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High-gain adaptive boundary stabilization for an axially
moving string subject to unbounded boundary disturbance

Belgacem Tikialine, Abdelkarim Kelleche, and Hadj Ammar Tedjani

Abstract. In this paper, a vibration suppression scheme for an axially moving string under
external disturbances is investigated. The disturbances are assumed to be increased exponen-

tially. We employ the active disturbance rejection control (ADRC) approach to estimate the

disturbance. We design a disturbance observer that has time-varying gain so that the distur-
bance can be estimated with an exponential way. In order to stabilize the closed loop system,

we use a control constructed through a high-gain adaptive velocity feedback. The existence

and uniqueness of solution of the closed loop system is proved through the use of semigroup
theory. The Lyapunov method is employed to show the effectiveness of the boundary control

for ensuring the vibration reduction. The obtained results improves certain previous results.
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1. Introduction

Axially moving continuous materials can be found in various engineering areas such
as continuous material manufacturing lines and transport processes. Especially, the
dynamics analysis and control for axially moving continuous materials have received
a growing attention due to the entrance of new applications in flexible robotic ma-
nipulators and flexible space structures. The string model is used for continuously
moving systems when ignoring the bending stiffness of the material such as threads
and cables [1, 2, 3, 4]. Vibration suppression has been achieved through different
types of control, see [5, 6, 7, 8, 9]. The adaptive control is very efficient for immobile
vibrating systems, see [10, 11, 12, 13, 14]. It is designed in such a way to cope with
varied or uncertain parameters. The control strategy with input u(t) and output y(t)
is a relation of the form{

u(t) = Φ(t, g(t), y(t)),
g′(t) = Ψ(t, g(t), y(t)), g(t0) ∈ R

where Φ,Ψ and g are functions to be determined.
The present paper deals with the stabilization of solutions of an axially moving

string subject to a boundary disturbance by a control input at the right boundary,
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that is 
ytt + 2vyxt −

(
1− v2

)
yxx = 0, x ∈ (0, 1) , t > 0,

y(0, t) = 0, t ≥ 0,
yx(1, t) = u(t) + d(t), t ≥ 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1) ,
yout(t) = (yt + vyx) (1, t), t > 0,

(1)

where we denote by y(x, t) the transverse displacement of the string which is axially
moving with a constant velocity v such that 0 < v < 1. The functions y0 and y1
are respectively the initial displacement and the initial velocity. The function u(t) is
the boundary control (input) whereas yout(t) stands for the measured signal of the
system at that free end (output). The function d represents the unknown external
disturbance which is assumed to satisfy

d ∈ C (0,∞) and |d (t)| , |d′ (t)| ≤ Cdea0t (2)

for some positive constants Cd and a0.
In this paper, we shall apply the active disturbance rejection control (ADRC)

technique. This approach that was initiated by Han [15] is destined to deal with
the systems with large external disturbances or internal structure uncertainties. The
most important advantage of ADRC is that the disturbance can be estimated via an
extended state observer [16]) in actual time and is canceled in the feedback loop which
reduces the control energy considerably. ADRC was applied first to stabilization of
a one-dimensional anti-stable wave equation subject to boundary disturbance in [17]
and then to stabilization of a one-dimensional anti-stable wave equation subject to
general control matched disturbance in [18]. The application of this approach has
been extended to multi-dimensional systems such as wave equation [19] and Kirchhoff
plate [20].

All works aforementioned required that the disturbances are uniformly bounded.
Since the disturbances comes mostly from the the external environment, we do not
need to be bounded uniformly and the assumption (2) is reasonable.

The boundary stabilization of this system governed by equation (1) with nonlinear-
ity of Kirchhoff type was discussed in [21] and with geometric nonlinearity in [22]. The
adaptive control was also discussed by the present author in [23] where the considered
control is of the following form

u(t) = −ξ(t)yout(t), ξ̇(t) = py2out(t), ξ(0) = ξ0, p > 0.

The objective of this paper is to investigate the stabilization of (1) by using an
adaptive control. For this aim, we design the following high gain adaptive output
feedback controller

{
u(t) = −k(t)yout(t) + ϑ (t) ,
k′(t) = py2out(t), p > 0, k(0) = k0 > 0

(3)
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where the extra term ϑ (t) is a new input that will be specified later. The closed-loop
system of (1) is given by

ytt + 2vyxt −
(
1− v2

)
yxx = 0, x ∈ (0, 1) , t > 0,

y(0, t) = 0, t ≥ 0,
yx(1, t) = −k(t) (yt + vyx) (1, t) + ϑ (t) + d(t), t ≥ 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1) ,

k′(t) = p (yt + vyx)
2

(1, t), p > 0, k(0) = k0 > 0.
yout(t) = (yt + vyx) (1, t), t > 0.

(4)

Regarding the case of immobile string (v = 0) and without distribuances, Kobayashi
[24] considered high-gain adaptive stabilization of undamped semilinear second-order
hyperbolic systems. The adaptive stabilizer was constructed by a high-gain adaptive
velocity feedback. The multiplier technique was used to adaptively stabilize these
systems where some examples were given to illustrate the obtained result.

In the control engineering, the correct method of the time differentiation of a
functional is necessary for designing a controller in the Lyapunov method. The correct
method for axially moving systems should be considered under Eulerian description.
The time derivative of the energy of a system in axial movement is obtained using the
Leibniz rule. This leads to consider the net rate of flow of mass across the boundary
while computing the derivative (for more details, see [25]). If we denote the partial

derivatives by (.)t = ∂(.)
∂t and (.)x = ∂(.)

∂x then, the total derivative operator with
respect to time is given by

d

dt
(.) =

·
(.) =

∂

∂t
+ v

∂

∂x
= (.)t + v(.)x. (5)

The content of the remaining parts of this paper is structured into three parts. The
first part is reserved to recall some preliminary results and to study the well posedness
of the closed loop system. In the second part, we will use ADRC method to estimate
the disturbance d(t). In the last part, we will prove that under the adaptive control
(3) and the results obtained in the second part that the system (4) is exponentially
stable.

2. Existence result

In this section, we present an existence and uniqueness result for problem (4). We
shall use the usual Lebesgue space H = L2(0, 1) and Sobolev space H1(0, 1). The
scalar product and norm in H are denoted by (.; .) and ‖.‖, respectively. We introduce
the following subspace

V =
{
y ∈ H1(0, 1), y(0) = 0

}
.

equipped with the norm ‖w‖V = ‖wx‖ . Clearly V ⊂ H ⊂ V ′ where V ′ denotes the
dual of V. The following inequalities will be utilized in this paper

2.1. Abstract setting. Let A : D(A) → H, Ay = −yxx is self-adjoint operator
with domain

D(A) =
{
y ∈ H1, yxx ∈ H, y(0) = yx(1) = 0

}
.

The operator A is a positive operator with a compact inverse in H. Thus, we have

A
1
2 y : D(A)→ H, A

1
2 y = yx
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with

D(A
1
2 ) =

{
y ∈ H1, y(0) = 0

}
= V

and A
1
2 is a canonical isomorphism from V onto H (see [26]). An extension of A

(which is denoted in the same way) is defined by

(Af, g)V ′×V =
(
A

1
2 f,A

1
2 g
)

for any f, g ∈ V . It holds that

(Ay, y) = (yx, yx) =
∥∥∥A 1

2 y
∥∥∥ . (6)

By Poincaré inequality

‖y‖ ≤
∥∥∥A 1

2 y
∥∥∥ . (7)

The closed loop system (4) can be written as
d2y
dt2 + k(t)BB∗ ddty +B (ϑ+ d) +Ay = 0, t > 0,
y(0) = y0, yt(0) = y1,

k̇(t) = pw2 (t) , p > 0, k(0) = k0 > 0, t > 0,
yout(t) = B∗ẏ(t), t > 0.

(8)

The operator B is defined by B : R→ V ′, B = δ (x− 1) with B∗ = (δ (x− 1) , .) where
δ is the Dirac distribution (see [27]). We denote by Y (t) :=

(
y (t) , ddty (t) , k (t)

)
, then

d
dtY :=

(
d
dty (t) , d

2y
dt2 (t) , k′ (t)

)
and Y satisfies{
d
dtY = AY + B (d+ ϑ)

Y (0) = Y0 = (y0, y1, k0)
T

where

A

 y
z
k

 =

 z
−kBB∗z −Ay

p [B∗z]
2

 (9)

with domain

D (A) =
{

(y, z, k) ∈ D (A)× V × R+, kBB∗z +Ay ∈ H
}

and B = (0,−B)
T
. Denote by H the Hilbert space

H = V ×H × R+.

We equip H with the inner product〈
(y1, z1, k1)

T
, (y2, z2, k2)

T
〉

=
(
A

1
2 y1, A

1
2 y2

)
+ (z1, z2) +

1

2p
k1k2.

In order to show the existence and uniqueness of solution of (8), we use the nonlinear
semigroup approach, see [28]. We will show that the operator A defined in (9) gen-
erates a C0-semigroup of contractions eAt on H and since B is admissible to eAt (see
[17]). Therefore, the following well-posedness result holds (see [29], Proposition 4.2.5
p. 118).

Theorem 2.1. For Y0 ∈ D (A) , the system (4) admits a unique solution satisfying

y ∈ C ([0, T ), D (A)) ∩ C1 ([0, T ),H)
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Proof. We first show that A is dissipative. Let (y, z, k)T ∈ D(A), then

〈A (y1, z1, k1)−A (y2, z2, k2) , (y1 − y2, z1 − z2, k1 − k2)〉

=
(
A

1
2 (z1 − z2) , A

1
2 (y1 − y2)

)
+ ((−k1BB∗z1 −Ay1)− (−k2BB∗z2 −Ay2) , z1 − z2)

+
1

2
(k1 − k2)

(
[B∗z1]

2 − [B∗z2]
2
)

= ((−k1BB∗z1)− (−k1BB∗z2) , z1 − z2) +
1

2
(k1 − k2)

(
[B∗z1]

2 − [B∗z2]
2
)

=

[
1

2
(k1 − k2)− k1

]
[B∗z1]

2
+ (k1 + k2)B∗z1B

∗z2 +

[
1

2
(k2 − k1)− k2

]
[B∗z2]

2
.

It follows that

〈A (y1, z1, k1)−A (y2, z2, k2) , (y1 − y2, z1 − z2, k1 − k2)〉

= −1

2
(k1 + k2) ([B∗z1]− [B∗z2])

2
.

This shows that A is dissipative in H. Next, we show that λI − A is surjective for
some λ > 0. Given (φ, ϕ, χ)T ∈ H, we seek (y, z, k)T ∈ D(A) such that

(λI −A)

 y
z
k

 =

 φ
ϕ
χ

 .

This is equivalent to
λy − z = φ, (10)

λz + kBB∗z +Ay = ϕ, (11)

λk − p [B∗z]
2

= χ. (12)

We suppose that we have found y with the appropriate regularity. Then, by (10)

z = λy − φ ∈ V. (13)

Moreover, from (10) and (13), k is given by

k =
1

λ

[
χ+ p [B∗z]

2
]

=
1

λ

{
χ+ p [B∗ (λy − φ)]

2
}
.

It remains only to determine y. From (11) and (13), y satisfies

λ2y + λkBB∗y +Ay = ϕ+ λφ+ λkBB∗φ. (14)

We set
Aλ = λ2 + λkBB∗ +A

and
w = ϕ+ λφ+ λkBB∗φ ∈ H ⊂ V ′.

Let us introduce the operator

Φλ : V → V : y → y − 1

λ2
(Aλy − w) .

The existence of a fixed point for Φλ is clearly equivalent to the existence of a solution
to equation (14). First, we need to establish some estimates. Using (6), we get

(λkBB∗y +Ay, y)V ′,V =

∫ 1

0

y2xdx+
λ

k
y2(1, t) ≤ (1 + λk)

∫ 1

0

y2xdx = (1 + λk) ‖y‖2V
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and

(λkBB∗y +Ay, y)V ′,V =

∫ 1

0

y2xdx+ λky2(1, t) ≥ ‖y‖2V .

Using Cauchy Schwartz inequality, we see that∣∣∣(λkBB∗y +Ay, u)V ′,V

∣∣∣ =

∫ 1

0

yxuxdx+ λky(1, t)u(1, t) ≤ (1 + λk) ‖y‖V ‖u‖V

which implies that
‖λkBB∗y +Ay‖V ′ ≤ (1 + λk) ‖y‖V . (15)

We therefore have to show that, for λ large enough Φλ is a contraction, since then Φλ
will have a unique fixed point. For this, we calculate

‖Φλ (y1)− Φλ (y2)‖2V =
1

λ4
(λkBB∗ (y1 − y2) +A (y1 − y2) ,

λkBB∗ (y1 − y2) +A (y1 − y2)) .

From the estimate (15), we get

‖Φλ (y1)− Φλ (y2)‖2V ≤
1

λ4
(1 + λk)

2 ‖y1 − y2‖2V .

For sufficiently large λ, then Φλ is a contraction mapping from V into itself and has
a unique fixed point y in V which is a solution of (14). Applying Crandall-Liggett
theorem in ([28], Chapter 2) to get the existence and uniqueness result. �

3. Disturbance estimate

This section is reserved to to estimate the disturbance d(t) in (4). We employ the
active disturbance rejection control (ADRC) approach to investigate this problem
(see [20]). At first, by the ADRC method, we design a disturbance observer that
has time-varying gain so that the disturbance can be estimated. Multiplying the first
equation in (4) by g(x) = x and integrating over (0, 1), we get∫ 1

0

x
d

dt
(yt + vyx) dx = yx (1, t)−

∫ 1

0

yxdx = −y (1, t) + u(t) + d(t)

or

d

dt

∫ 1

0

x (yt + vyx) dx =

∫ 1

0

(yt + vyx) dx− y (1, t) + u(t) + ϑ (t) + d(t). (16)

Set

w(t) =

∫ 1

0

x (yt + vyx) dx, w0(t) =

∫ 1

0

(yt + vyx) dx− y (1, t) .

Then, (16) becomes
d

dt
w(t) = w0(t) + u(t) + d(t). (17)

The relation (17) is a simple ODE where the disturbance locates on the right side.
This is the first step to estimate the disturbance using the technique introduced in
[30] for lumped parameter systems. It is achieved through the following time varying
high gain extended state observer for ODE system (17){

˙̂w(t) = w0(t) + u(t) + d̂(t)− r(t) (ŵ(t)− w(t)) ,
˙̂
d(t) = −r2(t) (ŵ(t)− w(t))

(18)
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where r ∈ C1 (R+) is a time varying gain that is required to satisfy the following
conditions
(H1) r(t), ṙ(t) > 0 and supt≥0

ṙ(t)
r(t) = M <∞,

(H2) limt→∞
|d(t)|
r(t) = 0.

The next result characterizes the convergence of extended state observer (18) for

system (17).Accordingly, we can use d̂ as an approximation of d. For this, we define
the errors ew and ed as follows

ew = −r(t) (w(t)− ŵ(t)) , ed = d(t)− d̂(t), t ≥ 0.

Lemma 3.1. Let d(t) satisfy (2), under the assumptions (H1) and (H2), the solution
of (18) satisfies

lim
t→∞

ew = lim
t→∞

ed = 0.

Furthermore, if r(t) = Rer0t with R > Cd and r0 > a0, then there exists a positive
constant B such that

|ew| , |ed| ≤ Be−(r0−a0)t, t ≥ 0.

Proof. A differentiation of ew gives

ėw(t) = −ṙ(t) (w(t)− ŵ(t))− r(t)
(
ẇ(t)− ˙̂w(t)

)
, t ≥ 0. (19)

Replacing ẇ(t) and ˙̂w(t) by their expressions from (17) and (18) in (19), respectively,
we obtain

ėw(t) = −ṙ(t) (w(t)− ŵ(t))

− r(t)
[
w0(t) + u(t) + d(t)− w0(t)− u(t)− d̂(t) + r(t) (ŵ(t)− w(t))

]
= −ṙ(t) (w(t)− ŵ(t))− r(t)

(
d(t)− d̂(t)

)
+ r2(t) (w(t)− ŵ(t))

=
ṙ(t)

r(t)
ew(t)− r(t) (ew(t) + ed(t)) , t ≥ 0. (20)

Differentiating now ed, we get

ėd = ḋ(t)− ˙̂
d(t), t ≥ 0. (21)

Replacing
˙̂
d(t) by its expression from (18) in (21), we find

ėd = ḋ(t)− r2(t)(w(t)− ŵ(t)) = r(t)ew(t) + ḋ(t), t ≥ 0. (22)

Then, it follows from (20) and (22) that the errors satisfy the following initial values
problem 

ėw(t) = −r(t) (ew(t) + ed(t)) + ṙ(t)
r(t)ew(t), t ≥ 0,

ėd(t) = r(t)ew(t) + ḋ(t), t ≥ 0,
ew(0) = ew,0, ed(0) = ed,0

(23)

where the initial values eη,0 and ed,0 are given. This system can be written as follows{
ė(t) = A (t) e(t) + fd (t) , t ≥ 0,
e(0) = e0 = (eη,0, ed,0)

(24)
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with

A (t) =

(
−r(t) + ṙ(t)

r(t) −r(t)
r(t) 0

)
, fd (t) =

(
0

ḋ(t)

)
where e(t) = (ew(t), ed(t))

T
and fd (t) =

(
0, ḋ(t)

)T
. Since A and fd (t) are continuous

for t ≥ 0, then for every e0 ∈ R2, the linear Cauchy problem (24) has a unique global
solution. Next, we construct a Lyapunov function for system (23)

L(t) = e2w(t) +
3

2
e2d(t) + ew(t)ed(t), t ≥ 0.

We see that
1

2

(
e2w(t) + e2d(t)

)
≤ L(t) ≤ 2

(
e2w(t) + e2d(t)

)
, t ≥ 0. (25)

A differentiation of L(t) gives

L̇(t) = 2ėw(t)ew(t) + 3ėd(t)ed(t) + ėw(t)ed(t) + ew(t)ėd(t)

≤ −r(t)
(
e2w(t) + e2d(t)

)
+ 2

ṙ(t)

r(t)
e2w(t) +

ṙ(t)

r(t)
ew(t)ed(t)

+
∣∣∣ḋ(t)

∣∣∣ (3 |ed(t)|+ |ew(t)|) , t ≥ 0.

System (23) and assumptions (2) imply that

L̇(t) ≤
(
−r(t) +

1

2

ṙ(t)

r(t)

)(
e2w(t) + e2d(t)

)
+ 2

ṙ(t)

r(t)
e2w(t) + 3Cd |d(t)| (|ed(t)|+ |ew(t)|)

≤
(
−r(t) +

5

2

ṙ(t)

r(t)

)(
e2w(t) + e2d(t)

)
+ 3
√

2Cde
a0t
√
e2w(t) + e2d(t), t ≥ 0.

Assumption (H1) imply for t large enough that

−r(t) +
5

2

ṙ(t)

r(t)
< −r(t) +

5

2
M < 0.

This is owing to

L̇(t) ≤
(
−r(t) +

5

2
M

)
L(t) + 3

√
2Cde

a0t
√
L(t), t ≥ 0

which gives

d

dt

√
L(t) ≤ 1

2

(
−r(t) +

5

2
M

)√
L(t) +

3√
2
Cde

a0t, t ≥ 0.

Integrating over (t0, t), we get the following inequality√
L(t) ≤

√
L(t0)e

1
2

∫ t
t0

(−r(s)+ 5
2M)ds +

3Cd√
2

∫ t

t0

ea0τe
1
2

∫ t
τ (−r(s)+ 5

2M)dsdτ, t > t0.

L’Hospital rule together with assumption (H2) give

lim
t→∞

∫ t

t0

ea0τe
1
2

∫ t
τ (−r(s)+ 5

2M)dsdτ = lim
t→∞

∫ t
t0
ea0τe

1
2

∫ τ
t0

(r(s)− 5
2M)dsdτ

e
1
2

∫ t
t0

(r(s)− 5
2M)ds

= 2 lim
t→∞

ea0t

2r(t)− 5M
= 0,
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then limt→∞
√
L(t) = 0. This leads by the equivalence result (25) to

lim
t→∞

(
e2η(t) + e2d(t)

)
= 0.

This completes the proof of the first assertion of Lemma 3.1. Furthermore, since∫ t

t0

ea0τe
1
2

∫ t
τ (−r(s)+ 5

2M)dsdτ =

∫ t
t0
ea0τe

1
2

∫ τ
t0

(r(s)− 5
2M)dsdτ

e
1
2

∫ t
t0

(r(s)− 5
2M)ds

, t > t0.

We compute

lim
t→∞

∫ t
t0
ea0τe

1
2

∫ t
τ (−r(s)+ 5

2M)dsdτ

e−(r0−a0)t
= lim
t→∞

∫ t
t0
ea0τe

1
2

∫ τ
t0

(r(s)− 5
2M)dsdτ

e
−(r0−a0)t+ 1

2

∫ t
t0

(r(s)− 5
2M)ds

.

Again L’Hospital rule

lim
t→∞

∫ t
t0
ea0τe

1
2

∫ t
τ (−r(s)+ 5

2M)dsdτ

e−(r0−a0)t
= 2 lim

t→∞

ea0t(
Rer0t − 5

2M − 2 (r0 − a0)
)
e−(r0−a0)t

= 2 lim
t→∞

1

e−r0t
(
Rer0t − 5

2M − 2b
) =

2

R
.

This shows that there exists a positive constant A1 such that

3Cd√
2

∫ t

t0

ea0τe
1
2

∫ t
τ (− r(s)β + 5

2M)dsdτ ≤ A1e
−(r0−a0)t, t > 0. (26)

Assumption (H1) implies for t sufficiently large that

e
1
2

∫ t
t0

(− r(s)β + 5
2M)ds ≤ e−(r0−a0)t, t > 0. (27)

Now, the identities (26) and (27) together lead to√
L(t) ≤ Ae−(r0−a0)t, t > 0.

So, √
e2w(t) + e2d(t) ≤ A

√
2e−(r0−a0)t, t > 0.

This proves the second assertion in Lemma 3.1 with B = A
√

2. �

The next step of ADRC is to cancel disturbance in the feedback-loop. From Lemma

3.1, d̂(t) can be considered as an estimate of the disturbance d(t). For this, we take

the feedback control law ϑ(t) = −d̂(t). Then, the new closed-loop system is written
as 

ytt + 2vyxt −
(
1− v2

)
yxx = 0, x ∈ (0, 1) , t > 0,

y(0, t) = 0, t ≥ 0,
yx(1, t) = −k(t) (yt + vyx) (1, t) + ed, t ≥ 0,

ėw(t) = −r(t) (ew(t) + ed(t)) + ṙ(t)
r(t)ew(t),

ėd(t) = r(t)ew(t) + ḋ(t), t ≥ 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1) ,
ew(0) = ew,0, ed(0) = ed,0.

k′(t) = p (yt + vyx)
2

(1, t), p > 0, k(0) = k0 > 0.

(28)
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4. Exponential stability

In this section, we consider the stability of the closed-loop system (28). First, we
define the classical energy associated to (28) by

E(t) = Ey(t) + Ew,d (t) , t ≥ 0

where Ey(t) and Ew,d (t) are given by

Ey(t) =
1

2
‖yt + vyx‖2 +

1

2
‖yx‖2 , t ≥ 0

and
Ew,d (t) = e2w(t) + e2d(t), t ≥ 0.

According to Lemma 3.1, Ew,d (t) converges to zero exponentially, so there remains
to show that Ey(t) converges to zero exponentially.

Theorem 4.1. Under assumptions (H1) and (H2), the solution of (28) satisfies
(yt + vyx) (1) ∈ L2(0,∞) and there exist two positive constants M and δ, independent
of t such that

Ey(t) ≤Me−δt, t ≥ 0.

Proof. Applying (5), it follows that

d

dt
E(t) =

∫ 1

0

(yt + vyx)
(
ytt + 2vyxt + v2yxx

)
dx+

∫ 1

0

yx (yxt + vyxx) dx, t ≥ 0.

Substituting the second derivative of y from (28) into the previous identity and inte-
grating by parts, we obtain

d

dt
E(t) = [(yt + vyx) yx]

1
0 , t ≥ 0. (29)

The second boundary condition in (28) implies

d

dt
E(t) = −k(t) (yt + vyx)

2
(1)− vy2x(0) + (yt + vyx) (1) ed (t) , t ≥ 0.

Note that from Lemma 3.1 if r(t) = Rer0t with R > Cd and r0 > a0, then there exist
a positive constant B such that

d

dt
E(t) ≤ −k(t) (yt + vyx)

2
(1)− vy2x(0) +B |(yt + vyx) (1)| e−(r0−a0)t, t ≥ 0. (30)

It follows by Young inequality that

d

dt
E(t) ≤ 1

2
(k0 − 2k(t)) (yt + vyx)

2
(1)− vy2x(0, t) +

2B2

k0
e−2(r0−a0)t, t ≥ 0.

In order to show that the output w(t) is well defined in L2(0;T ) for any T > 0, we
consider the Lyapunov functional L(t) for system (4) as follows

L(t) = E(t) +
1

2p
k2 (t) , t ≥ 0.

Along solutions of (4), the total derivative of L(t) satisfies

d

dt
L(t) =

d

dt
E(t) +

1

2
k(t) (yt + vyx)

2
(1)

≤ 1

2
(k0 − k(t)) (yt + vyx)

2
(1)− vy2x(0) +

2B2

k0
e−2(r0−a0)t, t ≥ 0.
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Since k is increasing, we get

d

dt
L(t) ≤ 2B2

k0
e−2(r0−a0)t, t ≥ 0.

which implies by integrating over (0, t) that

L(t) ≤ E(0) +
B2

(r0 − a0) k0
= L1, t ≥ 0.

This implies that

sup
t≥0

[
E(t) +

1

2p
k2 (t)

]
≤ L1, t ≥ 0. (31)

It results that
k (t) <

√
2pL1, t ≥ 0. (32)

Since k′(t) = pw2(t), r > 0, it results by integrating over (0, t) for all t ≥ 0 and
the previous relation (31) that w(t) ∈ L2(0,∞) . In order to prove the rest of the
assertions, we introduce the functional

V(t) = E(t) + εΦ(t), t ≥ 0

where

Φ(t) =

∫ 1

0

xyx (yt + vyx) dx, t ≥ 0

for some positive constants ε to be determined later. First, we establish an equiva-
lence result between V(t) and E(t). Applying Young and Poincaré inequalities to the
functionals Φ, we find

|Φ(t)| ≤
∫ 1

0

|yx (yt + vyx)| dx

≤ 1

2

(
‖yt + vyx‖2 + ‖yx‖2

)
≤ E(t), t ≥ 0.

Then, the following relation holds

β1E(t) ≤ V(t) ≤ β2E(t), t ≥ 0 (33)

where β1 = 1− ε and β2 = 1 + ε with ε < 1. A differentiation of Φ gives

d

dt
Φ(t) =

∫ 1

0

x (yxt + vyxx) (yt + vyx) dx+ v

∫ 1

0

yx (yt + vyx) dx

+

∫ 1

0

xyx
(
ytt + 2vyxt + v2yxx

)
dx, t ≥ 0. (34)

Substituting the second derivative from (4) into (34), we find

d

dt
Φ1(t) =

∫ 1

0

x (yxt + vyxx) (yt + vyx) dx+ v

∫ 1

0

yx (yt + vyx) dx

+

∫ 1

0

xyxyxxdx, t ≥ 0. (35)

Taking into account the boundary conditions, performing integration by parts and
using Young inequality allow us to estimate the different terms in (35) as follows∫ 1

0

x (yxt + vyxx) (yt + vyx) dx =
1

2
(yt + vyx)

2
(1)− 1

2
‖yt + vyx‖2 , t ≥ 0, (36)
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0

yx (yt + vyx) dx ≤ 1

2
‖yt + vyx‖2 +

1

2
‖yx‖2 , t ≥ 0, (37)∫ 1

0

xyxyxxdx =
1

2
y2x(1, t)− 1

2
‖yx‖2 , t ≥ 0. (38)

Gathering the estimates (36)-(38) in (35), we obtain

d

dt
Φ(t) ≤ −1

2
(1− v) ‖yt + vyx‖2−

1

2
(1− v) ‖yx‖2+

1

2
(yt + vyx)

2
(1)+

1

2
y2x(1), t ≥ 0.

From the second boundary condition, it iholds that

y2x(1, t) = 2k2(t) (yt + vyx)
2

(1)+2e2d ≤ 2k2(t) (yt + vyx)
2

(1)+2B2e−2(r0−a0)t, t ≥ 0.

Then, we get

d

dt
Φ(t) ≤ −1

2
(1− v) ‖yt + vyx‖2 −

1

2
(1− v) ‖yx‖2 +

1

2

(
1 + 2k2(t)

)
(yt + vyx)

2
(1)

+B2e−2(r0−a0)t, t ≥ 0. (39)

Now, taking into account the relations (30) and (39), it holds

d

dt
V(t) ≤ − ε

2
(1− v) ‖yt + vyx‖2 −

ε

2
(1− v) ‖yx‖2 −

[
k(t)− ε

2

(
1 + 2k2(t)

)]
× (yt + vyx)

2
(1) + εB2e−2(r0−a0)t +B |(yt + vyx) (1)| e−(r0−a0)t, t ≥ 0.

(40)

Applying the Young inequality to the last term in (40), we get

d

dt
V(t) ≤ −ε (1− v)E(t)−

[
k(t)− ε

2

(
1 + 2k2(t)

)
− η
]

(yt + vyx)
2

(1)

+

(
ε+

1

4η

)
B2e−2(r0−a0)t, t ≥ 0. (41)

for some η > 0. Since k(t) <
√

2pL1 (see (32)) and k(t) ≥ k0, it follows that

k(t)− ε

2

(
1 + 2k2(t)

)
≥ k0 −

ε

2
(1 + 4pL1) , t ≥ 0. (42)

By virtue of (33), it results from (41) and (42) that

d

dt
V(t) ≤ − ε

β2
V(t)−

[
k0 −

ε

2
(1 + 4pL1)− η

]
(yt + vyx)

2
(1)

+

(
ε+

1

4η

)
B2e−2(r0−a0)t, t ≥ 0. (43)

Choosing ε and η small enough, we end up with

d

dt
V(t) ≤ − ε

β2
V(t) +

(
ε+

1

4η

)
B2e−2(r0−a0)t, t ≥ 0. (44)

Integrating (44) over (0, t), we entail that

V(t) ≤ V(0)e−
ε
β2
t +

(
ε+

1

4η

)
B2e−

ε
β2
t
∫ t

0

e

[
−2(r0−a0)+ ε

β2

]
s
ds

≤ V(0)e−
ε
β2
t +

(
ε+

1

4η

)
B2[

2 (r0 − a0)− ε
β2

] (e− ε
β2
t − e−2(r0−a0)t

)
, t ≥ 0.

(45)
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Choosing again ε sufficiently small so that 2 (r0 − a0) − ε
β2

> 0 and exploiting (33),

we obtain

Ey(t) ≤Me−δt, t ≥ 0.

where M = V(0)
β1

+
(
ε+ 1

4η

)
B2

β1

[
2(r0−a0)− ε

β2

] and δ = ε
β2
. Then, the assertion of the

theorem is established. �

Remark 4.1. The obtained results are valid for the immobile case (v = 0) and the
present work improves the results of Kobayashi [24] for the linear case.

5. Conclusion

Throughout this study, we have dealt with the stabilization of an axially moving string
subject to a boundary disturbances. A boundary control force containing two parts
is applied. The first part is adaptive and is formulated using the high-gain output
feedback, which ensures the exponential stabilization of the system without distur-
bances. The second part is destined to remove disturbances, which is constructed
by following the ADRC approach. It is shown that a state feedback estimator can
estimate exponentially the disturbance in real time. Thereafter, the disturbance is
canceled in the feedback loop. The exponential stability of the closed loop system is
shown with the help of a Lyapunov-type functional. This functional is equal to the
energy modified by an appropriate functional. Our future concerns are to examine the
impact of the above considerations on other axially moving systems, namely moving
beams, such as Euler-Bernoulli beams and Timoshenko beams.
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