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1. Introduction

According to Olver’s opinion [7], we consider that the 1-jet spaces and their duals
are the fundamental ambient mathematical spaces used in the study of classical and
quantum field theories in their Lagrangian and Hamiltonian approaches. For this
reason, we start our geometrical study considering a smooth real manifold M™ of
dimension n, whose local coordinates are (xi)i:ﬁ, and we construct the dual 1-jet
vector bundle (as time-dependent phase space of momenta [2], [6])

JYR,M)=R xT*M — R x M,

whose local coordinates are denoted by (¢, 2%, p}). The transformations of coordinates
(t, 2, pl) +— (¢, 7%, p}) on the dual 1-jet space J1*(R, M) are
o0x7 dt 1

—pl 1
oz i’ M)
where di/dt # 0 and det(93°/0x’) # 0. Consequently, in our dual jet geometrical
approach, we use a ”"relativistic” time ¢. Comparatively, in Atanasiu, Miron and his
co-workers’ Hamiltonian approach (see [1], [4] and [5]), the authors use the trivial

bundle R x 7™M over the base cotangent space 1M, whose coordinates induced by
T*M are (t,2%,p;). Thus, the changes of coordinates on the trivial bundle

RxT*M —T*M

i=i(t), #@=1"(a’), p}=

are given by
P=t, @ =i (al), p= T, 2)
=1, = , DPi = o7 Dy,
pointing out the absolute character of the time variable .
In order to point out the more naturalness of our dual jet approach of time-
dependent Hamilton geometry, we underline that, from a geometrical point of view,
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the time-dependent Lagrangian theory from [5] relies on the geometrical study of the
energy action integral

b
El(c(t)):/ L(t,z'(t),y" = @%(t))dt

which has the impediment that it is dependent by the reparametrizations t <— ¢
of the same curve c. This is because L(t,z¢ 3") is a function on the vector bundle
R x TM — M. This inconvenience is removed in the Finsler geometry by imposing
the 1-positive homogeneity condition L(t,z¢, \y*) = AL(t, 2%, 4*), ¥V A > 0. The second
way to remove this inconvenience of dependence of reparametrizations of the energy
action integral is to use the 1-jet space J'(R, M) = R x TM and the energy action
integral (see [3])

b
By (c(t)) = / L(t, 2 (), 4}, = & (6)) /T (D),

where L(t,x% y}) is a function on the 1-jet vector bundle J!(R, M) — R x M and
h11 is a semi-Riemannian metric on the time manifold R. Taking into account that,
via the Legendre duality of the Hamilton spaces with the Lagrange spaces, in the
book [5] is shown that the theory of Hamilton spaces has the same symmetry as the
Lagrange geometry, giving thus a geometrical framework for the Hamiltonian theory
of Analytical Mechanics, it follows that the more natural house for the study of the
time-dependent Hamilton geometry is the dual 1-jet space J'*(R, M) which provides
an energy action integral independent by temporal reparametrizations of the same
curve.

The subsequent development of the time-dependent Hamilton geometry relies on
the following geometrical constructions: (1) the writing of the time dependent Hamil-
tonian H associated with the time-dependent Lagrangian function L(t, z¢, y!); (2) the
producing of a natural dual jet Hamiltonian nonlinear connection N (provided only
by the Hamiltonian H and intimately connected with the canonical nonlinear con-
nection produced by the Lagrangian function L, via its Euler-Lagrange equations);
(3) the construction of a natural Cartan canonical N-linear connection CT'(N) on the
dual 1-jet space J'*(R, M); (4) the computations of the adapted components of the
d-torsions and d-curvatures associated with the Cartan connection CT'(N). Conse-
quently, the present paper is only a step in the forthcoming time-dependent Hamilton
geometry, creating geometrical foundations for the subsequent theory.

In this way, as an example, we will study in a subsequent paper, the dual jet
time-dependent Hamiltonian of electrodynamics (see [5] and [2])

1
"~ 4dme

2
ha ()67 (@)pip} — —— AR @)p} + —-F(t,2), (3)
where AE;)) (r) is a d-tensor on J'*(R, M) having the physical meaning of a poten-
tial d-tensor of an electromagnetic field, e is the charge of the test body and the
function F(t,z) is given by F(t,z) = h'(t)¢i; (x)AE?) (x)Ag; (). This Hamiltonian
is important because it naturally generalizes (in a time-dependent way) the Hamil-
tonian that governs the physical domain of the autonomous (i.e., time-independent)
electrodynamics. The geometrization associated with this time-dependent Hamilton-
ian will consists of a canonical nonlinear connection N, a Cartan canonical N-linear
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connection CT(N) together with its adapted d-torsions and d-curvatures. All these
geometrical objects are provided only by the initial time-dependent Hamiltonian (3).

2. Nonlinear connections and adapted bases

In what follows, in order to locally study the linear connections on the dual 1-jet space

JY¥(R, M), we recall that a pair of local functions N = (]}72116))1, JQ/EB) on JY*(R, M),

which transform by the rules (see [0])

~ (1) oxk  dt aﬁ;

) _ ) 92t dtIp;
Non=Nonge ~giae 0
O _ yty dE02* 0at 0’ OF;
2 2 (Wi 9Fi 9zr 9 dat’

is called a nonlinear connection on the dual 1-jet bundle J**(R, M). Moreover, the
geometrical entity 2}7 = (]}f ((jl))1> (respectively ];T = <];7 ((jl))i)) is called a temporal

(respectively spatial) nonlinear connection on J*(R, M).

0 0 0
Example 2.1. The pair of local functions N = <J¥ 8))1, ];/' E;))j)’ where

~Zo

1 Ya
Ei)l = Hlllpzlv ];fgl))j = _’Vzkjpllw (5)
is called the canonical nonlinear connection on J'*(R, M), associated with the pair of
semi-Riemannian metrics (h11(t), i;(z)). Note that H{,(t) (respectively 'yfj(x)) are
the Christoffel symbols attached to the semi-Riemannian metrics hq1(t) and ¢;;(x).

The nonlinear connection N = (J}f E/lc))p J;f E,lc))l) is useful in order to construct the

adapted bases of vector and covector fields, namely

5§ & 0 . i . [ lx
{&’w’ap}} C X (J™(R,M)), {dt,da*,6p;} c X* (J"™(R,M)),  (6)

where

0 a 0 ) 0 (1 0

— Ny — = — _ N(ij—
ot ot 1Wopl at T axi 2 Wigpl

op} = dp} + Nt + N (3 dad.

(7)

Remark 2.1. The adapted bases of vector and covector fields (6) are important
because, with respect to the coordinate transformations (1), their elements have the
local transformation laws as tensorial ones. For this reason, all future geometrical
objects from this paper, such as linear connections, torsions and curvatures, will be
locally described in adapted bases.

Obviously, the Lie algebra of vector fields on J**(R, M) decomposes in the direct
sum X (J*(R, M)) = X (Hr) ® X (Ha) © X (W), where

= {2} 000 = spn { 21 00 = spn {2,
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while the Lie algebra of covector fields on J*(R, M) decomposes in the direct sum
X% (J(R, M)) = X* (Hg) ® X* (Har) @ X* (W), where
X* (Hr) = Span{dt}, X* (Hun) = Span{dz'}, X* (W) = Span {sp}}.

Definition 2.1. The distributions Hr and H,s; are called the R-horizontal distri-
bution and M -horizontal distribution on J1*(R, M). The distribution W is called
the wertical distribution on J'*(R,M). Moreover, we denote by hg, hy and w the
corresponding projections associated with these distributions.

In applications, the Poisson brackets of the d-vector fields (6) are very important.
Consequently, by a direct calculus, we obtain

Proposition 2.1. The Poisson brackets of the d-vector fields of the adapted basis (6)
are given by

(3 3] _, (6 S _pm 9
Lot’ot] |0t Sxk | @k gpl”
(6 O (k) O (6 & 1y 0
5 0] _ om0 K R
|5t apL D10 gpl” | 527 dak (D7k Gl (8)
(6 0] _powd |0 9| _
| 6297 Dp}, i) gpt’ _3p; " Op;, ’
where
(1) (1) (1) (1)
W N Wi Wi
rO  _ - RW =
(9)1k Sxk ot 1 ik Sxk dxi 9)
3N(1) aN(l)
1 ()1 5 ()7
B (*) _ B ®) _
@11 = gpl i) = “gpr

and ]}78))1 and 1;78))], are the coefficients of the given nonlinear connection N.

3. N-linear connections on the dual 1-jet space E* = J™*(R, M)

A linear connection on E* = J'* (R, M) is an application D : X (E*) x X (E*) —
X (E*), (X,Y) — DxY, having the properties: (1) Dx,+x,Y = Dx,Y + Dx,Y,
(2) DyxY = fDxY, (3) Dx (Y1 +Y2) = DxY1 + DxYs, (4) Dx (fY) = X(f)Y +
fDxY, where X, X1, X5, Y1, Ys, Y € X (E*) and f € F (E*). Obviously, the linear
connection D on E* can be uniquely determined by twenty-seven local coeflicients,
which are written in the adapted basis (6) in the form:

5 N RV SN

Ds— = A, —+A, —+ A4 — 1
9 5t ng g T A, (10)
ot
1) B 1 0 , 0 1y 0
ot
9  _ am 9, i) 9 e 9
g A (157 + A 520 +A(i)(1)187p%7

o J

ot
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P P 5 B
D s — = HY—+mgi, ~ 4+ g» 2 11
Y 1k5t+ 1k5$l+ (D)1k pI” (11)
Sxk
5 P .6 1 0
Do 5o = Mgt gy Aok gpr
Sxk
9 1) O i) O ) 9
D s — = H'O S g 2 A
9 gyt rge T Ok T EOWE gD
dxk
g 1(k) 0 z(k 1) (& 0
Diﬁ = 01(1 5t+c C(z 1) 9p 17 (12)
op},
o am i(k) 0 1) (k) O
Do 55 = GugTtGa 5xz+c<i>j<”87}’
810,1C
9 1(J) (k) O iG) (k) O WG k) 9
’Di@ = Con g 005 T Chnw gyt
(3‘p,1C

The big number of the adapted coefficients lead us to construct linear connections
whose number of coefficients is less. In this direction, let us consider a nonlinear
connection N on E*.

Definition 3.1. A linear connection D on E* is called an N-linear connection if
it preserves by parallelism the R-horizontal, M-horizontal and vertical distributions
Hr, Hpr and W on E*.

It is obvious that now an N-linear connection is uniquely described by the adapted
basis of vector fields on E* with nine adapted coefficients given by the relations:

s 40 6 . 6 o oG 9
Do = Angp Do = Angm Dé@—‘Auxl)l@’
ot 5t ot
0 _ g0 0 _ i S 9 e
b5 T Mg P 5 T Mg P o gpr = T Homikgr
oxk Sk Sk
om0 6 itk O o _ ()(J)(k) 9
Doy = Qs P o 5 =%0sa P o g = ~Cam g1
Ipj, op;, 8pk

Definition 3.2. The local functions

_ ) W) (AE) ik _ AOGE
DT (N) = (Air A, —AGG, Hi By —HGEL O 08, —cE) (3)

are called the adapted coefficients of the N-linear connection D on E*.

Taking into acount the tensorial transformation laws of the d-vector fields of the
adapted basis (6), by direct calculations, we obtain

Theorem 3.1. (i) With respect to the coordinate transformations (1) on E*, the
adapted coefficients of the N-linear connection DI (N) obey the following transfor-
mation rules:
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_dldtd?l

Al :Al 5 =75
n =gt g

. - Oz 9zt dt

) § 45 = A 5o 5o e

AWG) _ g 0 dx) dE o dt &
OO R ggi gzt dt - df di2’

- ozt

Hllk = Hlll@7 1 l

_ . 9i" 97° 9xt 9t 92
h HYy =Hi o b
(ha) ik TS Oxd Ok HF ozt Oxidxk’ )
-~y OF 0x) 0F°  0F" 0F° O

OO _ 9% _ 0%" 9%°
OIOL MWs gzt 9zt OxF  dat Ik 9T OFS’
oLk _ AL oxk dt

() — YU T g’
itk) _ Ar(s) 02’ 0T Dat di
(w) Y G0y =G0 g3 i 5 @t
1)(r)(s) 0% 027 Ox* di
DWW 9g7 9F" Oz dt”

WK _ Al
Cimay =

(ii) Conversely, to give an N -linear connection D on E* is equivalent to give a set
of mine local coefficients DI' (N) as in (13), which obey the rules described in (i).

0
Example 3.1. Let us consider the canonical nonlinear connection N, which is given
by (5), associated with the semi-Riemannian metrics hq1(t) and ¢;;(«). Then, the
local components

0 1)(4 ; (5
BT (N) - (Hlll, 0, — AR 0, Al —HEE 0,0, o) (14)

where

D 4 Do ,
Agi))((f))1 = —6]Hjy, H((i))((lj))k = Yik> (15)

0 0
define an N-linear connection on E*, which is called the canonical N -linear Berwald
connection attached to the metrics hi1(t) and @;;(x).

Let us consider that D is a fixed N-linear connection on E*, defined by the adapted
coefficients (13). The linear connection DI' (N) naturally induces derivations on the
set of d-tensor fields on the dual 1-jet space E*. Starting from a d-vector field X €
X (E*) and a d-tensor field T on E*, locally expressed by

P 5 N
X = xt2 x4 xW T
ot T Ga T gl

i 0 0 i sl
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we obtain
DxT = X'DgT+XD 5 T+X)D g T
ot ox® op}
_ Li(k)(1). srpli(k)(1)...
= {X Ljyw.n X a0yt

(1) pli(k)(1)... (5)) O 6 0
+X 5 Ty | }g ot apr @ dt @ dz? @ dpy, @ ...

where
_ 6T11(k)(1)
1i(k)(1)... . 15(1)()... 1i(k)(1 1
Nimw.on = o + T Al
r(k)(1)... 44 11(T)(1) (1) (k)
+T]((1))((l)) Arl ](1551) A(r)(l)l kit
li(k)(1 17, k)(1 r
T, A~ Ty, A

LR (D) ()
Ty Ay = -

(k1) ST 1) (k)(1)..
Li(k)(1)... Li(k)(1 |
le(l)(l)...|s = T+T](1)(l) Hi+

i) (1) (1K)

r(k) (). i B
T His + T His + -

Ti(k)(1)-- Li(k) (1) 77y
~Tyiay. His = Top(ya). Hjs—
Ti(k) (1), 77 (1)(r)
~T3(0) 0y Hiys =
| 8T“ k)(1)...
Li(k)(1)... |(s) @a... Li(k)(1)... ~1(s)
Tiww. | = —ap Do,
(R (1) e i), rpli(r)(1).e. (1)
(w) +TJ(1)(1)) CEU_'—TJ(lgEl) C<2>()1)<1>+'"_
)(1 1(s 1i(k)(1)... ~r(s
TlJ(l 0 G — T Con -
Y1) (1)) (5)
~T3 00 Come, =

(har)

Definition 3.3. The local derivative operators ”,;”, ”7|;” and ” |8)) 7 are called

the R-horizontal covariant derivative, the M -horizontal covariant derivative and the
vertical covariant derivative attached to the N-linear connection DT (N).
Remark 3.1. The operators 7 ,;”, 7|;” and ” |E?) ” have the properties:

(i) They are distributive with respect to the addition of the d-tensor fields of the

same type.
(#) They commute with the operation of contraction.

(#ii) They verify the Leibniz rule with respect to the tensor product.

Remark 3.2. (i) If T = f(t,2",pi) is a function on E*, then the following expressions
of the local covariant derivatives are true:

_Sf_0f v df . _8f _9f ) df of
== Yogr N=5i=a Yogr =g

(1) It T =Y is a d-vector field on E*, locally expressed by

P P B
y=vy'Z 4yi % LyWh 2
5t T s T g
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then the following expressions of the local covariant derivatives are true:

he 5y
Y= W"‘YlAnv Y= W"‘YlHllka
sy Y
(he)§ Y'p =5 +Y7 45, (har) § Y1 = Gpr +37 My
o _ % w00 (1) 6 om0
1 (G 1) (1) 1y D) (1) (DG
Yon=—5 Yo Awmn Yok = 50— Yo Hayw
oyt 1(k
Yl |(k): +ch ( ),
W= Fpb 1)
oy
(w) W= Gpt T+ YICH),

0
ONC ‘9Y<i) _yDemo©.
O 0= Zp1 D)

(#ii) If T = w is a d-covector field on E*, locally expressed by

w = widt + widz® + w(1)5p2,

then the following expressions of the local covariant derivatives are true:

w11 = 6571 —W1A11, Wik = gi; lelka
(hr) { wi/1 = % — w; Al (har) § Wilk = % w; H,
T N O T e N
|E11€)) gw}i oM
(w){ @ilh)= awz @il
|0 8“’8 e )

0

Notation. In the particular case of the canonical Berwald N-linear connection given

by (5), (14) and (15), associated with the semi- Rlemannlan metrics hiq(t) and g;;(x),
the local covariant derivatives are denoted by ”,,,”,” ;" and ” ||(1)

Considering the canonical Liouville-Hamilton d-tensor field of momenta on E*,

which is given by
m o _ 49

O =" ol
by direct computations, we can give an application of this paragraph.

Cr =

Definition 3.4. The d-tensor fields

1) _ @) 1) @) oG _ ~1)0)
A =Con B =Cane Ywm = Curly (16)
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are called the momentum non-metrical deflection d-tensor fields attached to the N -
linear connection DT (N).

Proposition 3.2. The momentum deflection d-tensor fields on E*, attached to the
N-linear connection DT (N), have the expressions:

W _ @ a1 A ) g
Bian = N = AgmnPe Ba; = —Nws — HiyaiPe an
WG _ 5 AOE6), 1
Yy =% — Cuayd) Pre

3.1. Torsion d-tensors. Let D be an N-linear connection on E*. The torsion T of
D is given by

T(X,Y)=DxY —DyX —[X,Y], VXY €X(E). (18)

Let us suppose that the N-linear connection D is given in the adapted basis (6) by
the coefficients DI' (N) from (13). In this context, we have

Theorem 3.3. The local torsion d-tensors of the N -linear connection D on E* have
the expressions:

5 0 b 5 0 5
T(—, = | =T~ T(—, =) =TF—
e (5t’5t) ngp M (5t’5t) U5k
_ ) 9

wT <(5t, (;t) == T(’I“)ll 8p,,1‘7

n (181 nn (i 8) -
wT (gijv i) = T<(:))1j38p;’
h'T (%75) :pll(%)%, hatT (%,;) — Pf((f))%7
T (aig’ (?t) = P<(r1>)1<(f>)5;»

) ) § 6 )
T —,— ) =T—~, hyT|—,— |=TF—
" (53:1’5331) wstr M (@:J’éxz) 4§k
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9 90 W@ G) 9
(-2, 2| =sW®6G) 7
(ap} ’ 51%1) M@ gpL’

where
T}, =0, T} =0, T((rl))u =0,
1 1
Tl = Hi;, Tf=-Ah, T((T))lj = Rgrglj’

1G) _ AG) k() 1) () _ p() G) . 4G)
Py =6 Piay =00 Pongy = Bong T Apmn

1 _ k _ 17k k 1 _ pl)
Ty =0, T =Hj—Hg, Ty, =R
1) _ KG) _ kG () G) _ () G) . (DG)
Tigy =0, Py =Ciays Loty = By T Heyyer
10)G) _ ROG) _ OOG) _ (AOOG)  ADGE)
Swm =0 Sun =0 Spma) = (Cmu)(l) C(r)(l)(l))

and the distinguished tensors

(1)
R

r)lj?

1) G a6
Riijr By By

are given by the formulas (9).

107

(19)

(20)

Proof. Taking into account the Poisson brackets formulas (8) and (9), together with

the local description in the adapted basis (6) of the N-linear connection DI" (N)
(13)), we successively obtain

0 9 1) 0 0 9
ot ot

Consequently, the first equality from (19) is true. In the sequel, we have

5 5 5 5 5 5 5

—— ) =huD 5 ——hyD s — —hy |—,—| = —-A% —

w’&) MZ 0 5t "M sy M[%J’(St} Ik
oxd ot

r

and the fifth equality from (19) is correct. Then, for example, we have

P 5 9 P
(2. 2) = wp s 2 -wps L —w |- 2L 2=
v (a@’&) R TR w[@p}’(st]

op; ot
_ 1W0G) o) 9
= (ARG +B) oL’

(see

and the ninth equality from (19) is true. In the same manner, we obtain the other

equalities.

O
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Corollary 3.4. The torsion T of an arbitrary N -linear connection D on E* is deter-
mined by ten effective local d-tensors of torsion, arranged in the following table:

hR hM w
hrhr 0 0 0
hahe | T | T | ORD)

e | P70 | PO
hathar | O | TE
FORESORO)
Py | Povid)

[€3]0]6))
ww 0 0 S(T )

’th 0

0
Example 3.2. For the canonical Berwald N-linear connection given by (5), (14) and
(15), associated with the semi-Riemannian metrics h11(t) and ¢;;(x), all d-tensors of
(€]
(r)ij
the curvature tensor of the semi-Riemannian metric ¢;;(x).

torsion vanish, except R = —Riijps, where RE, () are the local components of

T"Lj

3.2. Curvature d-tensors. Let D be an N-linear connection on E*. The curvature
R of D is given by

R(X,Y)Z =DxDyZ - DyDxZ — Dixy)Z, VYX)Y,ZecX(E"). (22)
We will express R by his adapted components, taking into account the adapted
local decomposition of the vector fields on E*. In this direction, firstly we prove
Theorem 3.5. The curvature tensor field R of the N-linear connection D on E* has
the properties:
heR(X,Y) ZHu =0, hgR(X,Y)ZW =0, hyR(X,Y)ZHe =0,
hyR(X,Y)ZW =0, wR(X,Y)ZM": =0, wR(X,Y)Z"v =0,
R(X,Y)Z =hmR(X,Y)Z" 4 hyR(X,Y) Z" L wR(X,Y) ZW. (24)

(23)

Proof. Because the N-linear connection D preserves by parallelism the Hg-horizontal,
‘Has-horizontal and vertical distributions, via the formula (22), the operator R (X,Y")
carries hg-horizontal (resp. hjps-horizontal) vector fields into hg-horizontal (resp. hps-
horizontal) vector fields and the vertical vector fields into vertical vector fields. Thus,
the first six equations from (23) are true. The next one is an easy consequence of the
first six. O

Taking into account the preceding geometrical result, by straightforward calculus,
we obtain

Theorem 3.6. The curvature tensor R of the N-linear connection D is completely
determined by fifteen local d-tensors of curvature:

§ 6\ 0 5§ 6\ & 5 &\ 0
R(——)==0, R(=,—=)—=0, R{—,—)===
(6t’5t) 5t (5t’5t> s <5t’6t> Ip; v

5 &\ 6 b

1 R|I—. — ) — = L7

(M’(St) det (M’at) 5zt~ Tk gn

9 _

ot
(2 0) 2 _ g O
Sk’ 5t H(D)1k 6pll ’
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o &\ 6 L) 0 o 6§\ 6 (k) O
R(— —)|—=p®° g~ ) = =p. &
(aﬁ’&) st 1) g opL ot ) oxi M) Gl
9 6\ 9 L6k 9
R <3p]1€7 at) apr —Poyana opt’
5§ oN\Nds 9 5§ oN\NJd 6
R (MW) st~ Mgy R <5xk’ 5xj> sai Tk g0
R

5
S N0 _ _pme 9
) apt (W37 FpT

9 6\ 1 (k)0 o ¢ 5 Lk O
R( ) o=p®o g2 2 )0 _pl0 D
(8p]1€’ (5;1;]) ot 15(1) 6t7 apllcv Sad St ij(1) (Sl‘l’
R

9 5) 0 _ _pme w9

apL’ Sad ap} OIeY¥]eY) 37311’
R (o) - = () s -
<8 8) 9 wommw 9
apL’ 317; ap} OOMA) gpk»
which we can arrange in the following table:
hr har w
hrhg 0 0 0
hahe | Riy, Ry, _REzl))((gm
whe | PLE) | 2L | —POELE (25)
harhar | Rig Rl _Rgll))((l?jk
why | Py j‘((lk)) u ilj((f)) —F ((ll>)(,(1i))j((1k))
wo | Si6)) [ S | =St

Theorem 3.7. The fifteen local curvature d-tensors from the Table (25) are given by
the following formulas:

SAL,  SH!
1 _ 11 1k 1(r) p(1)
1. Ry, = Y +Cl(1)R(r)1k’
§AL  S6H! . , I(r) p(1
2. Ry, = (5ku - (%k+Ai1Hal"k_HikAi“l'i_Oiél;REr;lka
0] E0)
" MAwan _ Howe 00 g0
3. Rgl;((glk — Sk 5t OO (ke
M) 4D W) (1) (1)
—HoyarAmmn T Caaym By
1w _ AL aw 1) p(1) (k)
4. P11(1) - apl _Cl(l)/1+01(1)P(7")1(1)7
k
l
Ly 0An 1(r) p(1) (k)
5. P - Cin + G P

i1(1) 8p]1C i(1)/1
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wo QA ) p) (
neE) koo A6k (1 ) (1) (k)
6 Foinn = —gpr ~ Comm 1+ Sl Pen(r
0Hi;  SHi, | 1(r) p(1)
7. Ruk = Sxk Sai +Cl(1)R(r)jk’
SH};  §H!
8. R, = =i+ HLHl, — HH, +CIRE) L
W) (1))
SHy S, SHG, L OO O
0. RO = o Sad Wi r~
W) GO0, DO pO)
~Hupurem; + Comm B
OH}
1w _ OHy M ®
10 Py = = Clids + L PO
OH!,
vy OHG L i) p) )
- Poay = gpr ~ %ot Gofmn:
, oH )
oo ® _ MHww _ Lo OO p) ()
12- Pominy = “ap = Caynnls + Cinm s
1)
13 §1O® i) 90
: 1(1)(1 ’
(1)(1) opy, apj
. 9Ci(l) 90y .
e _ 9% o) k) (k) 1G)
oS = gl T o + O oy = Gy Gty
k
WG 1)k
oG OCHm) L DG M@ E
15, SLOOW _ gyt op! ) Cemm ™

oo ( )( ) (k) ~(1)(2)(4)
1)(r)(k 1)(3) (4
~Coimm Cmm-
Proof. The local decomposition in the adapted basis (6) of the N-linear connection
DT (N) (see (13)), together with the formulas (8) and (9), lead us to, for example,

0 0N 9 __pwe 9 _
319;1@’575 3p21 B 0 (1)1(1) @pll B
0 0 0
=D o Psgr- D5D581_Di£879}
dpr ot 5t Op; Opj}. 6t

_ meE 9 W)k 0 (1) (k) B
B _Di (A(T)(l)lap}> +D£ (C(r)(l)(l)ap}) + B(r)l(l)D 0 8p
Ipj, ot apl

W)
9gan 0 w6 pmmm 9

T T opl gt T wm) gpt

sCW (k)
wm 9 (@ 400 0 _ g o 9 o
st opl  CmmmLomig,r T EemmTmma) gyl
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Therefore, we have

(1))

po ® _ wor oo Clm _

(MWL) apl I IN(UENNED
SO

(1) + W@k () pt

(8) (@)
& M OmABm C

(T)l(l) (OIehIeON

Now, using the formula of the R-horizontal covariant derivative, we get

(1) (i) (k) 50(11))((1)((]6)) (L) (@) (k) 4 Q) (r) () (k) 4(1)(4)
1)(7)(k _ 1)(1 k 1)(r r)(k 1)(z
Comwn = L — OB AD DL oo Aimin +
i)(r) 4(1)(k)
+C 1)(1 Ay

and, consequently, interchanging the underhned terms, it follows that

M) (k) _ aA(ll))((l) (1)) (k) MW@ (r) p(1) (k)

1)(3) (k 1)(3)(k 1)) (r 1) (k

Foana = g ~ Yooma T Comm Fena:

where we also used the last formula from (19). Obviously, this is the 67 relation of
the above set of identities.
The other equalities are given in the same manner. O

0
Example 3.3. For the canonical Berwald N-linear connection given by (5), (14) and
(15), associated with the semi-Riemannian metrics hi1(¢) and ¢;;(z), all curvature d-

)
ik = By = Rije

tensors of the semi-Riemannian metric ¢;;(z).

tensors vanish, except R where R! ;1 () are the local curvature
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