fields. Thus,
the first six equations from (23) are true. The next one is an easy consequence of the
first six. �

Taking into account the preceding geometrical result, by straightforward calculus,
we obtain

Theorem 3.6. The curvature tensor R of the N -linear connection D is completely
determined by fifteen local d-tensors of curvature:

R

(
δ

δt
,
δ

δt

)
δ

δt
= 0, R

(
δ

δt
,
δ

δt

)
δ

δxi
= 0, R

(
δ

δt
,
δ

δt

)
∂

∂p1
i

= 0,

R

(
δ

δxk
,
δ

δt

)
δ

δt
= R1

11k

δ

δt
, R

(
δ

δxk
,
δ

δt

)
δ

δxi
= Rl

i1k

δ

δxl
,

R

(
δ

δxk
,
δ

δt

)
∂

∂p1
i

= −R(1)(i)
(l)(1)1k

∂

∂p1
l

,
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R

(
∂

∂p1
k

,
δ

δt

)
δ

δt
= P

1 (k)
11(1)

δ

δt
, R

(
∂

∂p1
k

,
δ

δt

)
δ

δxi
= P

l (k)
i1(1)

δ

δxl
,

R

(
∂

∂p1
k

,
δ

δt

)
∂

∂p1
i

= −P (1)(i) (k)
(l)(1)1(1)

∂

∂p1
l

,

R

(
δ

δxk
,
δ

δxj

)
δ

δt
= R1

1jk

δ

δt
, R

(
δ

δxk
,
δ

δxj

)
δ

δxi
= Rl

ijk

δ

δxl
,

R

(
δ

δxk
,
δ

δxj

)
∂

∂p1
i

= −R(1)(i)
(l)(1)jk

∂

∂p1
l

,

R

(
∂

∂p1
k

,
δ

δxj

)
δ

δt
= P

1 (k)
1j(1)

δ

δt
, R

(
∂

∂p1
k

,
δ

δxj

)
δ

δxi
= P

l (k)
ij(1)

δ

δxl
,

R

(
∂

∂p1
k

,
δ

δxj

)
∂

∂p1
i

= −P (1)(i) (k)
(l)(1)j(1)

∂

∂p1
l

,

R

(
∂

∂p1
k

,
∂

∂p1
j

)
δ

δt
= S

1(j)(k)
1(1)(1)

δ

δt
, R

(
∂

∂p1
k

,
∂

∂p1
j

)
δ

δxi
= S

l(j)(k)
i(1)(1)

δ

δxl
,

R

(
∂

∂p1
k

,
∂

∂p1
j

)
∂

∂p1
i

= −S(1)(i)(j)(k)
(l)(1)(1)(1)

∂

∂p1
l

,

which we can arrange in the following table:

hR hM w
hRhR 0 0 0

hMhR R1
11k Rl

i1k −R(1)(i)
(l)(1)1k

whR P
1 (k)
11(1) P

l (k)
i1(1) −P (1)(i) (k)

(l)(1)1(1)

hMhM R1
1jk Rl

ijk −R(1)(i)
(l)(1)jk

whM P
1 (k)
1j(1) P

l (k)
ij(1) −P (1)(i) (k)

(l)(1)j(1)

ww S
1(j)(k)
1(1)(1) S

l(j)(k)
i(1)(1) −S(1)(i)(j)(k)

(l)(1)(1)(1)

(25)

Theorem 3.7. The fifteen local curvature d-tensors from the Table (25) are given by
the following formulas:

1. R1
11k =

δA1
11

δxk
− δH1

1k

δt
+ C

1(r)
1(1)R

(1)
(r)1k,

2. Rl
i1k =

δAl
i1

δxk
− δH l

ik

δt
+Ar

i1H
l
rk −Hr

ikA
l
r1 + C

l(r)
i(1)R

(1)
(r)1k,

3. R
(1)(i)
(l)(1)1k =

δA
(1)(i)
(l)(1)1

δxk
−
δH

(1)(i)
(l)(1)k

δt
+A

(1)(r)
(l)(1)1H

(1)(i)
(r)(1)k−

−H(1)(r)
(l)(1)kA

(1)(i)
(r)(1)1 + C

(1)(i)(r)
(l)(1)(1)R

(1)
(r)1k,

4. P
1 (k)
11(1) =

∂A1
11

∂p1
k

− C1(k)
1(1)/1 + C

1(r)
1(1)P

(1) (k)
(r)1(1) ,

5. P
l (k)
i1(1) =

∂Al
i1

∂p1
k

− Cl(k)
i(1)/1 + C

l(r)
i(1)P

(1) (k)
(r)1(1) ,
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6. P
(1)(i) (k)
(l)(1)1(1) =

∂A
(1)(i)
(l)(1)1

∂p1
k

− C(1)(i)(k)
(l)(1)(1)/1 + C

(1)(i)(r)
(l)(1)(1)P

(1) (k)
(r)1(1) ,

7. R1
1jk =

δH1
1j

δxk
− δH1

1k

δxj
+ C

1(r)
1(1)R

(1)
(r)jk,

8. Rl
ijk =

δH l
ij

δxk
− δH l

ik

δxj
+Hr

ijH
l
rk −Hr

ikH
l
rj + C

l(r)
i(1)R

(1)
(r)jk,

9. R
(1)(i)
(l)(1)jk =

δH
(1)(i)
(l)(1)j

δxk
−
δH

(1)(i)
(l)(1)k

δxj
+H

(1)(r)
(l)(1)jH

(1)(i)
(r)(1)k−

−H(1)(r)
(l)(1)kH

(1)(i)
(r)(1)j + C

(1)(i)(r)
(l)(1)(1)R

(1)
(r)jk,

10. P
1 (k)
1j(1) =

∂H1
1j

∂p1
k

− C1(k)
1(1)|j + C

1(r)
1(1)P

(1) (k)
(r)j(1) ,

11. P
l (k)
ij(1) =

∂H l
ij

∂p1
k

− Cl(k)
i(1)|j + C

l(r)
i(1)P

(1) (k)
(r)j(1) ,

12. P
(1)(i) (k)
(l)(1)j(1) =

∂H
(1)(i)
(l)(1)j

∂p1
k

− C(1)(i)(k)
(l)(1)(1)|j + C

(1)(i)(r)
(l)(1)(1)P

(1) (k)
(r)j(1) ,

13. S
1(j)(k)
1(1)(1) =

∂C
1(j)
1(1)

∂p1
k

−
∂C

1(k)
1(1)

∂p1
j

,

14. S
l(j)(k)
i(1)(1) =

∂C
l(j)
i(1)

∂p1
k

−
∂C

l(k)
i(1)

∂p1
j

+ C
r(j)
i(1)C

l(k)
r(1) − C

r(k)
i(1) C

l(j)
r(1),

15. S
(1)(i)(j)(k)
(l)(1)(1)(1) =

∂C
(1)(i)(j)
(l)(1)(1)

∂p1
k

−
∂C

(1)(i)(k)
(l)(1)(1)

∂p1
j

+ C
(1)(r)(j)
(l)(1)(1) C

(1)(i)(k)
(r)(1)(1)−

−C(1)(r)(k)
(l)(1)(1) C

(1)(i)(j)
(r)(1)(1).

Proof. The local decomposition in the adapted basis (6) of the N -linear connection
DΓ (N) (see (13)), together with the formulas (8) and (9), lead us to, for example,

R

(
∂

∂p1
k

,
δ

δt

)
∂

∂p1
i

= −P (1)(i) (k)
(l)(1)1(1)

∂

∂p1
l

=

= D ∂

∂p1
k

D δ

δt

∂

∂p1
i

−D δ

δt

D ∂

∂p1
k

∂

∂p1
i

−D ∂

∂p1
k

,
δ

δt


∂

∂p1
i

= −D ∂

∂p1
k

(
A

(1)(i)
(r)(1)1

∂

∂p1
r

)
+D δ

δt

(
C

(1)(i)(k)
(r)(1)(1)

∂

∂p1
r

)
+B

(1) (k)
(r)1(1)D ∂

∂p1
r

∂

∂p1
i

= −
∂A

(1)(i)
(l)(1)1

∂p1
k

∂

∂p1
l

+A
(1)(i)
(r)(1)1C

(1)(r)(k)
(l)(1)(1)

∂

∂p1
l

+
δC

(1)(i)(k)
(l)(1)(1)

δt

∂

∂p1
l

− C(1)(i)(k)
(r)(1)(1)A

(1)(r)
(l)(1)1

∂

∂p1
l

−B(1) (k)
(r)1(1)C

(1)(i)(r)
(l)(1)(1)

∂

∂p1
l

.
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Therefore, we have

P
(1)(i) (k)
(l)(1)1(1) =

∂A
(1)(i)
(l)(1)1

∂p1
k

−A(1)(i)
(r)(1)1C

(1)(r)(k)
(l)(1)(1) −

−
δC

(1)(i)(k)
(l)(1)(1)

δt
+ C

(1)(i)(k)
(r)(1)(1)A

(1)(r)
(l)(1)1 +B

(1) (k)
(r)1(1)C

(1)(i)(r)
(l)(1)(1) .

Now, using the formula of the R-horizontal covariant derivative, we get

C
(1)(i)(k)
(l)(1)(1)/1 =

δC
(1)(i)(k)
(l)(1)(1)

δt
− C(1)(i)(k)

(r)(1)(1)A
(1)(r)
(l)(1)1 + C

(1)(r)(k)
(l)(1)(1) A

(1)(i)
(r)(1)1 +

+C
(1)(i)(r)
(l)(1)(1)A

(1)(k)
(r)(1)1,

and, consequently, interchanging the underlined terms, it follows that

P
(1)(i) (k)
(l)(1)1(1) =

∂A
(1)(i)
(l)(1)1

∂p1
k

− C(1)(i)(k)
(l)(1)(1)/1 + C

(1)(i)(r)
(l)(1)(1)P

(1) (k)
(r)1(1) ,

where we also used the last formula from (19). Obviously, this is the 6-th relation of
the above set of identities.

The other equalities are given in the same manner. �

Example 3.3. For the canonical Berwald
0

N -linear connection given by (5), (14) and
(15), associated with the semi-Riemannian metrics h11(t) and ϕij(x), all curvature d-

tensors vanish, except Rl
ijk = R

(1)(l)
(i)(1)jk = Rl

ijk, where Rl
ijk(x) are the local curvature

tensors of the semi-Riemannian metric ϕij(x).
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[6] M. Neagu and A. Oană, Dual jet geometrical objects of momenta in the time-dependent Hamilton
geometry, arXiv:1610.08790v2 [math.DG], (2020).

[7] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York,

1986.
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