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Finite dimensional null-controllability of a fractional parabolic
equation

Constantin Niţă and Laurenţiu Emanuel Temereancă

Abstract. In this article we analyze some controllability properties of a fractional equation

which serves as a model for anomalous diffusive phenomena. It is known that this equation
is not spectrally controllable. Our aim is to study the behavior of the control when only the

projection of the solution over a finite dimensional space is driven to zero in finite time.

2010 Mathematics Subject Classification. 30E05,93B05.

Key words and phrases. finite dimensional controllability, moment problem, biorthogonals.

1. Introduction

The aim of this paper is to study the controllability properties of the following
parabolic type equation: ut(t, x) + (−∂xx)α/2u(t, x) = g(t)f(x), t ∈ (0, T ), x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1).

(1.1)

In (1.1), (−∂xx)α/2 denotes the operatorial fractional power of order α/2 > 0 of
the Dirichlet Laplacian in the interval (0, 1). More precisely, (−∂xx)α/2 is the linear
unbounded operator in L2(0, 1) defined as follows

(−∂xx)α/2 : D((−∂xx)α/2) ⊂ L2(0, 1)→ L2(0, 1),

D((−∂xx)α/2) =

u ∈ L2(0, 1) : u =
∑
j≥1

√
2aj sin(jπx) and

∑
j≥1

|aj |2 j2α < +∞

 ,

u(x) =
∑
j≥1

√
2aj sin(jπx)→ (−∂xx)α/2u(x) =

∑
j≥1

√
2aj(jπ)α sin(jπx).

The eigenvalues of the operator (−∂xx)α/2 are given by

λj = (jπ)α (j ≥ 1), (1.2)

and the corresponding eigenfunctions are

vj = sin(jπx) (j ≥ 1). (1.3)

For any α > 0 equation (1.1) is of parabolic type. When α = 2 we recover the classical
heat equation.
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A “generalized” diffusion equation which reads, in Fourier space, as follows

∂FP
∂t

(t, q) = −qµFP (t, q), (1.4)

is introduced by [17] in the context of the anomalously enhanced diffusion in systems
of elongated polymerlike breakable micelles. In (1.4), FP is the Fourier transform
of the probability distribution P and µ < 2. Due to reptation, short micelles diffuse
much more rapidly than long ones. As time goes on, shorter and shorter micelles are
encountered and the effective diffusion increases with time. This corresponds to a
random walk for which the second moment of the jump-size distribution fails to exist
(“Lévy flight”).

In [12, Section 3.5. Long jumps: Lévy flights] the following equation is proposed as
a simple model for the description of transport processes in complex systems quicker
than the Brownian diffusion,

∂P

∂t
(t, x) = Kµ

−∞D
µ
xP (t, x) (x ∈ R, t > 0), (1.5)

where µ ∈ (1, 2), −∞D
µ
x is the Weyl operator which, in one dimension, is equivalent

to the Riesz operator −Dµ and K is a positive constant. We recall that the Riesz
fractional differentiation, Dµ, is defined by:

Dµf := (−∆)
µ
2 f = F−1 [|z|µFf(z)] , (1.6)

where F−1 is the inverse Fourier transform. Consequently, by taking the Fourier
transform in (1.5), we obtain that FP verifies an equation similar to (1.4).

It is easy to see that the fundamental solution of (1.5) is given by

ζ(t, x) = F−1
[
e−K

µ|z|µt
]

(x) =
1

2πKt
1
µ

Lµ

[
x

Kt
1
µ

]
, (1.7)

where

Lµ(x) =

∫
R
e−iyx−|y|

µ

dy, (1.8)

is the Fourier transform of the function e−|y|
µ

which is known as the Lévy symmetric
µ-stable distribution. We recall that Lµ is a “bell-shaped” function [6] but, unlike
the Gaussian, it is a heavy-tailed distribution [16]:

Lµ(x) ∼ Γ(1 + µ) sin(πµ/2)

π

1

x1+µ
as x→∞. (1.9)

In the case µ = 2 the function L2 can be computed explicitly and represents the well-
known normal distribution. In this particular case, the fundamental solution depends
on the grouping x/t1/2 of the independent variables, which allowed A. Einstein to
show in [3] that the mean square displacement is proportional with time. Although in
the case µ < 2 the mean square displacement cannot be defined (the second moment
of the distribution is not finite) the facts that the fundamental solution (1.7) depends
on the grouping x/t1/µ and t1/µ � t1/2 as t tends to infinity indicate that we are in
the presence of a much quicker diffusion phenomenon.

Notice that, for α ∈ (0, 2), our equation (1.1) represents precisely a controlled
version of (1.5) stated in a finite one-dimensional interval and it may be considered
as a simple model for controlled parabolic dynamical system with enhanced diffusiv-
ity (super-diffusion or quicker propagation of the concentration front). The list of
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systems displaying such anomalous dynamic behavior is quite extensive: special do-
mains of rotating flows, collective slip diffusion on solid surfaces, Richardson turbulent
diffusion, bulk-surface exchange controlled dynamics in porous glasses, transport in
micelle systems and in heterogeneous rocks, etc. (see, for instance, [12, 13] and the
references therein).

Other mathematical models have been proposed for the anomalous diffusion phe-
nomena. For instance, in [12] (see, also, [18]), the following fractional diffusion is
considered

ut(t, x) =0D
1−α
t ∂2

xu(t, x), (1.10)

where the Riemann-Liouville operator 0D
1−α
t is defined, for α ∈ (0, 1), by

0D
1−α
t u(t, x) =

1

Γ(α)
∂t

(∫ t

0

u(τ, x)

(t− τ)1−α dτ

)
.

To our knowledge, the controllability properties of (1.10) have not yet been studied
but the following fractional (in time) equation is considered in [11]

∂α0+u(t, x) = ∂2
xu(t, x), (1.11)

where, for α ∈ (0, 1), ∂α0+ is the left-sided Caputo derivative in zero,

∂α0+u(t, x) =
1

Γ(1− α)

∫ t

0

∂su(s, x)

(t− s)α
ds.

The fractional time derivative introduces some memory effects on the system that
need to be taken into account when defining the notion of null controllability. As
proved in [11], when the full control problem is considered for both the value of the
state at the final time and the memory accumulated by the long-tail effects introduced
by the fractional derivative, controllability cannot be achieved in finite time.

On the other hand, an equation similar to (1.1) has been analyzed in [2] with the
fractional Laplace operator defined by the following singular integral

(−∂xx)α/2u(x) = c1,αP.V.

∫
R

ũ(x)− ũ(y)

|x− y|1+α
dy, (1.12)

where ũ is the extension by zero of u outside the interval (0, 1) and c1,α =
α2αΓ( 1+α

2 )
2
√
πΓ(1−α2 )

.

For this fractional Laplace operator, in [2], positive controllability results are obtained
only if α > 1. In fact, as shown in [8], the eigenvalues of the above operator are of

the form
(
jπ + (2−α)π

4

)α
+O

(
1
j

)
which, asymptotically, are similar to λj from (1.2).

Therefore, it is not surprising to see that we have the same qualitative behavior of
(1.1) when the fractional Laplace operator is given as a singular integral (1.12) or as
in the initial fractional operatorial form.

In (1.1) u is the state of the system and the control g(t)f(x) is the product of
separated variables functions in time and space. The space shape f(x) of the control
is fixed. Then one only acts on the system by means of tuning the time-intensity g(t)
of the control. Such types of controls are referred to in the literature as “lumped”
or “bilinear” (see, for instance, [1]) and are of great interest being closer to the
engineering applications.

Given T > 0 and f ∈ L2(0, 1), we say that equation (1.1) is null-controllable in
time T > 0 if, for any u0 ∈ L2(0, 1), there exists a control g ∈ L2(0, T ) such that the
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solution u verifies

u(T, x) = 0 (x ∈ (0, 1)) . (1.13)

The null-controllability property of (1.1) in the case α > 1 is discussed and solved in
[5]. On the other hand, the case α ≤ 1 is studied in [14] (see, also, [2, 10, 15]). It is
proved that the problem is not null-controllable (not even spectrally controllable) in
any time T > 0. Let us explain the main reason for this negative result. Since the
eigenvalues λj have the form given by (1.2) then, according to Müntz Theorem, it
follows that the family of exponential functions

(
e−λjt

)
j≥1

is complete in L2(0, T ) for

any T ∈ (0,∞]. Moreover, it continues to be so even if a finite number of its elements
are eliminated. Consequently, the family

(
e−λjt

)
j≥1

is not minimal in L2(0, T ), for

any T ∈ (0,∞] and, as it follows from Theorem 2.2, not even initial data consisting
of one mode only can be controlled.

In this paper, we consider the case α ∈ (0, 1) and we concentrate our attention on
a different controllability notion. We introduce the following definition:

Definition 1.1. Given N ∈ N∗, we say that equation (1.1) is N -finite dimensional
null-controllable in time T > 0 if, for any u0 ∈ L2(0, 1), there exists a control g :=
gN ∈ L2(0, T ) such that the solution u verifies

ΠNu(T, x) = 0 (x ∈ (0, 1)) , (1.14)

where ΠN represents the projection operator over the space generated by the first N
eigenfunctions:

ΠN

∑
j≥1

√
2ajvj

 =

N∑
j=1

√
2ajvj .

For a study of the finite dimensional null controllability problem for semilinear
heat equations in bounded domains with Dirichlet boundary conditions the inter-
ested reader is referred to [20]. Our aim is to prove that problem (1.1) is N -finite
dimensional null-controllable in any time T > 0. Moreover, we study the behavior of
the controllability cost when N tends to infinity. Since we are interested to control
as many frequencies as possible, we shall consider in the sequel that N > N0 for a
convenient choice of N0. The main result of this article reads as follows:

Theorem 1.1. Let T > 0 and α ∈ (0, 1). Suppose that the function f =
∞∑
j=1

√
2fjvj ∈

L2(0, 1) verifies {
fj 6= 0 (j ∈ N∗),
lim inf
j→∞

|fj |eνj
α

> 0 (ν > 0). (1.15)

Then there exists N0 ∈ N with the property that, for any N ≥ N0 and u0 ∈ L2(0, 1),
there exists a control gN ∈ L2(0, T ) such that the solution u of (1.1) verifies (1.14)
and

‖gN‖L2(0,T ) ≤ C exp(ωN lnN)‖u0‖L2(0,1), (1.16)

where C and ω are two positive constants independent of N and u0.

Notice that, according to Theorem 1.1, equation (1.1) is N -finite dimensional null-
controllable in any time T > 0, but the norm of the corresponding control may explode
exponentially as N goes to infinity. Moreover, we’ll show that estimate (1.16) is, in
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some sense, optimal and the norm of the control is bounded from below in a similar
way.

This paper is organized as follows. In Section 2 we prove that the N -finite dimen-
sional null-controllability problem (1.1)-(1.14) is equivalent with a moment problem
and the concept of a biorthogonal sequence is introduced to solve this moment prob-
lem. In Section 3 we construct a biorthogonal sequence, we estimate its norm in
L2
(
−T2 ,

T
2

)
, and we discuss the optimality of our results. Finally, Section 4 is de-

voted to prove several controllability properties, among them our main result Theorem
1.1.

2. The moment problem

Let EN be the space generated by the first N eigenfunctions:

EN := Span {(vj)1≤j≤N} , (2.1)

and let ΛN :=
(
e−λjt

)
1≤j≤N .

First, we have the following variational result.

Lemma 2.1. Let T > 0, α ∈ (0, 1) and the initial data u0 ∈ L2(0, 1). The function
gN ∈ L2(0, T ) is a control which drives to zero the projection of the solution of (1.1)
at time T over the space EN if and only if, the following relation holds∫ T

0

∫ 1

0

gN (t)f(x)ϕ(t, x) dx dt +

∫ 1

0

u0(x)ϕ(0, x) dx = 0, (2.2)

for every ϕT ∈ EN , where ϕ ∈ L2(0, 1) is the solution of the following adjoint back-
ward problem −ϕt(t, x) + (−∂xx)α/2ϕ(t, x) = 0 t ∈ (0, T ), x ∈ (0, 1) ,

ϕ(t, 0) = ϕ(t, 1) = 0 t ∈ (0, T ) ,
ϕ(T, x) = ϕT (x) x ∈ (0, 1).

(2.3)

Proof. If we multiply in (1.1) by ϕ and we integrate by parts over (0, T )× (0, 1), we
obtain that gN ∈ L2(0, T ) is a control for (1.1) if and only if it verifies (2.2). �

The following result gives us the moment problem associated with the N -finite
dimensional null-controllability property of (1.1).

Theorem 2.2. Problem (1.1) is N -finite dimensional null-controllable in time T > 0
if and only if, for initial data u0 ∈ L2(0, 1), there exists gN ∈ L2(0, T ) such that∫ T

0

gN (T − t)e−λjt dt = −
u0
j

fj
e−λjT (1 ≤ j ≤ N), (2.4)

where

fj =
√

2

∫ 1

0

f(x) sin(jπx) dx, u0
j =
√

2

∫ 1

0

u0(x) sin(jπx) dx, (2.5)

are the Fourier coefficients of the functions f and u0, respectively.

Proof. From the above Lemma 2.1, the system (1.1) is N -finite dimensional null-
controllable if and only if, there exists gN ∈ L2(0, T ) such that (2.2) holds for any
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initial data u0 ∈ L2(0, 1). If ϕT =
√

2 sin(jπx), the corresponding solution of (2.3) is
given by

ϕ(t, x) =
√

2 e(t−T )λj sin(jπx) (1 ≤ j ≤ N).

Hence, by using this particular choice in (2.2) we deduce that (2.4) holds. �

We remark that

N∑
j=1

1

λj
<∞,

and, consequently, it follows that the family ΛN is incomplete in L2(0, T ). Hence, it
is minimal and we deduce that there exists a biorthogonal sequence to it in L2(0, T ).

If there exists a biorthogonal sequence (θk(T, ·))1≤k≤N to the family ΛN in L2(0, T )
then the problem of moments (2.4) may be solved immediately by setting

gN (T − t) =

N∑
k=1

−u
0
k

fk
e−λkT θk(T, t).

In order to evaluate the norm of the control gN we have to study the behavior of the
norms of the elements (θk(T, ·))1≤k≤N from the biorthogonal sequence.

3. A biorthogonal sequence in a finite interval

In this section we construct and we evaluate a biorthogonal sequence to the family
of exponential functions ΛN in L2

(
−T2 ,

T
2

)
.

3.1. The product. In this section we introduce a finite product Pk , with the prop-
erty that Pk(−iλj) = δkj and we obtain an estimate for this product on the real axis.
For every 1 ≤ k ≤ N , we define the function

Pk(z) =
∏

1≤p≤N
p 6=k

λp − iz
λp − λk

=
∏

1≤p≤N
p6=k

λp
λp − λk︸ ︷︷ ︸
Qk

∏
1≤p≤N
p 6=k

(
1− iz

λp

)
︸ ︷︷ ︸

P̃k(z)

. (3.1)

We estimate the first part of the product Pk.

Lemma 3.1. Given α ∈ (0, 1), for any 1 ≤ k ≤ N , we have that

|Qk| ≤ exp

[(
ln 2 +

2− α
α(1− α)

)
kαN1−α

]
. (3.2)
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Proof. We remark that

|Qk| =
∏

1≤p≤N
p 6=k

pα

|pα − kα|
= exp

 ∑
1≤p≤k−1

ln

(
pα

kα − pα

)
+

∑
k+1≤p≤N

ln

(
pα

pα − kα

)
= exp

 ∑
1≤p≤k−1

ln

(
1 +

2pα − kα

kα − pα

)
+

∑
k+1≤p≤N

ln

(
1 +

kα

pα − kα

)
≤ exp

[∫ k

1

ln

(
1 +

2xα − kα

kα − xα

)
dx +

∫ N

k

ln

(
1 +

kα

xα − kα

)
dx

]

≤ exp

k
∫ 1

0

ln

(
1 +

1

1− tα

)
dt︸ ︷︷ ︸

I1

+k

∫ N
k

1

ln

(
1 +

1

tα − 1

)
dt︸ ︷︷ ︸

I2

 . (3.3)

We evaluate now each one of the two integrals I1 and I2. We have that

I1 = ln 2 + α

∫ 1

0

tα−1(1− t)
(2− tα)(1− tα)

dt ≤ ln 2 +

∫ 1

0

tα−1 dt,

where we have used the fact that

1 ≤ 1− t
1− tα

≤ 1

α
(t ∈ [0, 1]) . (3.4)

It follows that

I1 ≤ ln 2 +
1

α
. (3.5)

Let us pass to analyze I2. We have that

I2 =(t− 1) ln

(
1 +

1

tα − 1

)∣∣∣∣Nk
1

+ α

∫ N
k

1

tα−1(t− 1)

tα(tα − 1)
dt

≤ 1

α

(
N

k

)1−α

+

∫ N
k

1

1

tα
dt =

1

α(1− α)

(
N

k

)1−α

− 1

1− α
, (3.6)

where we have used the estimates

(t− 1) ln

(
1 +

1

tα − 1

)
≤ 1

α
t1−α (t ≥ 1),

and

1 <
tα−1(t− 1)

tα − 1
≤ 1

α
(t ≥ 1). (3.7)

From (3.3)-(3.6) it follows that (3.2) holds.
�

Theorem 3.2. For each 1 ≤ k ≤ N , the product Pk defined by (3.1) is an entire
function of exponential type zero which verifies

Pk(−iλj) = δkj (1 ≤ j ≤ N). (3.8)
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Proof. From the definition of the product Pk in (3.1), the relation (3.8) follows im-
mediately. To prove that the product is an entire function of exponential type zero
we remark that

∣∣∣P̃k(z)
∣∣∣ ≤ exp

 ∑
1≤p≤N
p 6=k

ln

(
1 +
|z|
λp

) ≤ exp


∫ N

0

ln

(
1 +
|z|
sα

)
ds︸ ︷︷ ︸

I

 ,
and

I = N ln

(
1 +

|z|
Nα

)
+ α |z|

∫ N

0

1

sα + |z|
ds ≤ N ln

(
1 +

|z|
Nα

)
+ αN.

Let ε > 0 be an arbitrary positive number. Taking into account that ln(1 + t) ≤
√
t,

for t ≥ 0, we have

N ln

(
1 +

|z|
Nα

)
≤ N1−α2 |z|1/2 ≤ 1

2ε
N2−α +

ε

2
|z|.

Hence,

I ≤ αN +
1

2ε
N2−α +

ε

2
|z|,

and it follows that ∣∣∣P̃k(z)
∣∣∣ ≤ exp

(
1

2ε
N2−α + αN

)
exp

(ε
2
|z|
)
. (3.9)

From relations (3.1), (3.2) and (3.9) we obtain

|Pk(z)| ≤ exp

[
1

2ε
N2−α + αN +

(
ln 2 +

2− α
α(1− α)

)
N

]
exp

(ε
2
|z|
)
. (3.10)

From (3.10) we deduce that

|Pk(z)| ≤ exp (ε |z|)
[
|z| ≥ 2

ε

(
1

2ε
N2−α + αN +

(
ln 2 +

2− α
α(1− α)

)
N

)]
.

From the above inequality it follows that Pk is an entire function of exponential type
zero. The proof is complete. �

We pass to estimate the second part of the function Pk on the real axis. We have
the following result.

Lemma 3.3. Given α ∈ (0, 1) and 1 ≤ k ≤ N , for every x ∈ R, we have that

∣∣∣P̃k(x)
∣∣∣ ≤



exp
(

5
2N ln

(
1 + x2

N2απ2α

))
if |x| ≥ Nαπα,

exp
((

1+2α
2−4α

)
N ln

(
1 + x2

N2απ2α

))
if |x| < Nαπα and α < 1

2 ,

exp
(
N1/2

π1/2 |x|
)

if |x| < N1/2π1/2 and α = 1
2 ,

exp
((

4α2+2α−1
4α−2

)
1
π |x|

1/α
)

if |x| < Nαπα and α > 1
2 .

(3.11)
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Proof. Since
∣∣∣P̃k(x)

∣∣∣ is an even function we study only the case x ≥ 0. We have

∣∣∣P̃k(x)
∣∣∣2 ≤ exp

 ∑
1≤p≤N

ln

(
1 +

y2

p2α

) ≤ exp


∫ N

0

ln

(
1 +

y2

s2α

)
ds︸ ︷︷ ︸

IN (y)

 ,
where y = x

πα . Since we have that

IN (y) = N ln

(
1 +

y2

N2α

)
+ 2αy1/α

∫ N

y1/α

0

1

t2α + 1
dt,

we are lead to study the properties of the function f : [0,∞)→ R,

f(r) =

∫ r

0

1

t2α + 1
dt.

Since the function f has the following properties

f(r) ≤



r if r ≤ 1
1

1− 2α
r1−2α if r > 1 and α < 1

2

2α

2α− 1
− 1

2α− 1
r1−2α if r > 1 and α > 1

2

ln(1 + r) if r > 1 and α = 1
2 ,

(3.12)

by taking r = N
y1/α

, it follows that:

a) If y ≥ Nα, by using the first inequality from (3.12), we have that

IN (y) ≤ N ln

(
1 +

y2

N2α

)
+ 2αN ≤ 5N ln

(
1 +

y2

N2α

)
,

which gives the first inequality in (3.11).
b) If y < Nα and α < 1

2 , by taking into account the second inequality from (3.12)

and the fact that ln(1 + t) ≥ t
2 , for every t < 1, it follows that

IN (y) ≤ N ln

(
1 +

y2

N2α

)
+

2α

1− 2α
N1−2αy2 ≤

(
1 + 2α

1− 2α

)
N ln

(
1 +

y2

N2α

)
,

and thus, the second inequality in (3.11) holds.
c) If y < Nα and α > 1

2 , by considering the third inequality from (3.12) and taking

into account that ln(1 + t) ≤ t 1
2α , for every t < 1 and 1

2α < 1, we obtain that

IN (y) ≤ N ln

(
1 +

y2

N2α

)
+

4α2

2α− 1
y1/α ≤

(
4α2 + 2α− 1

2α− 1

)
y1/α,

which gives the last inequality in (3.11).
d) If y < N1/2 and α = 1

2 , from the last equality in (3.12) and taking into account

that ln(1 + t) ≤
√
t, for every t ≥ 0, we deduce that

IN (y) = N ln

(
1 +

y2

N

)
+ y2 ln

(
1 +

N

y2

)
≤ 2y2 ln

(
1 +

N

y2

)
≤ 2yN1/2,

and the proof of lemma is complete.
�
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3.2. Construction of the multiplier. In this section we consider a multiplier func-
tion Mk with rapid decay on the real axis, such that the product PkMk is bounded
on the real axis and Mk(−iλk) = 1. This multiplier is obtained by following step by
step the construction gives in [7, Pages 19-20]. For every a > 0 we set

Ha :=
1[−a,a]

2a
,

and we recall that

Ĥa(z) =

∫
R
Ha(t)e−itz dt =

sin(az)

az
.

Let δ ∈ (0, 1) be a sufficiently small number to be chosen latter on and let a0 = a1 =
... = aN+1 = δ

N+2 . We consider the convolution u = Ha0 ∗ ... ∗ HaN+1
and we have

the following result.

Lemma 3.4. For N ≥ 0, the function u = Ha0 ∗ ... ∗HaN+1
belongs to CN (R) and it

is supported in [−δ, δ]. Moreover, the following estimates hold∫ δ

−δ
u = ‖u‖1 = 1, (3.13)

∫
R

∣∣∣u(j)(x)
∣∣∣ dx ≤ 1

a0...aj−1
(1 ≤ j ≤ N). (3.14)

Proof. It is similar to [7, Theorem 1.3.5] and we omit it. �

Remark 3.1. If u is the function defined in Lemma 3.4, then its support is [−δ, δ].
By taking into account that u ∈ CN (R), it follows that

u(−δ) = u(δ) = u(j)(−δ) = u(j)(δ) = 0 (1 ≤ j ≤ N). (3.15)

We introduce the function Mk given by

Mk(z) =

∫ δ

−δ
u(t)e−it(z+iλk) dt =

 sin
(

δ
N+2 (z + iλk)

)
δ

N+2 (z + iλk)

N+2

. (3.16)

The properties of the multiplier Mk are given in the following lemma.

Lemma 3.5. Mk is an entire function of exponential type δ. Moreover, we have that

Mk(−iλk) = 1, (3.17)

and, for every x ∈ R, we have the following estimate

|Mk(x)| ≤ min

{
exp

[(
6

δ
+ δπ

)
N

]
, exp

[
−N ln |x|+N ln

(
3N

δ

)
+ δλk

]}
.

(3.18)

Proof. Firstly, by using (3.13), we deduce the following estimate

|Mk(z)| ≤ eδ|z+iλk|, (3.19)

which implies that Mk is an entire function of exponential type δ.



FINITE DIMENSIONAL NULL-CONTROLLABILITY OF A FRACTIONAL PARABOLIC EQ.407

Relation (3.17) follows from definition (3.16) of Mk. On the other hand, estimate
(3.18) is obtained by using Lemma 3.4. Indeed, by performing several integrations by
parts (justified by the regularity of u) and taking into account (3.15), we deduce that

Mk(x) =
1

−i(x+ iλk)

∫ δ

−δ
u(t)

(
e−it(x+iλk)

)′
dt =

1

i(x+ iλk)

∫ δ

−δ
u′(t)e−it(x+iλk)dt

=
1

i2(x+ iλk)2

∫ δ

−δ
u′′(t)e−it(x+iλk)dt = ... =

1

iN (x+ iλk)N

∫ δ

−δ
u(N)(t)e−it(x+iλk)dt.

By using the above relations and (3.14) with j = 2, it follows that

|Mk(x)| ≤ 1

x2 + λ2
k

∫ δ

−δ
|u′′(t)| etλkdt ≤ 1

x2 + λ2
k

(N + 2)2

δ2
eδλk ≤ exp

[(
6

δ
+ δπ

)
N

]
.

Moreover, (3.14) with j = N implies that

|Mk(x)| ≤ 1

(x2 + λ2
k)

N
2

∫ δ

−δ

∣∣∣u(N)(t)
∣∣∣ etλk dt ≤ 1

(x2 + λ2
k)

N
2

(N + 2)N

δN
eδλk

≤ exp

[
−N ln |x|+N ln

(
3N

δ

)
+ δλk

]
,

which gives (3.18) and completes the proof of the lemma. �

3.3. The biorthogonal sequence. Now, we have all the ingredients needed to con-
struct a biorthogonal sequence to the family of exponential functions ΛN in L2

(
−T2 ,

T
2

)
and to estimate its norm.

Theorem 3.6. Let T > 0, α ∈ (0, 1) and (λj)1≤j≤N be given by (1.2). There exists
a biorthogonal sequence (θk(T, ·))1≤k≤N to the family of exponential functions ΛN in

L2
(
−T2 ,

T
2

)
with the following property

‖θk(T, ·)‖L2(−T2 ,
T
2 ) ≤ C exp (ωN lnN) (1 ≤ k ≤ N), (3.20)

where C and ω are positive constants independent of k and N .

Proof. Let δ ∈ (0, 1) such that T ≥ 12δ. Let Pk and Mk be the functions defined by
(3.1) and (3.16), respectively. We consider the function

ψk(z) := Pk(z) (Mk(z))
5 sin (δ (z + iλk))

δ(z + iλk)
(z ∈ C). (3.21)

Since Pk is a function of exponential type zero and Mk,
sin (δ (z + iλk))

δ(z + iλk)
are functions

of exponential type δ, we deduce that ψk is an entire function of exponential type T
2 .

Moreover, we have that

ψk(−iλj) = Pk(−iλj) (Mk(−iλj))5 sin (δ (−iλj + iλk))

δ(−iλj + iλk)
= δkj .

Next, we prove that ψk(x) ∈ L2(R). The estimate of the function P̃k on the real axis

from Lemma 3.3 combined with (3.18), allow us to evaluate the quantity
∣∣∣P̃k(x)

∣∣∣ |Mk(x)|5,

by considering the following two cases:
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a) The case |x| ≥ Nαπα. By using (3.11) and the second estimate of Mk in (3.18),
we deduce that there exists ω1 > 0 such that∣∣∣P̃k(x)

∣∣∣ |Mk(x)|5 ≤ exp

[
5N

2
ln

(
1 +

x2

N2απ2α

)
− 5N ln |x|+ 5N ln

(
3N

δ

)
+ 5δλk

]
= exp

[
5N

2
ln

(
9N2

N2απ2αδ2

)
+

5N

2
ln

(
N2απ2α + x2

x2

)
+ 5δλk

]
≤ exp

[
5N

2
ln

(
9N2

N2απ2αδ2

)
+

5N

2
ln 2 + 5δλk

]
≤ exp (ω1N lnN) .

(3.22)

b) The case |x| < Nαπα. Estimate (3.11) of
∣∣∣P̃k(x)

∣∣∣ and the first estimate in (3.18)

give that there exists ω2 > 0 such that∣∣∣P̃k(x)
∣∣∣ |Mk(x)|5 ≤ exp(ω2N). (3.23)

From (3.2), (3.22) and (3.23) it follows that∫
R
|ψk(x)|2 dx ≤ exp (2ω3N lnN)

∫
R

∣∣∣∣ sin (δ (x+ iλk))

δ(x+ iλk)

∣∣∣∣2 dx

≤ 1

δ
exp (2ω3N lnN + 2λk)

∫
R

∣∣∣∣ sin tt
∣∣∣∣2 dt ≤ 2πC2 exp (2ωN lnN) ,

where ω > ω3 := ln 2 + 2−α
α(1−α) + max{ω1, ω2} and C is a positive constant. From the

last inequality we deduce that ψk ∈ L2(R) and

‖ψk‖L2(R) ≤
√

2πC exp (ωN lnN) . (3.24)

Let us introduce the inverse Fourier transform of the function ψk:

θk(T, t) =
1

2π

∫ ∞
−∞

ψk(x)eixt dx (1 ≤ j ≤ N). (3.25)

From Paley-Wiener Theorem we obtain that (θk(T, ·))1≤k≤N given by (3.25) is a

biorthogonal sequence to the family of exponential functions ΛN in L2(−T2 ,
T
2 ). To

obtain the norm estimate (3.20), we use (3.24) and Plancherel’s Theorem. The proof
of the theorem is complete. �

Remark 3.2. The norm of the biorthogonal sequence (θk(T, ·))1≤k≤N given by (3.25)
in Theorem 3.6 increases as exp(ωN lnN) as N → ∞. What can be said about the
norms of many other biorthogonals which can be found? In the following theorem we
prove that we can find a positive constant ω′ such that the norm of any biorthogonal
sequence to the family ΛN is bounded from below by exp(ω′N lnN) and in this sense,
(3.20) is optimal.

Theorem 3.7. Let α ∈ (0, 1), T > 0 and (ξk)1≤k≤N be a biorthogonal sequence to

the family of exponential functions ΛN in L2
(
−T2 ,

T
2

)
. There exists N0 ∈ N∗, with

the property that we can find two positive constants C and ω′ such that

‖ξk‖L2(−T2 ,
T
2 ) ≥ C exp

[
−λk

T

2
+ ω′(1− α)N lnN

]
(1 ≤ k ≤ N, N ≥ N0).

(3.26)
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Proof. We will give the proof in several steps and similar arguments from [4] are used.
Step 1. We define the following function:

τk(z) =

∫ T
2

−T2
ξk(t)e−itz dt (1 ≤ k ≤ N). (3.27)

From Paley-Wiener Theorem we deduce that τk is an entire function of exponential
type T

2 . Furthermore, we have that

|τk(x)| ≤
√
T ‖ξk‖L2(−T2 ,

T
2 ) (x ∈ R). (3.28)

Since τk is a function of exponential type we deduce, from Hadamard’s factorization
theorem (see [19, Chapter 2, p.74]), that

τk(z) = azpebz
∏
zm∈E

(
1− z

zm

)
ez/zm , (3.29)

where E is the set of the zeros zm of τk with zm 6= 0, E = {zm ∈ C| τk(zm) = 0, zm 6=
0}.
From (3.27) and since (ξk)1≤k≤N is a biorthogonal sequence to the family of exponen-

tial functions ΛN in L2
(
−T2 ,

T
2

)
it follows that τk(−iλj) = δkj . Hence, {−iλj | 1 ≤

j ≤ N, j 6= k} ⊆ E.
Next, we introduce the function φk(z) defined by

φk(z) :=
τk(z)

Pk(z)
, (3.30)

where Pk is the product given by (3.1). Moreover, the function φk has the following
properties:
• it is an entire function of exponential type T

2 ,
• φk(−iλk) = 1,
• τk(z) = Pk(z)φk(z).

Step 2. We will give estimates from below for |Pk(z)|. We have that

|Pk(z)| =

∣∣∣∣∣∣∣
∏

1≤p≤N
p 6=k

λp − iz
λp − λk

∣∣∣∣∣∣∣ =

 ∏
1≤p≤N
p 6=k

|λp − iz|


 ∏

1≤p≤N
p6=k

|λp − λk|


−1

.

For z ∈ C such that |z| ≥ 3Nαπα it follows that∏
1≤p≤N
p 6=k

|λp − iz| ≥
∏

1≤p≤N
p 6=k

(|z| − λp) ≥
∏

1≤p≤N
p 6=k

(|z| −Nαπα) = (|z| −Nαπα)
N−1

. (3.31)

Next, ∏
1≤p≤N
p6=k

|λp − λk| ≤
∏

1≤p≤N
p 6=k

(|λp|+ |λk|) ≤
∏

1≤p≤N
p 6=k

2Nαπα = (2Nαπα)
N−1

. (3.32)

From (3.31) and (3.32) it follows that

|Pk(z)| ≥
(
|z| −Nαπα

2Nαπα

)N−1

(z ∈ C, |z| ≥ 3Nαπα) . (3.33)
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Step 3. The following estimate holds

|τk(z)| ≤
∫ T

2

−T2
|ξk(t)| et|=(z)|dt ≤ eT2 |=(z)|

∫ T
2

−T2
|ξk(t)|dt ≤ eT2 |=(z)|

√
T ‖ξk‖L2(−T2 ,

T
2 ) ,

(3.34)
and from (3.33) and (3.34) we obtain that

|φk(z)| ≤

√
Te

T
2 |=(z)| ‖ξk‖L2(−T2 ,

T
2 )(

|z|−Nαπα
2Nαπα

)N−1
(z ∈ C, |z| ≥ 3Nαπα) . (3.35)

We consider the function

ζk : C→ C, ζk(z) = φk(−iλk − z),

and we remark that ζk is an entire function with the property that ζk(0) = 1. We
apply Theorem 11 from [9, p. 21] and we deduce that, for any R > 0 and η ∈ (0, 3e

2 ),

ln (|ζk(z)|) > −
(

2 + ln

(
3e

2η

))
ln (Mζk(2eR)) (z ∈ C, |z| ≤ R) , (3.36)

outside of a set of circles the sum of whose radii is not greater than 4ηR, where
Mζk(2eR) = max

|z|=2eR
|ζk(z)|. From (3.35) we have that

Mζk(2eR) = max
|z|=2eR

|φk(−iλk − z)| ≤
√
T ‖ξk‖L2(−T2 ,

T
2 ) max
|z|=2eR

e
T
2 |−λk−=(z)|

≤
√
T ‖ξk‖L2(−T2 ,

T
2 ) e

T
2 λkeeRT ,

if |z| = 2eR ≥ 3Nαπα. We denote β := 2+ln
(

3e
2η

)
> 1 and using the above estimate,

for any R > 0 and η ∈ (0, 3e
2 ) such that 2eR ≥ 3Nαπα, it follows that

ln (|ζk(z)|) > −β ln
(√

T ‖ξk‖L2(−T2 ,
T
2 ) e

T
2 λk+eRT

)
(z ∈ C, |z| ≤ R) , (3.37)

outside of a set of circles the sum of whose radii is not greater than 4ηR.
We consider R > 8Nαπα and η ∈ (0, 1

16 ). We deduce that there exists x0 ∈ [R2 , R]
such that

ln (|ζk(x0)|) > −β ln
(√

T ‖ξk‖L2(−T2 ,
T
2 ) e

T
2 λk+eRT

)
. (3.38)

On the other hand, from (3.35), we have that

|ζk(x0)| = |φk(−iλk − x0)| ≤

√
Te

T
2 λk ‖ξk‖L2(−T2 ,

T
2 )(

|−iλk−x0|−Nαπα
2Nαπα

)N−1
. (3.39)

Choosing, R = 8Nπ > 8Nαπα we obtain the estimate

|−iλk − x0|−Nαπα ≥ ||x0| − |−iλk||−Nαπα = x0−λk−Nαπα ≥ 4Nπ−2Nπ = 2Nπ,
(3.40)

and for this, it follows that in (3.39),

|ζk(x0)| ≤

√
Te

T
2 λk ‖ξk‖L2(−T2 ,

T
2 ) (Nαπα)

N−1

(Nπ)N−1
. (3.41)
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From (3.38) and (3.41) the following estimate is obtained:

ln

√TeT2 λk ‖ξk‖L2(−T2 ,
T
2 ) (Nπ)

α(N−1)

(Nπ)N−1

 > −β ln
(√

T ‖ξk‖L2(−T2 ,
T
2 ) e

T
2 λk+8πeTN

)
,

which is equivalent to

(1 + β) ln
(
‖ξk‖L2(−T2 ,

T
2 )

)
> −(1 + β) ln(

√
T )− (1 + β)

T

2
λk + (1− α)(N − 1) ln(Nπ)− β8πeTN.

For sufficiently large N (depending on T and α) we deduce that

(1− α)(N − 1) ln(Nπ)− β8πeTN = (1− α)(N − 1) lnN+

+(1− α)(N − 1) lnπ − β8πeTN ≥ (1− α)

2
N lnN − β8πeTN ≥ 1

4
(1− α)N lnN.

Hence, we obtain

(1 + β) ln
(
‖ξk‖L2(−T2 ,

T
2 )

)
> −(1 + β) ln(

√
T )− (1 + β)

T

2
λk +

1

4
(1− α)N lnN,

equivalent to

‖ξk‖L2(−T2 ,
T
2 ) >

1√
T
e−

T
2 λke

1−α
4(1+β)

N lnN . (3.42)

Therefore (3.26) holds with ω′ = 1
4(1+β) and C = 1√

T
. The proof is complete. �

Now, we have all the ingredients needed to prove our main controllability result,
Theorem 1.1.

4. Controllability results

In this section we firstly give the proof of the main result Theorem 1.1.

Proof of Theorem 1.1: We show the existence of a function gN which verifies the
moment problem (2.4). Indeed, let (θk(T, ·))1≤k≤N be the biorthogonal sequence to

the family of exponential functions ΛN in L2
(
−T2 ,

T
2

)
given by Theorems 3.6. In this

case the moment problem (2.4) is solved immediately by setting

gN (T − t) =
N∑
k=1

−u
0
k

fk
e−λk

T
2 θk

(
T, t− T

2

)
.

To estimate the norm of the control gN we use proceed as follows:

‖gN‖L2(0,T ) ≤ C max
{
‖θk(T, · )‖L2(0,T )

} N∑
k=1

|u0
k|e−(ν+Tπα

2 )kα ,

and (1.16) follows immediately by taking into account (3.20). The proof of Theorem
1.1 is complete. �

The following result shows that the estimate given by Theorem 1.1 is optimal.
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Theorem 4.1. There exists initial datum u0 ∈ C∞(0, 1) such that any N-finite di-
mensional control gN of equation (1.1) verifies

‖gN‖L2(0,T ) ≥ C exp [ω′(1− α)N lnN ] , (4.1)

where the constants C and ω′ are given by Theorem 3.7.

Proof. Let u0(x) = −
√

2fNe
TλN vN , where fN is the N -th coefficient of the function

f =
∞∑
j=1

√
2fjvj ∈ L2(0, 1) and vj are given by (1.3).

According to Theorem 2.2, any control gN will verify∫ T

0

gN (T − t)e−λjt dt = δjN (1 ≤ j ≤ N),

since

u0
j =
√

2

∫ 1

0

u0(x) sin(jπx) dx =

{
0 if j 6= N
−fNeTλN if j = N.

Therefore,

gN (T − t) = e
T
2 λN ξN

(
t− T

2

)
, (4.2)

where ξN is the N -th element from a biorthogonal sequence (ξk)1≤k≤N to the family

of exponential functions ΛN in L2
(
−T2 ,

T
2

)
.

Using (3.26) from Theorem 3.7, and (4.2) we deduce that relation (4.1) holds, and
the proof is complete. �

Remark 4.1. In this article we have considered that the exponent α ∈ (0, 1). The
case α = 1 is also interesting and corresponds to the classical Cauchy distribution
(see, for instance, [12]). Although the results in this case are qualitatively similar to
the previous ones, the estimates are different and will be presented elsewhere.
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