Lukasiewicz-Moisil algebra of fractions relative to an $\wedge\text{-closed}$ system

FLORENTINA CHIRTEŞ

ABSTRACT. The aim of this paper is to introduce the notion of n-valued Lukasiewicz-Moisil algebra of fractions relative to an \land -closed system.

2000 Mathematics Subject Classification. 03G20, 06D30. Key words and phrases. LM_n -algebra, LM_n -algebra of fractions, \wedge -closed system.

1. Definitions and preliminaries

Let *n* a natural number, $n \ge 2$.

Definition 1.1. ([1]) An *n*-valued Lukasiewicz-Moisil algebra (or LM_n -algebra) is a structure $(L, \land, \lor, N, 0, 1, \{\varphi_i\}_{1 \le i \le n-1})$ of type $(2, 2, 1, 0, 0, \{1\}_{1 \le i \le n-1})$, satisfying the following conditions:

- a) $(L, \wedge, \vee, N, 0, 1)$ is a De Morgan algebra,
- b) $\varphi_1, ..., \varphi_{n-1} : L \to L$ are bounded distributive lattices morphisms such that for every $x \in L$:
- b_1) $\varphi_i(x) \vee N\varphi_i(x) = 1$ for every i = 1, ..., n 1,

 $b_2) \varphi_i(x) \wedge N\varphi_i(x) = 0$ for every i = 1, ..., n - 1,

 $b_3) \varphi_i \varphi_j(x) = \varphi_j(x) \text{ for every } i, j = 1, ..., n-1,$

- b_4) $\varphi_i(Nx) = N\varphi_j(x)$ for every $i, j = 1, ..., n 1cu \ i + j = n$,
- $b_5) \varphi_1(x) \le \varphi_2(x) \le \dots \le \varphi_{n-1}(x),$
- b_6) If $\varphi_i(x) = \varphi_i(y)$ for every i = 1, ..., n 1, then x = y.

The relation b_6) is called the determination principle.

As consequences of the determination principle we obtain:

- b_7) If $x, y \in L$ then $x \leq y$ iff $\varphi_i(x) \leq \varphi_i(y)$ for every i = 1, ..., n 1,
- $b_8) \varphi_1(x) \le x \le \varphi_{n-1}(x)$ for every $x \in L$.

We denote an LM_n -algebra $(L, \land, \lor, N, 0, 1, \{\varphi_i\}_{1 \le i \le n-1})$ by its universe L.

Remark 1.1. The endomorphisms $\{\varphi_i\}_{1 \le i \le n-1}$ are called chrysippian endo-morphisms.

Examples:

$$\begin{split} E_1) & \text{Let } L_n = \{0, \frac{1}{n-1}, \dots, \frac{n-2}{n-1}, 1\}. \text{We define } x \lor y = \max\{x, y\}, x \land y = \min\{x, y\}, \\ Nx &= 1 - x \ (N(\frac{j}{n-1}) = \frac{n-1-j}{n-1}) \text{ and } \varphi_i : L_n \to L_n, \varphi_i(\frac{j}{n-1}) = 0 \text{ if } i+j < n \text{ and } 1 \text{ if } i+j \geq n, \text{ for } i, j = 1, \dots, n-1. \\ & \text{Then } (L_n, \land, \lor, N, 0, 1, \{\varphi_i\}_{1 \leq i \leq n-1}) \text{ is an } LM_n\text{-algebra.} \end{split}$$

Received: 10 June 2003.

$$\begin{split} E_2) & \text{Let} \ (B, \lor, \land, ^{'}, 0, 1) \text{ a Boolean algebra and } D(B) = \{(x_1, ..., x_{n-1}) \in B^{n-1}, x_1 \geq \\ \dots \geq x_{n-1}\}. \text{ We define pointwise the infimum and the supremum, } N(x_1, ..., x_{n-1}) = (x_{n-1}, ..., x_1^{'}) \text{ and } \varphi_i(x_1, ..., x_{n-1}) = (x_i, ..., x_i) \text{ for all } i = 1, ..., n-1. \text{Then} \end{split}$$

$$(D(B), \wedge, \vee, N, 0, 1, \{\varphi_i\}_{1 \le i \le n-1})$$

is an LM_n -algebra.

In the rest of this paper, by L we denote an LM_n -algebra.

We denote by C(L) the set of all complemented elements of L and we call it the center of L. It is easy to see that $(B, \lor, \land, N, 0, 1)$ is a Boolean algebra.

Lemma 1.1. ([1]) Let L an LM_n -algebra. The following are equivalent:

 $(i) \ x \in C(L),$

(ii) there are $i \in \{1, ..., n-1\}$ and $y \in L$ such that $x = \varphi_i(y)$,

(iii) there is $i \in \{1, ..., n-1\}$ such that $x = \varphi_i(x)$,

(*iv*) $x = \varphi_i(x)$ for every i = 1, ..., n - 1,

(v) $\varphi_i(x) = \varphi_j(x)$ for every i, j = 1, ..., n - 1.

Remark 1.2. If $x \in L$ then $\varphi_i(x) \in C(L)$ for every i = 1, ..., n - 1.

Lemma 1.2. ([1]) Let L be an LM_n -algebra. The following are equivalent:

(i) $x \in C(L)$, (ii) $Nx \in C(L)$,

- (*iii*) $x \wedge Nx = 0$,
- $(iv) x \lor Nx = 1.$

Proposition 1.1. ([1]) Every LM_n -algebra L is completely chrysippian, provided for every $(a_s)_{s \in S} \subseteq L$ we have:

(c_1) if
$$\bigvee_{s \in S} a_s$$
 exists then $\varphi_i \left(\bigvee_{s \in S} a_s\right) = \bigvee_{s \in S} \varphi_i(a_s)$ for every $i = 1, ..., n - 1$,

(c₂) if
$$\bigwedge_{s \in S} a_s$$
 exists then $\varphi_i \left(\bigwedge_{s \in S} a_s\right) = \bigwedge_{s \in S} \varphi_i(a_s)$ for every $i = 1, ..., n - 1$.

Based on this proposition and using the determination principle it is easy to prove that the following properties hold for any LM_n -algebra L and for every $(a_s)_{s\in S} \subseteq L$:

(c₃) if $\bigvee_{s \in S} a_s$ exists then $a \land \left(\bigvee_{s \in S} a_s\right) = \bigvee_{s \in S} (a \land a_s)$ for every $a \in L$, (c₄) if $\bigwedge a_s$ exists then $a \lor \left(\bigwedge a_s\right) = \bigwedge (a \lor a_s)$ for every $a \in L$.

$$(c_4) \text{ II } \bigwedge_{s \in S} a_s \text{ exists then } a \lor \left(\bigwedge_{s \in S} a_s\right) = \bigwedge_{s \in S} (a \lor a_s) \text{ for every } a \in L.$$

Definition 1.2. ([1]) Let L and L' be LM_n -algebras. A function $f : L \to L'$ is a morphism of LM_n -algebras iff it satisfies the following conditions, for every $x, y \in L$:

(i) $f(x \lor y) = f(x) \lor f(y)$,

(*ii*)
$$f(x \wedge y) = f(x) \wedge f(y)$$
,
(*iii*) $f(0) = 0$ $f(1) = 1$

$$(iii) \ f(0) = 0, f(1) = 1,$$

(iv) $f(\varphi_i(x)) = \varphi_i(f(x))$ for every i = 1, ..., n - 1.

Remark 1.3. It follows that:

$$f(Nx) = Nf(x)$$

for every $x \in L$.

F. CHIRTEŞ

Definition 1.3. ([?]) Let L be an LM_n -algebra. We say that $I \subseteq L$ is an n-ideal if I is an ideal of the lattice L and if $x \in I$ then $\varphi_{n-1}(x) \in I$.

We denote by Idn(L) the set of all n - ideals of the algebra L.

Remark 1.4. ([?]) If I is an n- ideal, then $I \cap C(L)$ is an ideal of the Boolean algebra C(L).

Remark 1.5. ([?]) If J is an ideal of the Boolean algebra C(L), then $\varphi_{n-1}^{-1}(J)$ is an *n*-ideal.

Definition 1.4. ([1]) A congruence on LM_n -algebra L is an equivalence relation on L, compatible with the operations $\land, \lor, N, \varphi_i$, for every i = 1, ..., n - 1.

Proposition 1.2. ([1]) For a congruence relation ρ on LM_n -algebra L the following conditions are equivalent:

(1) ρ is a congruence on L,

(2) ρ is compatible with \wedge, \vee, φ_i , for every i = 1, ..., n - 1.

2. *n*-valued Lukasiewicz-Moisil algebra of fractions relative to an \wedge -closed system

Definition 2.1. ([?]) A nonempty subset $S \subseteq L$ is called \wedge -closed system in L if: b_9) $1 \in S$,

 b_{10}) $x, y \in S$ implies $x \wedge y \in S$,

We denote by S(L) the set of all \wedge -closed systems of L (clearly {1}, $L \in S(L)$). For $S \in S(L)$, on the LM_n -algebra L we consider the relation θ_S defined by

 $(x, y) \in \theta_S$ iff there is $e \in S \cap C(L)$ such that $x \wedge e = y \wedge e$.

Lemma 2.1. θ_S is a congruence on L.

Proof. The reflexivity (since $1 \in S \cap C(L)$) and the symmetry of θ_S are immediately. To prove the transitivity of θ_S , let $(x, y), (y, z) \in \theta_S$. Thus there are $e, f \in S \cap C(L)$ such that $x \wedge e = y \wedge e$ and $y \wedge f = z \wedge f$. If denote $g = e \wedge f \in S \cap C(L)$, then $x \wedge g = x \wedge (e \wedge f) = (x \wedge e) \wedge f = (y \wedge e) \wedge f = (y \wedge f) \wedge e = (z \wedge f) \wedge e = z \wedge (f \wedge e) = z \wedge g$, hence $(x, z) \in \theta_S$.

To prove the compatibility of θ_S with the operations \land, \lor , and φ_i for every i = 1, ..., n-1, let $x, y, z, t \in L$ such that $(x, y) \in \theta_S$ and $(z, t) \in \theta_S$. Thus there are $e, f \in S \cap C(L)$ such that $x \land e = y \land e$ and $z \land f = t \land f$; we denote $g = e \land f \in S \cap C(L)$. Then $(x \land z) \land g = (y \land t) \land g$, hence $(x \land z, y \land t) \in \theta_S$.

From $x \wedge g = y \wedge g$ and $z \wedge g = t \wedge g$ we deduce $(x \vee z) \wedge g = (y \vee t) \wedge g$, that is $(x \vee z, y \vee t) \in \theta_S$.

From $x \wedge e = y \wedge e$ (with $e \in S \cap C(L)$) we deduce that for every i = 1, ..., n - 1, $\varphi_i(x) \wedge \varphi_i(e) = \varphi_i(y) \wedge \varphi_i(e)$, that is $(\varphi_i(x), \varphi_i(y)) \in \theta_S$ (since $\varphi_i(e) = e \in S \cap C(L)$).

For $x \in L$ we denote by x/S the equivalence class of x relative to θ_S and by

$$L[S] = L/\theta_S.$$

By $p_S : L \to L[S]$ we denote the canonical map defined by $p_S(x) = x/S$, for every $x \in L$. Clearly, in L[S], $\mathbf{0} = 0/S$, $\mathbf{1} = 1/S$ and for every $x, y \in L$,

$$x/S \wedge y/S = (x \wedge y)/S$$

56

$$x/S \lor y/S = (x \lor y)/S$$

$$N(x/S) = (Nx)/S$$

$$S^{[C]} = (x/S) - (x/S)/S$$

$$S^{[C]} = (x/S) - (x/S)/S$$

 $\bar{\varphi}_i: L[S] \to L[S], \bar{\varphi}_i(x/S) = (\varphi_i(x))/S \text{ for every } i = 1, ..., n-1.$

So, p_S is an onto morphism of $LM_n\mbox{-algebras}.$

Remark 2.1. Since for every $s \in S \cap C(L)$, $s \wedge s = s \wedge 1$, we deduce that s/S = 1/S = 1, hence $p_S(S \cap C(L)) = \{1\}$.

Proposition 2.1. If $a \in L$, then $a/S \in C(L[S])$ iff there is $e \in S \cap C(L)$ such that $e \wedge a \in C(L)$. So, if $e \in C(L)$, then $e/S \in C(L[S])$.

Proof. For $a \in L$, we have $a/S \in C(L[S]) \Leftrightarrow \overline{\varphi}_i(a/S) = a/S$ for all $i = 1, ..., n-1 \Leftrightarrow \varphi_i(a)/S = a/S$ for all $i = 1, ..., n-1 \Leftrightarrow (\varphi_i(a), a) \in \theta_S \Leftrightarrow$ there is $e \in S \cap C(L)$ such that $\varphi_i(a) \land e = a \land e \Leftrightarrow \varphi_i(a \land e) = a \land e \Leftrightarrow a \land e \in C(L)$.

If $e \in C(L)$, since $1 \in S \cap C(L)$ and $1 \wedge e = e \in C(L)$ we deduce that $e/S \in C(L[S])$.

Theorem 2.1. If L is an LM_n -algebra and $f : L \to L'$ is a morphism of LM_n algebras such that $f(S \cap C(L)) = \{1\}$, then there is an unique morphism of LM_n algebras $f' : L[S] \to L'$, such that the diagram

is commutative (i.e. $f' \circ p_S = f$).

Proof. If $x, y \in L$ and $p_S(x) = p_S(y)$, then $(x, y) \in \theta_S$, hence there is $e \in S \cap C(L)$ such that $x \wedge e = y \wedge e$. Since f is morphism of LM_n -algebras, we obtain that $f(x \wedge e) = f(y \wedge e) \Leftrightarrow f(x) \wedge f(e) = f(y) \wedge f(e) \Leftrightarrow f(x) \wedge 1 = f(y) \wedge 1 \Leftrightarrow f(x) = f(y)$.

From this observation we deduce that the map $f': L[S] \to L'$ defined for $x \in L$ by f'(x/S) = f(x) is correctly defined. Clearly, f' is a morphism of LM_n -algebras. The unicity of f' follows from the fact that p_S is an onto map.

Remark 2.2. The previous theorem allows us to call L[S] the Lukasiewicz-Moisil n-valued algebra of fractions relative to the \wedge -closed system S.

Examples:

- (1) If $S = \{1\}$ or is such that $1 \in S$ and $S \cap (C(L) \setminus \{1\}) = \emptyset$, then for $x, y \in L, (x, y) \in \theta_S \Leftrightarrow 1 \land x = 1 \land y \Leftrightarrow x = y$, hence in this case L[S] = L.
- (2) If S is an \wedge closed system such that $0 \in S$ (for example S = L or S = C(L)), then for every $x, y \in L, (x, y) \in \theta_S$ (since $x \wedge 0 = y \wedge 0$ and $0 \in S \cap C(L)$), hence in this case L[S] = 0.
- (3) If \mathcal{P} is a prime ideal of L (that is $\mathcal{P} \neq L$ and if $x \wedge y \in \mathcal{P}$ implies $x \in \mathcal{P}$ or $y \in \mathcal{P}$), such that $L \setminus P \subseteq C(L)$, then $S = L \setminus \mathcal{P}$ is an \wedge -closed system. We denote L[S] by $L_{\mathcal{P}}$. The set $M = \{x/S : x \in \mathcal{P}\}$ is a maximal n-ideal of $L_{\mathcal{P}}$. Indeed, if $x, y \in \mathcal{P}$, then $x/S \vee y/S = (x \vee y)/S \in M$ (since $x \vee y \in \mathcal{P}$). If $x, y \in L$ such that $x \in \mathcal{P}$ and $y/S \leq x/S \Rightarrow y/S \wedge x/S = y/S \Rightarrow (y \wedge x, y) \in \theta_S$, so there exists $e \in S \cap C(L) = S$ such that $y \wedge x \wedge e = y \wedge e$, hence $y \wedge e \leq x$. Since $x \in \mathcal{P}$, then $y \wedge e \in \mathcal{P}$, hence $y \in \mathcal{P}$ (since $e \notin \mathcal{P}$), so $y/S \in M$. If $x \in \mathcal{P} \Rightarrow \varphi_{n-1}(x) \in \mathcal{P} \Rightarrow \overline{\varphi_{n-1}}(x/S) = (\varphi_{n-1}(x))/S \in M$. To prove the

F. CHIRTEŞ

maximality of M let I an n-ideal of $L_{\mathcal{P}}$ such that $M \subseteq M'$ and $M \neq M'$. Then there exists $x/S \in M'$ such that $x/S \notin M$, (that is $x \notin \mathcal{P} \iff x \in S$), hence $x/S = \mathbf{1}$ (see Remark 2.1) so $M' = L_{\mathcal{P}}$. Moreover, M is the only maximal ideal of $L_{\mathcal{P}}$ (since if we have another maximal ideal M'' of $L_{\mathcal{P}}$, then $M'' \notin M$ hence there exists $x/S \in M''$ such that $x/S \notin M$, so $x/S = \mathbf{1}$ and $M'' = L_{\mathcal{P}}$, a contradiction!). In other words $L_{\mathcal{P}}$ is a *local* LM_n -algebra. The process of passing from L to $L_{\mathcal{P}}$ is called *localization* at \mathcal{P} .

References

- V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Lukasiewicz-Moisil Algebras, North Holland, 1991.
- [2] D. Buşneag, D. Piciu, MV-algebra of fractions relative to an ∧- closed system, Analele Universității din Craiova, Seria Matematica-Informatica, XXX(2), 48-53 (2003).
- [3] R. Cignoli, Algebras de Moisil, Notas de Logica Matematica, Instituto de Matematica, Universidad del Sur, Bahia Blanca, 27, (1970).
- [4] R. Cignoli, An algebraic approch to elementary theorie based on n-valued Lukasiewicz logics, Z. Math Logic u. Grund. Math., 30, 87-96 (1984).

(Florentina Chirteş) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, AL. I. CUZA STREET, 13, CRAIOVA RO-200585, ROMANIA, TEL/FAX: 40-251412673 *E-mail address*: chirtes@inf.ucv.ro

58