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Abstract. The aim of this paper is to introduce the notion of MV -algebra of fractions relative
to an ∧-closed system.
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1. Definitions and preliminaries

Definition 1.1. ([4], [5]) An MV -algebra is an algebra (A,+,∗ , 0) of type (2, 1, 0)
satisfying the following equations:
(a1) x + (y + z) = (x + y) + z,
(a2) x + y = y + x,
(a3) x + 0 = x,
(a4) x∗∗ = x,
(a5) x + 0∗ = 0∗,
(a6) (x∗ + y)∗ + y = (y∗ + x)∗ + x.

MV -algebras were originally introduced by Chang in [4] in order to give an alge-
braic counterpart of the Lukasiewicz many valued logic (MV = many valued). Note
that axioms a1-a3 state that (A,+, 0) is an abelian monoid; following tradition, we
denote an MV -algebra (A,+,∗ , 0) by its universe A.

Remark 1.1. If in a6 we put y = 0 we obtain x∗∗ = 0∗∗ + x, so, if 0∗∗ = 0 then
x∗∗ = x for every x ∈ A. Hence, the axiom a4 is equivalent with (a′

4) 0∗∗ = 0.

Examples:
E1) A singleton {0} is a trivial example of an MV -algebra; an MV -algebra is said

nontrivial provided its universe has more that one element.
E2) Let (G,⊕,−, 0,≤) an l-group. For each u ∈ G, u > 0, let

[0, u] = {x ∈ G : 0 ≤ x ≤ u}
and for each x, y ∈ [0, u], let x+y = u ∧ (x ⊕ y) and x∗ = u − x. Then ([0, u],+,∗ , 0)
is an MV -algebra. In particular, if consider the real unit interval [0, 1] and for all
x, y ∈ [0, 1] we define x + y = min{1, x + y} and x∗ = 1 − x, then ([0, 1],+,∗ , 0) is an
MV -algebra.

E3) If (A,∨,∧,∗ , 0, 1) is a Boolean lattice, then (A,∨,∗ , 0) is an MV -algebra.
E4) The rational numbers in [0, 1], and, for each integer n ≥ 2, the n-element set

Ln =
{

0, 1
(n−1) , ...,

(n−2)
(n−1) , 1

}
yield examples of subalgebras of [0, 1].

E5) Given an MV -algebra A and a set X, the set AX of all functions f : X −→ A
becomes an MV -algebra if the operations + , and ∗ and the element 0 are defined
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pointwise. The continues functions from [0, 1] into [0, 1] form a subalgebra of the
MV -algebra [0, 1][0,1].

In the rest of this paper, by A we denote an MV -algebra.
On A we define the constant 1 and the operations ,,·” and ,,−” as follows: 1 = 0∗,

x · y = (x∗ + y∗)∗ and x− y = x · y∗ = (x∗ + y)∗ ( we consider the ,,∗” operation more
binding that any other operation, and the ,,·” more binding that + and −).

Lemma 1.1. ([2]-[7]) For x, y ∈ A, the following conditions are equivalent:
(i) x∗ + y = 1,

(ii) x · y∗ = 0,
(iii) y = x + (y − x),
(iv) There is an element z ∈ A such that x + z = y.

For any two elements x, y ∈ A let us agree to write x ≤ y iff x and y satisfy the
equivalent conditions (i) − (iv) in the above lemma. So, ≤ is a partial order relation
on A (which is called the natural order on A).

Theorem 1.1. ([2]-[7]) If x, y, z ∈ A then the following hold:
c1) 1∗ = 0,
c2) x + y = (x∗ · y∗)∗,
c3) x + 1 = 1,
c4) (x − y) + y = (y − x) + x,
c5) x + x∗ = 1, x · x∗ = 0,
c6) x − 0 = x, 0 − x = 0, x − x = 0, 1 − x = x∗, x − 1 = 0,
c7) x + x = x iff x · x = x,
c8) x ≤ y iff y∗ ≤ x∗,
c9) If x ≤ y, then x + z ≤ y + z and x · z ≤ y · z,

c10) If x ≤ y, then x − z ≤ y − z and z − y ≤ z − x,
c11) x − y ≤ x, x − y ≤ y∗,
c12) (x + y) − x ≤ y,
c13) x · z ≤ y iff z ≤ x∗ + y,
c14) x + y + x · y = x + y.

Remark 1.2. ([2]-[7]) On A, the natural order determines a bounded distributive
lattice structure. Specifically, the join x∨ y and the meet x∧ y of the elements x and
y are given by:

x ∨ y = (x − y) + y = (y − x) + x = x · y∗ + y = y · x∗ + x,

x ∧ y = (x∗ ∨ y∗)∗ = x · (x∗ + y) = y · (y∗ + x).
Clearly, x · y ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x + y.

We shall denote this distributive lattice with 0 and 1 by L(A) (see [4]-[5]). For
any MV -algebra A we shall write B(A) as an abbreviation of set of all complemented
elements of L(A); elements of B(A) are called the boolean elements of A.

Theorem 1.2. ([4]-[5]) For every element x in an MV -algebra A, the following
conditions are equivalent:
(i) x ∈ B(A),

(ii) x ∨ x∗ = 1,
(iii) x ∧ x∗ = 0,
(iv) x + x = x,
(v) x · x = x,

(vi) x + y = x ∨ y, for all y ∈ A,
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(vii) x · y = x ∧ y, for all y ∈ A.

Corollary 1.1. ([4]-[5])
(i) B(A) is subalgebra of the MV -algebra A. A subalgebra B of A is a boolean algebra

iff B ⊆ B(A),
(ii) An MV -algebra A is a boolean algebra iff the operation + is idempotent, i.e., the

equation x + x = x is satisfied by A.

Theorem 1.3. ([2]-[6]) If x, y, z, (xi)i∈I are elements of A, then the following hold:
c15) x + y = (x ∨ y) + (x ∧ y),
c16) x · y = (x ∨ y) · (x ∧ y),

c17) x +
( ∨

i∈I

xi

)
=

∨
i∈I

(x + xi),

c18) x +
( ∧

i∈I

xi

)
=

∧
i∈I

(x + xi),

c19) x ·
( ∨

i∈I

xi

)
=

∨
i∈I

(x · xi),

c20) x ·
( ∧

i∈I

xi

)
=

∧
i∈I

(x · xi),

c21) x ∧
( ∨

i∈I

xi

)
=

∨
i∈I

(x ∧ xi),

c22) x ∨
( ∧

i∈I

xi

)
=

∧
i∈I

(x ∨ xi) (if all suprema and infima exist),

Lemma 1.2. If a, b, x are elements of A, then:
c23) [(a ∧ x) + (b ∧ x)] ∧ x = (a + b) ∧ x,
c24) a∗ ∧ x ≥ x · (a ∧ x)∗.

Proof. c23). By c18 we have [(a∧ x) + (b∧ x)]∧ x = ((a∧ x) + b)∧ ((a∧ x) + x)∧ x =
((a ∧ x) + b) ∧ x = (a + b) ∧ (x + b) ∧ x = (a + b) ∧ x.

c24). We have x · (a∧x)∗ = x · (a∗ ∨x∗) c19= (x ·a∗)∨ (x ·x∗) c5= (x ·a∗)∨ 0 = x ·a∗ ≤
a∗ ∧ x. �
Corollary 1.2. If a ∈ B(A), then:
c25) a∗ ∧ x = x · (a ∧ x)∗ for all x ∈ A,
c26) a ∧ (x + y) = (a ∧ x) + (a ∧ y),
c27) a ∨ (x + y) = (a ∨ x) + (a ∨ y).

Proof. c25). See the proof of c24.
c26). We have: (a∧ x) + (a∧ y) = [(a∧ x) + a]∧ [(a∧ x) + y] = [(a∧ x)∨ a]∧ [(a +

y) ∧ (x + y)] = a ∧ (a + y) ∧ (x + y) = a ∧ (x + y).
c27). We have (a∨x)+(a∨y) = (a+x)+(a+y) = (a+a)+(x+y) = a+(x+y) =

a ∨ (x + y). �
Definition 1.2. ([2]-[7]) Let A and B be MV −algebras. A function f : A → B
is a morphism of MV −algebras iff it satisfies the following conditions, for every
x, y ∈ A :
(a7) f(0) = 0,
(a8) f(x + y) = f(x) + f(y),
(a9) f(x∗) = (f(x))∗.

Remark 1.3. It follows that:
f(1) = 1,
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f(x · y) = f(x) · f(y),
f(x ∨ y) = f(x) ∨ f(y),
f(x ∧ y) = f(x) ∧ f(y),

for every x, y ∈ A.

2. MV -algebra of fractions relative to an ∧−closed system

Definition 2.1. A nonempty subset S ⊆ A is called ∧−closed system in A if 1 ∈ S
and x, y ∈ S implies x ∧ y ∈ S.

We denote by S(A) the set of all ∧− closed systems of A (clearly {1}, A ∈ S(A)).
For S ∈ S(A), on the MV -algebra A we consider the relation θS defined by

(x, y) ∈ θS iff there exists e ∈ S ∩ B(A) such that x ∧ e = y ∧ e.

Lemma 2.1. θS is a congruence on A.

Proof. The reflexivity (since 1 ∈ S ∩B(A)) and the symmetry of θS are immediately.
To prove the transitivity of θS , let (x, y), (y, z) ∈ θS . Thus there exists e, f ∈ S∩B(A)
such that x ∧ e = y ∧ e and y ∧ f = z ∧ f. If denote g = e ∧ f ∈ S ∩ B(A), then
g∧x = (e∧f)∧ x = (e∧x)∧f = (y∧e)∧f = (y∧f)∧e = (z∧f)∧ e = z∧(f∧e) = z∧g,
hence (x, z) ∈ θS . To prove the compatibility of θS with the operations + and ∗ , let
x, y, z, t ∈ A such that (x, y) ∈ θS and (z, t) ∈ θS .

Thus there exists e, f ∈ S ∩ B(A) such that x ∧ e = y ∧ e and z ∧ f = t ∧ f ; we
denote g = e ∧ f ∈ S ∩ B(A).

By c26 we obtain: (x+ z)∧ g = (x∧ g)+ (z∧ g) = (x∧ e∧ f)+ (z∧ f ∧ e) = (y∧ e∧
f) + (t ∧ f ∧ e) = (y ∧ g) + (t ∧ g) = (y + t) ∧ g, hence (x + z, y + t) ∈ θS .

From x ∧ e = y∧ e we deduce x∗ + e∗ = y∗ + e∗, so e · (e∗ + x∗) = e · (e∗ + y∗),
hence x∗ ∧ e = y∗ ∧ e, that is (x∗, y∗) ∈ θS . �

For x we denote by x/S the equivalence class of x relative to θS and by

A[S] = A/θS .

By pS : A → A[S] we denote the canonical map defined by pS(x) = x/S, for every
x ∈ A. Clearly, in A[S], 0 = 0/S, 1 = 1/S and for every x, y ∈ A,

x/S + y/S = (x + y)/S

(x/S)∗ = x∗/S

So, pS is an onto morphism of MV -algebras.

Remark 2.1. Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1 we deduce that s/S =
1/S = 1, hence pS(S ∩ B(A)) = {1}.
Proposition 2.1. If a ∈ A, then a/S ∈ B(A[S]) iff there exists e ∈ S ∩ B(A) such
that e ∧ a ∈ B(A). So, if e ∈ B(A), then e/S ∈ B(A[S]).

Proof. For a ∈ A, we have a/S ∈ B(A[S]) ⇔ a/S + a/S = a/S ⇔ (a + a)/S = a/S

⇔ there exists e ∈ S∩B(A) such that (a+a)∧e = a∧e
c26⇔ (a∧e)+(a∧e) = a∧e ⇔

a ∧ e ∈ B(A). If e ∈ B(A), since 1 ∈ S ∩ B(A) and 1 ∧ e = e ∈ B(A) we deduce that
e/S ∈ B(A[S]). �
Theorem 2.1. If A′ is an MV -algebra and f : A → A′ is an morphism of MV -
algebras such that f(S ∩ B(A)) = {1}, then there exists an unique morphism of
MV -algebras f ′ : A[S] → A′ such that the diagram
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A A[S]

A′

pS

�
�

�
��

�
�

�
�

��
f f ′

is commutative (i.e. f ′ ◦ pS = f).

Proof. If x, y ∈ A and pS(x) = pS(y), then (x, y) ∈ θS , hence there exists
e ∈ S ∩B(A) such that x∧ e = y∧ e. Since f is morphism of MV -algebras, we obtain
that f(x∧ e) = f(y∧ e) ⇔ f(x)∧ f(e) = f(y)∧ f(e) ⇔ f(x)∧1 = f(y)∧1 ⇔ f(x) =
f(y).

From this observation we deduce that the map f ′ : A[S] → A′ defined for x ∈ A
by f ′(x/S) = f(x) is correctly defined. Clearly, f ′ is an morphism of MV -algebras.
The unicity of f ′ follows from the fact that pS is a onto map. �

Remark 2.2. Theorem 2.1 allows us to call A[S] the MV -algebra of fractions
relative to the ∧−closed system S.

Examples
1. If S = {1} or S is such that 1 ∈ S and S ∩ (B(A)\{1}) = ∅, then for x, y ∈

A, (x, y) ∈ θS ⇐⇒ x ∧ 1 = y ∧ 1 ⇐⇒ x = y, hence in this case A[S] = A.
2. If S is an ∧−closed system such that 0 ∈ S (for example S = A or S = B(A)),

then for every x, y ∈ A, (x, y) ∈ θS (since x ∧ 0 = y ∧ 0 and 0 ∈ S ∩ B(A)), hence in
this case A[S] = 0.

3. If P is a prime ideal of A (that is P �= A and if x ∧ y ∈ P implies x ∈ P
or y ∈ P), then S = A\P is an ∧−closed system. We denote A[S] by AP . The set
M = {x/S : x ∈ P} is a maximal ideal of AP . Indeed, if x, y ∈ P, then x/S + y/S =
(x + y)/S ∈ M (since x + y ∈ P). If x, y ∈ A such that x ∈ P and y/S ≤ x/S then
there exists e ∈ S ∩B(A) such that y ∧ e ≤ x∧ e. Since x ∈ P, then y ∧ e ∈ P, hence
y ∈ P (since e /∈ P), so y/S ∈ M. To prove the maximality of M let I an ideal of AP
such that M ⊆ I and M �= I. Then there exists x/S ∈ I such that x/S /∈ M, (that is
x /∈ P ⇐⇒ x ∈ S), hence x/S = 1, so I = AP . Moreover, M is the only maximal ideal
of AP (since if we have another maximal ideal M ′ of AP, then M ′ � M hence there
exists x/S ∈ M ′ such that x/S /∈ M, so x/S = 1 and M ′ = AP , a contradiction!).
In other words AP is a local MV -algebra. The process of passing from A to AP is
called localization at P.
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[3] D. Buşneag, D. Piciu, On the lattice of ideals of an MV-algebra, Scientiae Mathematicae Japon-
icae, 56(2), 367-372 (2002), :e6, 221-226.

[4] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88, 467-490
(1958).

[5] R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic foundation of many -valued Reasoning,

Dordrecht, Kluwer Academic Publishers, 2000.
[6] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Multi. Val. Logic, 6, 95-135 (2001).
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