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Statistical Voronoi mean and applications to approximation
theorems
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Abstract. In this paper, we give statistical Voronoi mean which is a new statistical summa-

bility method, is not need to be regular and positive. We prove a Korovkin type approximation
theorem via this method that covers many important summability methods scattered in the

literature. Also, we demonstrate that our theorem is stronger than proved by earlier authors

with an interesting application. Finally, we establish the rate of convergence.
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1. Introduction and preliminaries

The notion of statistical convergence was first introduced by Fast [5] and Steinhaus
[14], independently. Now, we begin with this definition:

Let S ⊆ N, the set of natural numbers, and Sn := {k ≤ n : k ∈ S } . Then the
natural density of S, denoted by δ(S), is given by δ(S) := limn

1
n |Sn| if the limit

exists, where |Sn| denotes the cardinality of the set Sn ([12]).
A sequence {sn} of numbers is statistically convergent to s provided that, for every

ε > 0, the set Sε := {k ≤ n : |sk − s| ≥ ε} has natural density zero, i.e. for each ε > 0,

lim
n

1

n
|{k ≤ n : |sk − s| ≥ ε}| = 0.

In this case, we write st − lim
n
sn = s or sn

st→ s ([5], [14]). Note that if the sequence

is convergent then the sequence is statistically convergent to the same number, but a
statistically convergent sequence need not to be convergent. Also, it is important to
say that, the sequence {sn} is statistically convergent to s iff there exists a subset S
of N such that lim

k
snk = s where N\S = {nk : k ∈ N } and δ(S) = 0 ([6]).

Korovkin type approximation theory generally deals with convergence of sequences
of positive linear operators ([9]). In some Korovkin type theorems, in the case
of the lack of convergence, it is effective to use the summability methods. Re-
cently, the idea of statistical (C, 1)−summability was introduced in [10], statistical(
N, p

)
−summability in [11] and, more general than these methods, the statistical

A−summability in [4]. Using the concept of statistical A−summability, Demirci and
Karakuş ([3]) have provided a Korovkin-type approximation theorem. More recently,
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many authors have introduced new statistical summability methods and prove Ko-
rovkin type approximation theorems by these methods (see for example [1, 8, 13]).
As it is known, the non-regular summability methods give interesting results within
summability theory. The main motivation of this paper is to introduce new statisti-
cal summability method, is not need to be regular and positive and, includes many
known summability methods and also, prove a Korovkin type theorem via this new
interesting method. Hence we get Korovkin type approximation results that include
the earlier ones can be obtained by our new method with proper chooses.

Voronoi mean, is a non-regular generalisation of the Nörlund mean, has been in-
troduced by Bingham and Gashi in [2]. Now, we remind this method:

Definition 1.1. [2] Let the real sequences {pn, qn, un} with un 6= 0 for n ≥ 0, be
given. The real sequence {sn} has Voronoi mean s, written sn → s (V, pn, qn, un) , if

1

un

n∑
k=0

pn−kqksk → s (n→∞) . (1)

There are many special cases of the Voronoi mean:

Remark 1.1. (i) The Voronoi mean reduced to the generalised Nörlund mean (N, pn, qn)
if

un := (p ∗ q)n :=

n∑
k=0

pn−kqk.

Also, if qn = 1 then we get the Nörlund mean (N, pn) and for k > 0 and pn =
Γ(n+k)

Γ(n+1)Γ(k) then we get the Cesáro mean (C, k) .

(ii) The Voronoi mean reduced to the Euler method Ep of order p ∈ (0, 1) if

pn =
(1− p)n

n!
, qn =

pn

n!
and un = (p ∗ q)n .

(iii) The Voronoi mean reduced to the weighted mean or the discontinuous Riesz
mean

(
N, qn

)
if

pn = 1 and un = (1 ∗ q)n .
Also, if qn = 1 and qn = 1

n+1 then we get the Cesáro mean (C, 1) and the logarithmic
mean l, respectively.

(iv) The Voronoi mean reduced to the Jajte mean– the summability method for
the law of large numbers (LLN) if

pn = 1 and

n∑
k=0

qk
un

not necessarily converging to 1 as n→∞.

(v) The Voronoi mean reduced to the Chow–Lai mean– the summability method
for the LLN if

qn = 1, un →∞ and

∞∑
n=0

p2
n <∞

(see for details [2]).

As it is well known a summability method is regular if it sums a convergent sequence
to its limit. The necessary and sufficient conditions for the (V, pn, qn, un) mean to be
regular are:
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(a)
n∑
k=0

|pn−kqk| < K |un| , with K independent of n,

(b) pn−kqk
un

→ 0 as n→∞ for each k ≥ 0,

(c)
n∑
k=0

pn−kqk
un

→ 1 as n→∞.

Now, we give our new statistical summability method via Voronoi mean:

Definition 1.2. Let the real sequences {pn, qn, un} with un 6= 0 for n ≥ 0, be
given. We say that {sn} is statistically summable to s by the Voronoi mean, written

sn
st→ s (V, pn, qn, un) , if

st− lim
n

1

un

n∑
k=0

pn−kqksk = s.

Example 1.1. Let us consider the real sequences {pn, qn, un} with un = n2 + 1,
pn = −1, qn = 1

n+1 and a sequence {sn} as

sn =

{
n+ 1, n is odd,

0, n is even.
(2)

So, 1
un

n∑
k=0

pn−kqksk =

{
− n+1
n2+1 , n is odd,

0, n is even.
Then, clearly, {sn} has Voronoi mean

s = 0, hence {sn} is statistically summable to s = 0 by Voronoi mean, i.e.

sn
st→ s = 0

(
V,−1,

1

n+ 1
, n2 + 1

)
.

However, {sn} neither convergent (ordinary) nor statistical convergent to s = 0.

In the following result, we characterize the sequences that statistical summable by
Voronoi mean through the sebsequences has Voronoi mean.

Theorem 1.1. The sequence {sn} is statistically summable to s by the Voronoi mean
iff there exists a set N = {n1 < n2 < n3 < ... < nk < ...} ⊆ N such that δ(N) = 1 and
{snk} has Voronoi mean s.

Proof. Assume that there exists a set N := {n1 < n2 < n3 < ... < nk < ...} ⊆ N such
that δ(N) := 1 and {snk} has Voronoi mean s. Then there is a positive integer K
such that for k > K, ∣∣∣∣∣ 1

unk

nk∑
k=0

pnk−kqksk − s

∣∣∣∣∣ < ε.

Put Nε (V) :=

{
k ∈ N :

∣∣∣∣ 1
unk

nk∑
k=0

pnk−kqksk − s
∣∣∣∣ ≥ ε} and N ′ := {nK+1, nK+2, ...} .

Then δ(N ′) = 1 and Nε (V) ⊆ N−N ′ which implies that δ(Nε (V)) = 0. Consequently,
{sn} is statistically summable to s by the Voronoi mean.

Conversely, let {sn} is statistically summable to s by the Voronoi mean. For

r = 1, 2, 3, ..., put Nr (V) :=

{
j ∈ N :

∣∣∣∣ 1
unj

nj∑
k=0

pnj−kqksk − s
∣∣∣∣ ≥ 1

r

}
and Mr (V) :={

j ∈ N :

∣∣∣∣ 1
unj

nj∑
k=0

pnj−kqksk − s
∣∣∣∣ < 1

r

}
. Then δ(Nr (V)) = 0 and

M1 (V) ⊃M2 (V) ⊃ ... ⊃Mr (V) ⊃Mr+1 (V) ⊃ ... (3)
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and

δ(Mr (V)) = 1, r = 1, 2, 3, .... (4)

Now, we have to show that for j ∈Mr (V) ,
{
snj
}

has Voronoi mean s. Suppose that{
snj
}

does not have Voronoi mean s.Hence, there is ε > 0 such that

∣∣∣∣ 1
unj

nj∑
k=0

pnj−kqksk − s
∣∣∣∣ ≥

ε for infinitely many terms. Let

Mε (V) :=

{
j ∈ N :

∣∣∣∣ 1
unj

nj∑
k=0

pnj−kqksk − s
∣∣∣∣ < ε

}
and ε > 1

r (r = 1, 2, 3, ...) . Then

δ(Mε (V)) = 0, and by (3), Mr (V) ⊂ Mε (V) . Therefore δ(Mr (V)) = 0, that contra-
dicts (4) and hence

{
snj
}

has Voronoi mean s.
This completes the proof. �

2. Korovkin type approximation via statistical Voronoi mean

In this section we prove our main Korovkin type approximation theorem with the
help of the statistical Voronoi mean.

Let C(X) be the space of all continuous real valued functions on a compact subset
X of the real numbers and ‖.‖ denotes the usual supremum norm in C(X). Through-
out the paper we use the test functions ei (x) = xi (i = 0, 1, 2) .

Theorem 2.1. Let the real sequences {pn, qn, un} with un 6= 0 for n ≥ 0, be given

and
n∑
k=0

|pn−kqk| < K |un| , with K independent of n. Assume that {Ln} is a sequence

of positive linear operators acting from C (X) into itself, satisfying the following con-
ditions:

st− lim
n

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (ei)− ei

∥∥∥∥∥ = 0 (i = 0, 1, 2) . (5)

Then, for all f ∈ C (X) , we have

st− lim
n

∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkLk (f)− f

∥∥∥∥∥ = 0.

Proof. Let f ∈ C(X) and x ∈ X be fixed. By the continuity of f at the point x, we
may write that for every ε > 0, there exists a number δ > 0 such that |f(t)− f(x)| < ε
for all t ∈ X satisfying |t− x| < δ. Since

|f(t)− f(x)| = |f(t)− f(x)|χXδ(t) + |f(t)− f(x)|χX\Xδ(t),

where Xδ = [x− δ, x+ δ] ∩X and χXδ denotes the characteristic function of the set
Xδ. Then we have

|f(t)− f(x)| ≤ ε+ 2M
(t− x)2

δ2
,

for all t ∈ X, where M := ‖f‖ . This means

−ε− 2M

δ2
(t− x)

2 ≤ f (t)− f (x) ≤ ε+
2M

δ2
(t− x)

2
.
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Using the linearity and the positivity of the operators (Ln) , we get,∣∣∣∣∣ 1

un

n∑
k=0

pn−kqkLk (f ;x)− f (x)

∣∣∣∣∣
=

∣∣∣∣∣ 1

un

n∑
k=0

pn−kqk (Lk (f (t) ;x)− Lk (f (x) ;x) + Lk (f (x) ;x))− f (x)

∣∣∣∣∣
≤ 1

|un|

n∑
k=0

|pn−kqk|Lk (|f (t)− f (x)| ;x) + |f (x)|

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
≤ 1

|un|

n∑
k=0

|pn−kqk|Lk
(
ε+

2M

δ2
(t− x)

2
;x

)
+M

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
≤ ε+

(
ε+M +

2Mc2

δ2

) ∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
+

4Mc

δ2

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e1;x)− e1 (x)

∣∣∣∣∣
+

2M

δ2

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e2;x)− e2 (x)

∣∣∣∣∣
where c := max

x∈X
|x| . Then taking supremum over x ∈ X, we have

∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkLk (f)− f

∥∥∥∥∥ ≤ ε+ T

{
2∑
i=0

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (ei)− ei

∥∥∥∥∥
}

(6)

where T := max
{
ε+M + 2Mc2

δ2 , 4Mc
δ2 , 2M

δ2

}
. Now, for a given ε > 0, choose ε > 0

such that ε < ε. Then,

Sn (ε) :=

{
m ≤ n :

∥∥∥∥∥ 1

um

m∑
k=0

pm−kqkLk (f)− f

∥∥∥∥∥ ≥ ε
}

and

Si,n (ε) :=

{
m ≤ n :

∥∥∥∥∥ 1

|um|

m∑
k=0

|pm−kqk|Lk (ei)− ei

∥∥∥∥∥ ≥ ε− ε
3T

}
, i = 0, 1, 2.

It follows from (6) that Sn (ε) ⊂
2⋃
i=0

Si,n (ε) and hence, lim
n

1
n |Sn (ε)| ≤

2∑
i=0

lim
n

1
n |Si,n (ε)| .

Then using the hypothesis (5), we get

st− lim
n

∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkLk (f)− f

∥∥∥∥∥ = 0.

The proof is complete. �
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3. An application

In the following example, we prove that our new convergence method is stronger than
the classical ones.

Example 3.1. Let us consider the real sequences {pn, qn, un} with un = n2 + 1,

pn = 1, qn = − 2
n+1 . Observe now that

n∑
k=0

|pn−kqk| < 2 |un|. Then, consider a

sequence

{sn} =

{
1, n is square,

n (n+ 1) , otherwise,

and the following classical Bernstein operators:

Bn (f ;x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)

n−k

where x ∈ [0, 1] , f ∈ C [0, 1] and n ∈ N. Using these polynomials, we introduce the
following positive linear operators on C [0, 1] :

Dn (f ;x) = snBn (f ;x) , x ∈ [0, 1] , f ∈ C [0, 1] . (7)

We claim that

lim
n

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Dk (ei)− ei

∥∥∥∥∥ = 0 on [0, 1] for each i = 0, 1, 2. (8)

Indeed, first observe that

Dn (e0;x) = sne0 (x) ,

Dn (e1;x) = sne1 (x) ,

Dn (e2;x) = sn

[
e2 (x) +

e1 (x)− e2 (x)

n

]
.

So,∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Dk (e0;x)− e0 (x)

∣∣∣∣∣ =

∣∣∣∣∣ 1

n2 + 1

n∑
k=0

2

k + 1
sk − 1

∣∣∣∣∣
=


∣∣∣∣ 1
n2+1

n∑
k=0

2
k+1 − 1

∣∣∣∣ , n is square,∣∣∣∣ 1
n2+1

n∑
k=0

2
k+1k (k + 1)− 1

∣∣∣∣ , otherwise,

=


∣∣∣∣ 1
n2+1

n∑
k=0

2
k+1 − 1

∣∣∣∣ , n is square,∣∣∣n(n+1)
(n2+1) − 1

∣∣∣ , otherwise,

then, we get

st− lim
n

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Dk (e0)− e0

∥∥∥∥∥ = 0
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that guarantees (8) holds true for i = 0. Also, since∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Dk (e1;x)− e1 (x)

∣∣∣∣∣ = |e1 (x)|

∣∣∣∣∣ 1

n2 + 1

n∑
k=0

2

k + 1
sk − 1

∣∣∣∣∣
≤

∣∣∣∣∣ 1

n2 + 1

n∑
k=0

2

k + 1
sk − 1

∣∣∣∣∣ st→ 0,

whence we find

st− lim
n

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Dk (e1)− e1

∥∥∥∥∥ = 0,

that guarantees (8) holds true for i = 1. Finally, we have∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Dk (e2;x)− e2 (x)

∣∣∣∣∣
=

∣∣∣∣∣ 1

n2 + 1

n∑
k=0

2

k + 1
sk

[
e2 (x) +

e1 (x)− e2 (x)

n

]
− e2 (x)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

n2 + 1

n∑
k=0

2

k + 1
sk − 1

∣∣∣∣∣+

∣∣∣∣∣ 1

n2 + 1

n∑
k=0

2

k + 1

sk
k

∣∣∣∣∣
and since ∣∣∣∣∣ 1

n2 + 1

n∑
k=0

2

k + 1

sk
k

∣∣∣∣∣ st→ 0,

then it is easy to check that

st− lim
n

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Dk (e2)− e2

∥∥∥∥∥ = 0.

So, our claim (8) holds true for each i = 0, 1, 2. Now, we can say that our sequence
{Dn} defined by (7) satisfy all assumptions of Theorem 2.1. Using these facts, we
conclude that

st− lim
n

∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkDk (f)− f

∥∥∥∥∥ = 0

holds for any f ∈ C [0, 1] . However, since ‖Dn (e0)− e0‖ = |sn − 1| and a sequence
{sn} does not ordinary or statistically convergent to 1, {‖Dn (e0)− e0‖} does not
ordinary or statistically convergent to 0 and hence, classical Korovkin theorem ([9])
or the statistical Korovkin theorem ([7]) does not work for the sequence {Dn} .

4. Rate of convergence

The main result in this section is a study the rate of statistical Voronoi mean with
the aid of the modulus of continuity that is defined by

ω(f, δ) = sup
|t−x|≤δ, x,t∈X

|f(t)− f(x)| (δ > 0), f ∈ C(X).

It is readily seen that, for any α > 0 and for all f ∈ C(X)

ω(f, αδ) ≤ (1 + [α])ω(f, δ)
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where [α] is defined to be the greatest integer less than or equal to α. Then the result
is stated as follows.

Theorem 4.1. Let the real sequences {pn, qn, un} with un 6= 0 for n ≥ 0, be given

and
n∑
k=0

|pn−kqk| < K |un| , with K independent of n. Assume that {Ln} is a sequence

of positive linear operators acting from C (X) into itself, satisfying the following con-
ditions:

(i) st− lim
n

∥∥∥∥ 1
|un|

n∑
k=0

|pn−kqk|Lk (e0)− e0

∥∥∥∥ = 0,

(ii) st− lim
n
ω (f ;αn) = 0 where αn :=

√∥∥∥∥ 1
|un|

n∑
k=0

|pn−kqk|Lk
(

(t− .)2
)∥∥∥∥.

Then for all f ∈ C (X) ,

st− lim
n

∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkLk (f)− f

∥∥∥∥∥ = 0.

Proof. Let f ∈ C (X) and x ∈ X be fixed. Using the properties of ω, and the
positivity and monotonicity of Ln, we get that∣∣∣∣∣ 1

un

n∑
k=0

pn−kqkLk (f ;x)− f (x)

∣∣∣∣∣
≤ 1

|un|

n∑
k=0

|pn−kqk|Lk (|f (t)− f (x)| ;x) +M

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
≤ 1

|un|

n∑
k=0

|pn−kqk|Lk
(
ω

(
f ; δ
|t− x|
δ

)
;x

)
+M

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
≤ ω (f ; δ)

1

|un|

n∑
k=0

|pn−kqk|Lk
(

1 +
|t− x|
δ

;x

)
+M

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
≤ ω (f ; δ)

1

|un|

n∑
k=0

|pn−kqk|Lk

(
1 +

(t− x)
2

δ2
;x

)
+M

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
≤ ω (f ; δ)

[
1

|un|

n∑
k=0

|pn−kqk|Lk (1;x) +
1

δ2

1

|un|

n∑
k=0

|pn−kqk|Lk
(

(t− x)
2

;x
)]

+M

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
≤ ω (f ; δ)

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣+ ω (f ; δ)

+M

∣∣∣∣∣ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0;x)− e0 (x)

∣∣∣∣∣
+
ω (f ; δ)

δ2

1

|un|

n∑
k=0

|pn−kqk|Lk
(

(t− x)
2

;x
)
.
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Then taking supremum over x ∈ X, we have∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkLk (f)− f

∥∥∥∥∥ ≤ ω (f ; δ)

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0)− e0

∥∥∥∥∥
+2ω (f ; δ) +M

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0)− e0

∥∥∥∥∥
where δ := αn =

√∥∥∥∥ 1
|un|

n∑
k=0

|pn−kqk|Lk
(

(t− .)2
)∥∥∥∥. Then, from the hypotheses we

conclude that

st− lim
n

∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkLk (f)− f

∥∥∥∥∥ = 0,

we obtain the assertion. �

Remark 4.1. If we replace the conditions (i), (ii) in Theorem 4.1 by the following
condition:

st− lim
n

∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (ei)− ei

∥∥∥∥∥ = 0 (i = 0, 1, 2) . (9)

Then, since

Lk

(
(t− x)

2
;x
)
≤ N {|Lk(e0;x)− e0(x)|+ |Lk(e1;x)− e1(x)|+ |Lk(e2;x)− e2(x)|}

(10)
where N = ‖e2‖+ 2 ‖e1‖+ e0. We get∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk
(

(t− .)2
)∥∥∥∥∥ ≤ N

{∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (e0)− e0

∥∥∥∥∥∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (e1)− e1

∥∥∥∥∥∥∥∥∥∥ 1

|un|

n∑
k=0

|pn−kqk|Lk (e2)− e2

∥∥∥∥∥
}
.

It follows that (9), (10) that

st− lim
n
αn = 0

where αn :=

√∥∥∥∥ 1
|un|

n∑
k=0

|pn−kqk|Lk
(

(t− .)2
)∥∥∥∥. So, by Theorem 4.1 we get, for all

f ∈ C(X),

st− lim
n

∥∥∥∥∥ 1

un

n∑
k=0

pn−kqkLk (f)− f

∥∥∥∥∥ = 0.

Hence, if we replace the conditions (i), (ii) with the condition (9) in Theorem 4.1,
then we get the rates of statistical Voronoi mean in Theorem 2.1.
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