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The limit cycle of the unforced Rayleigh system

Petre Băzăvan

Abstract. We prove the existence and the uniqueness of the limit cycle for the unforced
Rayleigh system [1], [2].
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1. Introduction

The equation

εẍ +
ẋ3

3
− ẋ + ax = 0, with a, ε ∈ R, (1)

known as the Rayleigh equation, is an example of autonomous second-order differential
equation which has an unique limit cycle [1], [2].

Consider the Cauchy problem x(0) = x0, y(0) = y0 for the nonlinear system asso-
ciated to (1), { .

x= y,
.
y= −a

ε x − 1
ε

( .
y
3

3 − .
y
)

,
(2)

where a, ε ∈ R, ε � =0 are parameters, x, y : R → R, x = x(t), y = y(t) are the
unknown functions, t is the independent variable and the dot over quantities stands
for the derivative with respect to t. Since the vector field defined by (2) is smooth,
the solution of the Cauchy problem for (2) exists, is unique and smooth. It defines
a two dimensional dynamical system depending on the parameters a and ε. In [3]
we have proved the existence and the uniqueness of the limit cycle of this dynamical
system. In the following we present an alternative proof for those in [3].

We consider the case ε · a > 0 (i.e. ε > 0, a > 0) because, in this case, the
equilibrium (0, 0) ∈ R

2 of the system (2) is node or focus with index 1 and then, the
system can have periodic solutions [5]. The definitions and properties from Sections
2 and 3 serve to prove the main result in Section 4.

2. Properties of the positive orbits

We rewrite the system (2) as{ .
x= y,
.
y= 1

ε (h(y) − a · x) ,
(3)
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where h : R → R, h(y) = y − y3

3 and we consider the curves

v+ = {(x, y) | x > 0, y = 0} ,

g− = {(x, y) | a · x = h(y), y < 0} ,

v− = {(x, y) | x < 0, y = 0} ,

g+ = {(x, y) | a · x = h(y), y > 0} ,

which delimit the regions (Figure 1),

A = {(x, y) | a · x > h(y), y < 0} , (4)
B = {(x, y) | a · x < h(y), y < 0} ,

C = {(x, y) | a · x < h(y), y > 0} ,

D = {(x, y) | a · x > h(y), y > 0} .

The next proposition characterizes the positive orbits of the system (3).

Figure 1. The regions A, B, C, D and the positive orbits of the
system (2).

Proposition 2.1. [5] Any positive orbit of the system (3), with exception of those
through (0, 0), is clockwise and intersects the curves v+, g−, v−, g+, in this order,
passing through the regions A, B, C, D.

Proof. Let γ+ be a positive orbit, γ+ �= 0 and let be (x0, y0) = (x(0), y(0)) his initial
point. Function of the position of the point (x0, y0), relative at the regions (4), we
distinguish eight cases (Figure 1).

Case 1. (x0, y0) ∈ v+. From the initial conditions it results y (0) = 0 , x (0) > 0
and

.
y (0) < 0. For small t,

.
y (t) < 0, then y decreases. Since y (0) = 0, the trajectory

through (x0, y0) enters A.
Case 2. (x0, y0) ∈ A. From the inequality a · x (0) > h(y (0)) we have

.
y (0) < 0

and then, for small t, the function y decreases, i.e. y (t) < y (0) < 0. From the last
inequality we have

.
x (t) < y (0) < 0 then, for small t the function x decreases. We



42 P. BĂZĂVAN

have x (t) = x (0)+y (s) · t, for s ∈ (0, t) and from y(s) ≤ y0 we have x (t) ≤ x0 +y0 · t.
Since the functions x and y decrease, the trajectory through (x0, y0) intersects the
curve g−, and the coordinate x of the intersection point is less than the coordinate
x of the intersection point of the straight line ∆(x0, y0) and the curve g−, where
∆ = ∆(x0, y0) is

∆ :
{

x = x0 + y0 · τ,
y = τ,

(5)

and τ ∈ R.
Case 3. (x0, y0) ∈ g−. From the initial conditions we have y (0) < 0,

.
y (0) = 0

and
.
x (0) < 0. For small t,

.
x (t) < 0,

.
y (t) ≈ 0 then, x decreases and y (t) ≈ y (0) .

The trajectory through (x0, y0) enters B.
Case 4. (x0, y0) ∈ B. From the initial conditions we have y (0) < 0,

.
y (0) > 0 and

.
x (0) < 0. For small t,

.
y (t) > 0 and

.
x (t) < 0 then, y increases and x decreases. Since

y (0) < 0 we have y (t1) = 0, or equivalently (x (t1) , y (t1)) ∈ v− and x (t1) < x0 for
t1 > 0. Then, x (t1) ≥ x0 +y0 · t1 and the x coordinate of the intersection point of the
trajectory through (x0, y0) and v− is bigger than the x coordinate of the intersection
point between the stright line (5) and v−.

Similarly we prove the cases 5-8. �

3. The dynamics of the points on the Ox axis

The existence of the limit cycle for (3) is proved in the Proposition 4.1. In order
to prove this proposition we define three maps and we prove the Proposition 3.1.

Let be the set v∗ = v+ ∪ v− ∪ {(0, 0)}. For each point (b, 0) ∈ v∗ we associate the
value b ∈ R. Then, we have the natural order (b, 0) < (c, 0) ⇔ b < c in the set v∗.
Next, we define three maps.

Definition 3.1. [5] Let p ∈ v+ where p ≡ (x0, y0), y0 = 0 and let be ϕt(p) =
(x(t), y(t)), the solution curve corresponding to the Cauchy problem x(0) = x0, y(0) =
y0 for (3). We note t1 = t1(p) the smallest t > 0, so that ϕt1 (p) ∈ v+. We define
σ : v+ → v+ by

σ (p) = ϕt1 (p) .

The maps p → t1(p) and p → σ(p) are continuous [6] and there are Poincaré maps
relative to the set v+.

Remark 3.1. [5] The map σ keeps the order of the points in the set v+, i.e. for any
two points p, q ∈ v+ in relation p ≤ q, we have σ(p) ≤ σ(q).

Proof. For two points p, q ∈ v+ in relation p ≤ q, we suppose σ(p) > σ(q). Then,
there are t̃ > 0, 0 < t̃ < t1, so that ϕt̃ (p) = ϕt̃ (q) , and the solution of (3) with initial
condition p̃ = ϕt̃(p) is not unique. Then, the map σ keeps the order of the points in
the set v+. �
Definition 3.2. [5] Let be p ∈ v+. We note t2 = t2(p) the smallest t > 0 so that
ϕt2(p) ∈ v−. We define the map α : v+ → v−, by

α (p) = ϕt2 (p) .

The map α is continuous and reverses the order of the points, i.e. for p ≤ q, p,
q ∈ v+, we have α(p) ≥ α(q).
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Definition 3.3. [5] Let be the points p ∈ v+, p ≡ (x1, y1), y1 = 0 and q ∈ v−,
q ≡ (x2, y2) , y2 = 0. We suppose q = α(p). We define the continuous map δ : v+ → R,
by

δ (p) =
a

2 ε

(
x2

2 − x2
1

)
.

For the point p ∈ R
2 we denote by ‖p‖ the euclidian norm for the position vector

of p.

Figure 2. The Poincaré map σ.

Proposition 3.1. [5] There are r > 0 so that: (i) δ(p) > 0 for 0 < ‖p‖ < r ; (ii)
δ(p) decreases at − ∞ when ‖p‖ ≥ r and ‖p‖ → ∞ .

Proof. Let p0 ∈ v+and let be t(p0) the smallest t > 0 so that ϕt(p0)(p0) =
(
0,−√

3
)
,

where
(
0,−√

3
)

is the intersection point between the curve g− and the semiaxis
{(x, y) |x = 0, y < 0} (Figure 2). The point p0 is unique. Indeed, if exists another

point p1 ∈ v+, so that the trajectory through p1 passes through the point
(
0,−√

3
)
,

the dynamical system (3) has two different trajectories which intersect, impossible.
We denote r = ‖p0‖.

(i) Let be p ∈ v+ and q ∈ v−, so that α(p) = q, where p ≡ (x1, y1), q ≡ (x2, y2),
y1 = 0, y2 = 0 (Figure 2) and let be the continuous and differentiable function
V : R

2 → R,

V (x, y) =
1
2

(a

ε
x2 + y2

)
.

Since y1 = 0 and y2 = 0, δ(p) we write

δ (p) =
a

2 ε

(
x2

2 − x2
1

)
+

1
2
(
y2
2 − y2

1

)
= V (x2, y2) − V (x1, y1) ,

and
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δ (p) =
∫ t1

0

d

dt
V (x (t) , y (t)) dt (6)

where t1 = t1(p) is the smallest t > 0 with q = α(p) = ϕt1(p). Because

d
dtV (x (t) , y (t)) = a

ε x (t)
.
x (t) + y (t)

.
y (t) = a

ε x (t) y (t)+
y (t) · 1

ε [h (y (t)) − ax (t)] = 1
εy (t)2

(
1 − y (t) 2

3

)
,

we write (6) as

δ (p) =
1
ε

∫
γ

y2

(
1 − y2

3

)
dt, (7)

where γ is the part of the solution curve for (3) between the points p and q (Figure
2).

Let be p ∈ v+ with the property ‖p‖ < r, or equivalently, p < p0. From Proposition
2.1 it results that for t ∈ [0, t1] we have −√

3 ≤ y (t) ≤ 0. Then, δ (p) =
∫ t1
0

y

(t)2
(
1 − y (t)2

3

)
dt > 0 because the integrand is positive. This immediately proves

(i).
(ii) Let p ∈ v+ with the property ‖p‖ ≥ r, then p ≥ p0. On the curve γ we consider

the points
(
x3,−

√
3
)
, (0, y4),

(
x5,−

√
3
)
, where the curve intersects the stright line{

(x, y)
∣∣x ∈ R, y = −√

3
}

and the semiaxis {(x, y) |x = 0, y < 0}. We denote γi, i =
1, ..., 4, the parts of the curve γ between the points p and

(
x3,−

√
3
)
,
(
x3,−

√
3
)

and
(0, y4), (0, y4) and

(
x5,−

√
3
)

and respectively
(
x5,−

√
3
)

and q (Figure 2). Let
δi(p), i = 1, ..., 4, defined by

δi (p) =
1
ε

∫
γi

y2

(
1 − y2

3

)
dt.

Then, we write δ(p),

δ (p) =
4∑

i = 1

δi (p) .

Since on the curve γ the coordinate y is function of x, we have

δ1 (p) =
1
ε

∫ x3

x1

y (x)

(
1 − y (x)2

3

)
dx =

1
ε

∫ x1

x3

y (x)

(
y (x)2

3
− 1

)
dx. (8)

When x ∈ [x3, x1] we have −√
3 ≤ y (x) ≤ 0, then δ1(p) > 0 (because the integrand

is positive), and

δ1 (p) =
1
ε

∫ x1

x3

∣∣∣∣∣y (x)

(
1 − y (x)2

3

)∣∣∣∣∣ dx ≤ 2
3ε

∫ x1

x3

dx =
√

3
ε

(x1 − x3) .

It follows

0 < δ1 (p) ≤
√

3
ε

(x1 − x3) . (9)

For δ2(p) we have
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δ2 (p) = −1
ε

∫ x3

0

y (x)

(
1 − y (x)2

3

)
dx =

1
ε

∫ x3

0

y (x)

(
y (x)2

3
− 1

)
dx < 0, (10)

because the last integrand in (10) is negative. For x ∈ [0, x3] and p, ‖p‖ → ∞ the
trajectory through p intersects the stright line

{
(x, y)

∣∣x ∈ R, y = −√
6
}

at the point
(x6,−

√
6). Then, we have

−δ2 (p) = 1
ε

∫ x3

0
y (x)

(
1 − y(x)2

3

)
dx =

= 1
ε

∫ x6

0
y (x)

(
1 − y(x)2

3

)
dx + 1

ε

∫ x3

x6
y (x)

(
1 − y(x)2

3

)
dx >

√
6

ε x6

and

δ2 (p) < −
√

6
ε

x6 < 0. (11)

When ‖p‖ → ∞ , or equivalently x1 → ∞, then x3, x6 → ∞ but the difference
x1 − x3 stays finite. Indeed, the slope in (x3,−

√
3) at the curve γ is ax3

ε
√

3
, then

x1 − x3 = h1ε
√

3
ax3

, where h1 <
√

3 is the difference of the x-coordinates for the points
(x1, 0) şi (x3,−

√
3). It follows that x3 → ∞ and x1 − x3 → 0. Then, from (9) and

(11), we deduce that δ1(p) + δ2(p) decrease at −∞. Similarly, δ3(p) + δ4(p) decreases
at −∞ and δ(p) decreases at −∞. �

4. The limit cycle

In Proposition 4.1 we prove that the existence and the uniqueness of the limit cycle
for (3) are equivalent with the existence and the uniqueness of the fixed point for the
Poincaré map σ.

Proposition 4.1. [5] (i) A point p ∈ v+ is a fixed point for σ if and only if p is
situated on a limit cycle for (3); (ii) The map σ has an unique fixed point; (iii) The
limit cycle corresponding to the fixed point for σ is attractive.

Proof. (i) Let be p ∈ v+ situated on a limit cycle for (3). Then, exists t1 > 0 the
smallest positive t with ϕt1(p) = p, then σ(p) = p. Let p ∈ v+, σ(p) �= p and we
suppose σ(p) > p . From the monotonicity of σ we have σ2(p) > σ(p) > p and, by
induction, σn(p) > p, n ∈ N. Similarly, we deduce σn(p) < p from σ(p) < p. It results
that, for any t > 0, we have ϕt(p) �= p when σ(p) �= p, then p is not situated on a
limit cycle for (3). The first statement of the proposition is proved.

(ii) The function δ is continuous. From Proposition 3.1, for p ∈ v+ and ‖p‖ → ∞
the values δ(p) decrease from positive to −∞ then, there are p0 ∈ v+, δ(p0) = 0. We
prove that p0 is a fixed point for σ.

The vector field

G (x, y) =
(

y,
1
ε

(
y − y3

3
− ax

))
,

given by the right side of the equations (3), has the property

G (−x,−y) = −G (x, y) (12)
then, if t → (x(t), y(t)) is the solution curve for (3) then t → (−x(t),−y(t)) is also a
solution curve for (3). Let be α(p0) the image of the point p0 by the map α. Since
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the points p0 and α(p0), have the x-coordinate, 0, from δ(p0) = 0 and the expression
of δ we deduce ‖α(p0)‖ = ‖p0‖. There are t1 the smallest t > 0 so that

ϕt1 (p0) = −p0.

From (12) we have

ϕt1 (−p0) = − (−p0) = p0.

At time 2 · t1 we have

ϕ2·t1 (p0) = p0,

i.e.

σ (p0) = p0,

then p0 is a fixed point for σ.
We prove that p0 is the unique fixed point for σ. We define the map β : v− → v+

by

β (p) = ϕt3 (p) , p ∈ v−,

where t3 is the smallest t > 0 with ϕt3 (p) ∈ v+. We observe that β reverses the
points order, i e. if p < q then β(p) > β(q), where p, q ∈ v−. We have σ = β ◦ α and
from the symmetry of the vector field G we deduce

β (p) = −α (−p) , p ∈ v−. (13)
We suppose that p0 is not the unique fixed point for σ. Let p1 ∈ v+, p1 ≡

(x1, y1), x1 > 0, y1 = 0, with σ(p1) = p1 and p1 �= p0.
We suppose p1 > p0, or equivalently δ(p1) < 0, since the map δ is monotonous

(Proposition 3.1). Let q ∈ v−, q ≡ (x2, y2), x2 < 0, y2 = 0 with q = α(p1). Then,
δ(p1) reads,

δ (p1) =
a

2ε

(
x2

2 − x2
1 + y2

2 − y2
1

)
=

a

2ε

(
‖α (p1)‖2 − ‖p1‖2

)
. (14)

From δ(p1) < 0 and (14) we have ‖α(p1)‖ < ‖p1‖ and α(p) > −p. The map β is
monotonous then,

β (α (p1)) < β (−p1) ,

i.e.

σ (p1) < β (−p1) . (15)
We replace p1 with −p1 in (13). Since p1 is a fixed point for σ, from (15) we deduce

p1 < −α (p1) . (16)
From (16) and (14) follows that δ(p1) > 0 contradicting the above supposition.

Similarly, the supposition p1 < p0, equivalently with δ(p1) > 0, leads to a contradic-
tion. Then, p0 is the unique fixed point for σ.

(iii) From the statement (i) the dynamical system associated with (3) has an unique
limit cycle which passes through p0. According with Proposition 2.1, any trajectory
of (3) intersects v+ then, in order to prove that the limit cycle is attractive, is enough
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to prove that for any p ∈ v+, the point p0 is the limit of the sequence σn(p), n ∈ N,
or equivalently, the trajectory ϕt(p0) attracts all trajectories of (3).

Let p ∈ v+. We suppose p > p0, or equivalently δ(p) < 0. Since p0 is the fixed
point of σ and σ is monotonous we have

σ (p) > p0. (17)
From δ(p) < 0 and (14) we deduce α(p) > −p. From the last inequality and

expression of β we deduce σ(p) < −α(p). But, −α(p) < p, i.e.

σ (p) < p. (18)
From (17) and (18) we deduce

q0 < σ (p) < p

and, for n ∈ N, we have

q0 < σn+1 (p) < σn (p) .

Let q1 ∈ v+, q1 ≥ p0 the limit point of the sequence σn(p), n ∈ N i.e.

q1 = lim
n→∞σn (p) . (19)

Since σ is continuous, from (19) we have

q1 = σ
(

lim
n→∞σn (p)

)
= σ (q1) ,

or, equivalently, q1 is a fixed point for σ. However, σ has an unique fixed point, then
q1 = p0. The same thing is true if p < p0, i.e.

q0 > σn+1 (p) > σn (p) .

Similarly, the point q0 is the limit of the sequence σn (p) . The proof is complete. �
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