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ABSTRACT. In this article, our main concern is the study of the effect of a distributed time-
delay in boundary stabilization of a strongly coupled multi-dimensional wave equations. We
will establish that the system with time-delay inherits the same exponential decay rate from
the corresponding one without delay.
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1. Introduction

Several practical processes might be modelled by distributed delay systems which
present a wide range of applications in various fields such as micro-organism growth
[24], hematopoiesis [1, 2], logistics [5] and traffic flow [20]. In the past four decades,
many researchers have extensively investigated on the subject, and successfully ap-
plied them in more widespread other areas. They have developed mathematical tools
in order to establish polynomial or exponential decays of these systems. We refer
readers to [19] for a list of early works, and to [7, 8, 9, 12, 13, 14, 15, 21, 25, 26] and
the references therein, for some other relevant results.

It is well known that the boundary delay term, which appears in certain practical
problems, generates some instability effects that are largely studied in the literature.
For more details, we refer the reader to the work of Nicaise and Pignotti [16] and the
references therein. In the so called work, the authors considered the following wave
equation with delay concentrated at 7 for the system

uge(x,t) — Au(z,t) =0 in Q x (0,+00)

u(z,t) =0 on I'p x (0, +00)

0

a—Z(x,t) + prug(x,t) + poug(z,t —7) =0 on Iy X (0, 400) (1)
u(z,0) =up, u(z,0)=wu; in Q

w(z,t —7) = folx,t —7) on 'y x (0,7).

Under the condition pus < pi, they investigated exponential stability results by
combining inequalities due to Carleman estimates and compactness-uniqueness ar-
guments. Later, they also obtain in [17] the exponential stability with distributed
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delay of the system

uge(x,t) — Au(z,t) =0 in Q x (0, +00)

u(z,t) =0 on I'p x (0,400)

0 2

a—q:(x, t) + prug(x,t) —|—/ pa(s)ut(z,t —s)ds =0 on I'y x (0,+00) (2)
u(z,0) =up, wu(x,0) :7-1u1 in Q

u(z,t — 1) = fo(z,t —7) on 'y x (0,7),

under the assumption

/ " pa(s)ds < (3)

T1
by introducing suitable energies and by proving some observability inequalities.

In this paper, we investigate the study of the strongly coupled multi-dimensional
wave equations with distributed delay in an open bounded domain €2 of R™ with
smooth boundary T' of class C2 such that I = T'p UT'y and Tp NTx = 0. More
precisely, the main purpose of this work is to outline the stability results of the
following abstract problem :

uge(x,t) — Au(z, t) — bys(x,t) =0 in Q x (0, 400)

ye(x,t) — Ay(z,t) + bue(z,t) = 0in Q x (0, +00)

u=0 on I'p x (0,+00)

y=0 on I' x (0,+00)

ou 2 (4)
g(x,t) + Brug(z,t) + Ba(s)ui(z,t —s)ds =0 on T'y x (0,400)

u(x,0) = up(x) and ut(;zl,O) =uy(z) in Q

y(x,0) = yo(x) and y(x,0) = y1(z) in Q

ug(x, —t) = fo(x,—t) on I'y x (0,72).

Here and throughout the work, 7, and 75 are two real numbers with

0<m <.
Moreover, 3; and b are positive constants and the initial data (ug,u1,vo,y1, fo)
belong to a suitable space. Also, we assume that 85 : [11,72] — R is a positive L™

function verifying
T2
b1 > / ,62(8)6[8. (5)

In the absence of delay (i.e., 82 = 0), the system (4) becomes
uge(x,t) — Au(x, t) — by (z,t) =0 in Q x (0, +00)
yee(z,t) — Ay(z,t) + bug(x,t) = 0 in Q x (0, +00)
u=0 on I'p x (0,400)
y=0 on I' x (0,+00)
0

u(x,t) + Bug(x,t) =0 on T'y x (0,+00)

u(lém()) =ug(z) and wui(x,0) = uy(z) in Q
y(z,0) = yo(z) and yi(z,0) = y1(x) in Q,

and it has been proven in [23] that the above system when 5 = 1 decays exponentially.
In [3], Ammar-Khodja and Bader have studied the simultaneous stability of the system
(4) in the one-dimensional case. They established that the system is exponentially



INDIRECT BOUNDARY STABILIZATION OF COUPLED WAVE EQUATIONS 17

stable. But in our knowledge, none of the authors cited above has inserted any
distributed delay in the control. In this paper, our attention is focused on strongly
coupled multi-dimensional wave equations with distributed delay involving in the
boundary control for b small enough. Our goal in this paper is to prove that the
system (4) inherits the same exponential decay from the system without delay.

The paper is organized as follows: the section 2 is devoted to the well-posedness
of the problem (4) while the section 3 deals with the strong stability of problem (4).
Finally, the section 4 gives an exponential stability result.

2. Well-posedness

In this section, we will give the well-posedness for the problem (4) using the semigroup
theory, and establish strong stability result. Let us set

w(x, p,t,s) =u(z, t —ps), pe(0,1), s€(n,m), t>0. (6)
Then, the problem (4) is now equivalent to the following abstract problem

uge(x,t) — Au(z,t) — bye(x,t) =0 on Q x (0, +00)

Yy (2, t) — Ay(z,t) + bug(z,t) =0in Q x (0, +00)

swi(x, p,t,s) +wy(x, p,t,s) =0 on I'y x (0,1) x (0,+00) X (71, 72)

u=0 on I'p x (0,+400)

y=0 on I x (0,4+00)

ou = B (7)
—(z,t) + Prue(z, t) +/ Ba(s)w(z,1,t,s)ds =0 on I'y x (0,+00)

ov

u(z,0) = up(x) and wui(x,0) =ui(x) in Q

y(2,0) = yo(z) and y(x,0) = y1(z) in Q

w(x,0,t,8) = ug(z,t) on I'ny x (0,400) x (11, 72)
(

w(x, p,0,8) = folx,—ps) on T'n x (0,72).

Setting

T

U= (U, Uty Y, Yty ’LU) .
Then we have

- T
ut = (Ut, Utt, Yty Ytty wt)T = (uta Au + byta Y, Ay - but7 —S 1wp)
Therefore, the problem (7) can be rewritten in an abstract framework:
{ Z/[t = AZ/{
Z/[(O) = (u07 u1,Yo, Y1, fO(_ . S))T )

where the linear unbounded operator A is defined by

A (u,v,y, 2, w)T = (v, Au+ bz, z, Ay — bv, —s_lwp)T ,

with domain

D(A) =

(u, 0,9, 2,w)" € (HHQ) N V) x V x (H2(Q) N H(Q)) x HY(Q) x L ((r, 72); HY())

w(z,0,8) =v(z) on 'y and %(m) = —fv(z) — /72 Ba(s)w(x,1,8)ds on T'y

T1
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such that

V={ueH (Q),u=00nTp}.
Let us now introduce the Hilbert space
H =V x L*(Q) x H}(Q) x L*(Q) x L* ((11,72); L*(Q))

endowed with the following norm

2
v,z w)T|| =IVulZa + 012 + 1981350 + 2132
T2 1
[ 7 (s [ utepsipap) asar.
FN T1 0

So, the the natural associated inner product is the following

u u
v v*

< y || v > :/ (VuVu* + ov* + VyVy* + 22%) da
z z* Q
w w*

' 4 /F ) /T (5[32(5) /O 1 ww*dp> dsdr.

Proposition 2.1. The operator A defined above is m-dissipative.

Proof. Take U = (u,v,y,2,w)" € D(A). Then we have

u U v u
v v Au + bz v

<A vy |, v > =< 2 |y >
z z Ay — bv z
w w o —s_lwp w o

:/ (VoVT + (Au+b2)0 + V2Vy + (Ay — bv)z) do
Q

- /F ) /T T <52(s) /O 1wpwdp> dsdT.
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Using Green formula, Cauchy Schwarz’s inequality and the definition of D (A) we

obtain
H

= (/ VoVudr + (Au + b2)v + VzVy + (Ay — bv)zdz

/F ) /T 1 (52 / wpwdp> dde)
= §R</ VvVﬂda:—/ Vqud:rJr/FN %6df+b/ z@dz+/ V2zVydx
/Vszdm+/8 dl“—b/vzdx) —7/F / Ba(s) [Jw(z, p, 5)|?], dsdl
- §R< : gZdr> —7/F / Ba(s)|w(a, 1, 8)[2dsdl
+2/FN /T1 Ba(s)|w(x,0,5)|*dsdl
= ?R(/F (—Blv—/:z Bg(s)w(x,l,s)dsdl") vdF)
1/FN /T2 52(5)|w(x,1,s)2dde+l/FN /TT Ba(s)|w(z,0, s)|*dsdT
= -5 /FN |v(z)[2dT — ?R(/FN/ Ba(s x,l,s)vdsdf)
5 [ [ aemepai 5 [ (ot

Hence reminding that w(z, 0, s) = v(x) and using Young’s inequality we find that

§R<A > g@l/FN x)|2dl + = /FN/ Ba(s)|v(z)|*dsdl

H

fE e e
S e e

S e e
S e e

1 T2
+ */ Ba(s)|w(w, 1, s)[*dsdl’
2 'y Jm

1 T2 1 .
Q/FN j 52($)|w(x,17s)|2dsd1“+2/r]v /Tl 52(5)\v($)\2dsdf

1

< (—Bl + ﬂz(s)ds> /F ) [v(x)[*dT.

We deduce that A is dissipative thanks to the relation (5).
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Now we will show that A\l — A is surjective for at least one A > 0. For that
purpose, putting (f1, fa, f3, fa, f5)' € H, we look for (u,v,y,z,w)" € D (A) solution

of the equation

u bil
v f2
M-A) |y |=]7F
z fa
w I5
Therefore,
Au—v=f
A —Au—bz = fo
Ay —z=f3

Az—Ay+bv=fy
Mw+ s w, = f5.

Suppose that we have found u with the right regularity. Then, we set
v=Au—fi

and we can determine z.
From the definition of D (A) we recall that

w(z,0,s) =v(x), forx €Ty, s € (11,72);
and from (10),
Aw(z,p,s) + 57"

Consequently, by (12) and (13) we obtain
P
U/(fE,p, S) = e—)\Psv(x) + se—/\ps/ fS(x, o, S)e_AUSdO'.
0
Using (11) we get
P
w(z, p,s) = )\u(a:)efkps _ fl(x)eprs + sef)\ps/ fs(z, 0, S)efA”Sda
0

and in particular
w(z,1,5) = Mu(z)e ™ + g(z, s)
where g is a L2 (I'y x (71, 72)) function defined by

1
g(x, 5) = _fl (l‘)e_ks + 86_)\8 / f5(x, o, S)e—)\a'sdo_.
0

Eliminating v and z in (10) we get
N — Au— Xby = Mf1 + fo — bfs € L*(Q)
Ny — Ay + Mo = bfy + Mfs + f1 € L*(Q)

wy(z, p,8) = fs(x,p,s), forx €'y, pe(0,1), s € (11,72).

)

(10)

(18)

(19)

Let ¢ = (p1,92) € V x H}(Q) be a test function. Then (18) can be reformulated in

the following variational form

/ ()\2u—Au—)\by) gold:E:/ (Af1+ f2 = bf3) prde.
Q Q

(20)
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Integrating the left hand side of (20) by parts, and using (16) it follows that
/ ()\2u — Au — )\by) prdx =
Q

= /\2/ug01dx+/VuV<p1dx—/ @cpldf—/\b/ygolda:
Q Q ry OV Q

= /\Q/uapldx—l— VuVpidx
7/ ( 51@,/ Ba(s x,l,S)d8> @ldF*)\b/ yp1dr
I'n Q
= /\z/ucplder/Vquolderﬁl/ vp1dl
Q Q I'n
+/ Ba2(s) (/\u(x)e_)‘s + g(z, s)) p1dsdl’ — /\b/ yo1dx
I'n J7m1 Q
= )\2/uap1dx+/VuV<p1dx+ﬂ1/ (Au— f1) p1dT
Q Q I'n

T2 T2
+)\/ ucpl/ ﬂg(s)e*/\sdsdf—i—/ / ﬁg(s)g(m,s)@ldsdf—)\b/ yp1dx
FN T1 FN T1 Q

= )\2/ ugold:ch/ Vqualder)\ﬂl/ uprdl’ — By f11dl
Q Q I'n I'n
T2

4+ u(pl/ ﬁQ(S)B_ASdeF—F/ Bg(s)g(x,s)gpldsdl“—)\b/ yp1dT.
FN T1 FN T1 Q

So (20) can be rewritten as

)\Q/ugoldx—i—/ Vquoldm+)\B1/ uprdl’ — By frprdl’
Q Q I'n

I'n

+)\/ u<p1/ Bg(s)efAsddeJr/ / ﬂg(s)g(x,s)goldsdf‘f)\b/ yprdx
FN T1 FN T1 Q

- /Q (ML + fo — bfs) prde

that is

T2
)\2/ uapld:r+/ Vchpld:ch)\Bl/ ucpldF+>\/ ucpl/ Bg(s)e*)‘sdsdff)\b/ yprdx
Q Q 'y 'y T1 Q

= / M1+ fo—bfs) prdr + 54 fiprdl — / b Ba(s)g(x, s)p1dsdl. (21)
Q I'n I'nvJm

Analogously (19) can be reformulated in the following variational form

/ (A2y — Ay + Abu) padz = / (b1 + s + f2) ad. (22)
Q Q
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Integrating the left hand side of (22) by parts it follows that

0
/ ()\zy — Ay + Abu) podz = )\2/ ypadx +/ VyVadr — / —ygogdf + )\b/ upadx
Q Q Q r Ov Q

= )\Q/ycpgd:c—i-/Vngonx—f—)\b/ wpada.
Q Q Q

Then (22) can be rewritten as

)\2/ ygogd:c+/ VyVeodr + )\b/ upadx :/ (bf1 + Afs + fa) padz. (23)
Q Q Q Q
Combining (21) and (23) we get

ax ((u,y), (p1,92)) = L1, ¢2) (24)

where a) is a bilinear form defined by

ax (), (g1, 92)) =A2 /Q wprde + /Q VuVrds + Aoy / wprdl

T2
—l—)\/ u<p1/ ﬁg(s)e_)‘sdsdl“—)\b/ ygoldx—l-)\Q/ ypodx
Tn ﬁ Q Q

+/ VyV@gda:-i-)\b/ upodx (25)
Q Q

and Ly a linear form defined by

L(¢1,02) Z/Q(/\f1+f2—bf3)<ﬂ1dl‘+ﬁ1 fiprdl

I'n

_ / /T2 B2(8)g(x, s)p1dsdl +/ (bf1 + Afs + f1) pada. (26)
'y Jm Q

It is clear that a, is continuous and coercive in (V x Hg (Q))2 and Ly is continuous
in V x H}(Q). Thanks to the Lax-Milgram theorem the variational equation (24)
admits a unique (u,y) € V x H}(Q). Furthermore (u,y) is a weak solution of (18)-
(19) associated to the following boundary conditions

u=0onTIp

0 &
a—z =—fw —/ Ba(s)w(x,1,8)ds on T'y (27)
y=0onT. '

Then the classical elliptic theory (see [11], chapter 2), implies that the weak solution

(u,y) of (18)-(19) associated to the boundary conditions (27) belongs to the space
H2(9) x H2(Q). Finally we have found (u,v,y,z,w)' € D (A) which verifies (9). This
shows that the operator A is m-dissipative on H and then generates a Cy-semigroup of
contractions in H. Thanks to Lumer-Phillips’ theorem, problem (4) is well posed. O

3. Strong stability

In this section, we will prove that the system (4) is strongly stable using the spectral
decomposition theory of Sz-Nagy-Foias and Foguel [4, 6, 22]. Following this theory, it
suffices to establish that A has no eigenvalue on the imaginary axis, since the resolvent
of A is compact.
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First of all we assume that the following geometric control condition is satisfied, that
is: there exist § > 0 and zg € R™ such that
m-v>0,Veel'y and m-v<0,Vzelp (28)

where m = x — xo.

Lemma 3.1. Assume that b is small enough. There is no eigenvalue of A on the
imaginary azis, that is

iR C p(A).

Proof. Let i\ be an eigenvalue of A and U = (u,v,y,z,w)' € D (A) the associated
eigenvector. Then we have

AU = iAU. (29)
Using (29) and the dissipativeness of A, we get

0=R(NIUIE) =R AUV < (~5r+ [ s ) [ otaar <o

N

We deduce that
/ () |2dT = 0.
I'n

v=0 on Iy. (30)

The equation (29) can be formulated as

Consequently,

v =1i\u

Au+ bz =il

z =1\y (31)
Ay —bv =iAz

8_1wp =i \w

with boundary conditions
u=0 on I'p
ou 2
= —B1v — Ba2(s)w(x,1,8)ds on T'y (32)
y=0 on I

Recalling the definition of D (A) and using (30) it follows that w(x,0,s) =0 on I'y.
Then from the last equation of (31) we have the system

e (33)
which admits a unique solution w = 0. Consequently the boundary conditions become
u=0 on I'p
Ou =0 on I'y (34)

V: 0 on I'.
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If A =0 then v = z = 0. Consequently, using (34) we obtain from (31)

Au=0
u=0 on I'p
@—O on I' )
v N
and
Ay =0
{yzO on I'. (36)

It is obvious that (35) and (36) admit respectively a unique solution u = 0 and y = 0.
In short we get U = 0 which contradicts the fact that U is an eigenvector.
In the sequel, we assume that A # 0. Using (30) and the first equation of (31) it
follows that

u=0 on I'y. (37)

Eliminating v and z in (31) we get the following system

Au+ Au+ibdy =0
A2y + Ay —ibdu =0

u=0 on I

ou (38)

Eol 0 on I'y

y=0 on I
If we use the fact that b is small enough and proceeding as in Toufayli (see [23]),
we get u =y = v = z = 0. Finally U = 0 which contradicts the fact that U is an
eigenvector. The proof is thus completed. O

4. Exponential stability

In this section, we will show that the system (4) is exponentially stable. Our future
computations are based on frequency domain approach for exponential stability (see
Huang [10] and Pruss [18]), more precisely on the below result.

Lemma 4.1. A Cy-semigroup (etA) of contractions on a Hilbert space H is ex-

ponentially stable, namely satisfies

e4Ts||,, < Ce " |Uolle Y Uo€H, Vt2>0, (39)

t>0

I
for some positive constants C' and w if and only if

p(A) > {if, B e R} =iR (40)
and
. -1
g8 =7, <2 “y

where p(A) denotes the resolvent set of the operator A.
The main result of current section is the following.

Theorem 4.2. Assume that (ug,u1,vo0,Y1, fo)' € D(A). Then, the system (4) is
exponentially stable in the energy space H.
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Proof. As the condition (40) is guaranteed by Lemma 3.1, it suffices now to check
the condition (41) in other words, the boundedness of the resolvent on the imaginary
axis. For that, we will establish that for any A € R and F' = (f, g, h, k,l)T € H, the
solution U = (u,v,y,z,w)T € D(A) of

(N -A)U=F (42)
satisfies

Ul < ClIF [l (43)

where C' is a positive constant (not dependent on A and F').
Problem (4) without delay (corresponding to 82 = 0) is the following one

uge(x,t) — Au(x, t) — bys(x,t) =0 in Q x (0, +00)
yu(z,t) — Ay(x,t) + bu(x,t) = 0in Q x (0, 4+00)

y=0 on T x (0,+00)

u=0 on I'p x (0,+0c0) (44)
ou
a—(m,t) + frug(x,t) =0 on T'y x (0,+00)

v

u(z,0) = up(x) and wui(x,0) =ui(x) in Q

y(x,0) = yo(z) and y(z,0) =yi(z) in Q

This problem is well-posed in

Ho =V x L*(Q) x H}(Q) x L*(Q) (45)
endowed with the norm
o), = 19Uy + ol + IV + 1oy (40
The generator of its semigroup is Ag defined by
Ao (u,v,y, z)T = (v,Au+bz,z, Ay — bv)T (47)
with domain
D(Ay) =
:{ (u,v,y,2)" € (H2(Q)NV) x V x (H*(Q) N H}(Q)) x HY(RQ) : % =—pwonTy } .
(48)

The system (42) has been studied in [23] by Toufayli where it has been proved that
Ag generates an exponentially stable semigroup. So, according to this study we have
iR C p(Ap) and there exist a constant Cy > 0 such that

H(if _AO)_lHqu) <Cp, VEER (49)
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The relation (49) implies that the solution U* = (u*, v*, y*, z*)T € D(Ap) of

*

u u
v* v
iAx[— A < | = 50
(iAo | 0] = | (50)
z* z
verifies
T T
*’ *’ *7 * < C H ) ) ) ’ 51
[CrarsEol IETel CRs7EN (51)
Also, the system (50) can be rewritten as
A —v*=u
A — Au* —bz* =w
Az — Ayt + bv* = 2.
We have
U u* IAu—v u*
v v* iAv — Au — bz v*
z z* iz — Ay + b z*
w Qw ” IAw + s_lwp aw/

/ V (idu — v) Vu*dz + / (iAv — Au — bz) vidx + / V (idy — z) Vy*dx
Q Q Q
T2 1
+/ (idz — Ay + bv) z¥dz + oz/ / <362(5) / (idw + s w,) wdp> dsdl’
Q FN T1 0

= A / VuVurdz — [ VoVurdr +iX | vorde — | Auvide —b [ zv¥dx
Q Q Q Q Q

—l—i)\/ VyV?dx—/VzV?dm—l—i)\ z?dx—/Ay ?*dx—kb/v?da:
Q Q Q Q Q
To 1 To 1
—H')\a/ / (352(8)/ w|2dp> dde+a/ / (62(5)/ wpwdp> dsdl’
I'ny Jm1 0 'y J7m 0
= i/\/ VuVFder/ vAFdxf/ U@u dFJri)\/ vvi*dqu/ VuVu*dz
Q Q ry Ov Q Q
—/ @Fdf—b/ dem—i—M/ Vnydx—/Vszdm—i—i)\/ zz*dx
ry OV Q Q Q Q
T2 1
+/ VyV?dx—Fb/ v?dz—o—i)\a/ / <552($)/ |w|2dp) dsdl’
Q Q FN T1 0
T2 1
+a/ / (ﬂg(s)/ wpwd,o) dsdl’
FN T1 0
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= i\ [ VuVusdr + / vAu*dr — / v (—5117*) dl' + i)\ | vo*dz + [ VuVorde
Q T'n Q Q

7/ ( [311)7/ Ba(s)w(-, 1 s)ds) v*deb/ dex+M/ VyVy*dz
T'n Q Q

/sz*da:+z)\/zz*dx+/Vsz*dx+b/vz*da:

il /F ) /T 1 (5/32 / |w)| dp> dsdl + /F ) / (52 / wpwdp> dsdr.

Then, using (52) we get

*
*
*
*

Q

<(z'/\I - A > = [ VuV(—idu* 4+ v*)dx + / v(—idv* + Au* + bz*)dz
Q

S aue e
N e g

aw H

—|—/ VyV (—idy* + z*)dx —|—/ z(—iAz* + Ay* — bv*)dx 4 2/ / vo*dl’
Q Q r

N

T2 T2 1
—|—/ / ﬁz(s)Fw(~,1,s)dde+i)\a/ / <sﬂ2(s)/ |w|2dp) dsdl’
FN T1 FN T1 0
T2 1
+a/ / (52(3)/ wpwdp> dsdl’
FN T1 0
= —/ \Vu|2dx—/ |v|2d;v—/ |Vy|2dac—/ |z|2dm+2ﬁ1/ vo*dl
Q Q Q Q Ty
T2 T2 1
+/ / ﬁg(s)Fw(~,1,s)dsdl“+i)\a/ / <562(s)/ |w|2dp) dsdl’
'y J7m I'v J7m1 0
T2 1
+a/ / (52(5)/ wpwdp> dsdl
FN T1 0
= —IVulla@ ~ ol ~ IVla ) ~ Nl + 281 [ owar
T2 T2 1
+/ / ﬂg(s)va(~,17s)dde+iAa/ / (sﬂg(s)/ |w|2d,0) dsdl’
'y J71 'y Jm 0
T2 1
—|—a/ / (ﬂg(s)/ w,,wdp) dsdl.
FN T1 0

Now using (46), we can rewrite the above relation as
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u
v*
* T
Yy > :7H(uvvvyaz) ’
o* Ho

2
<(m —A) 128, / voFdl
I'n

fE ue e

H

/FN/ Ba(s)v*w(-, 1 8)d8dI‘+z)\a/ /: (852(5)/01 |w|2dp) dsdl’
+O‘/FN /ﬁ (62(5)/0 wpwdp> dsdl. (53)

1
In the sequel we set & = ——. Then recalling (42) and taking the real part in (53),
€

we obtain
u*
2 v
H( , U, Y, Z) ’ = —§R <F17 y* > % (2B1/ ’U’U*dr)
Ho z* I'n

w

(/FN/ Balspvrul 13)d$dr) ( /F ) / (52 / wpwdp) dde),

(54)

M | =

Using (51) and the Cauchy-Schwarz inequality we have

u
,U*

—R(F | . < Pl [t ot 21l [(0,0,0,0,w)T]
z* - Ho 3 H
1
——w
3 H

1 T
SR (Gl W L (A
< Bl o 2T 1 vz )T
1
;
< CollFlly | v,9.2)T|| + 2 IF U U1, (55)
0

Applying the Young’s inequality one obtains

_ 2?2
%(251/ vv*df‘) < ﬂ/ |v|2dF+E/ [v*|?dl, withe>0.  (56)
I'n € I'n I'n

From the dissipativeness of .4, we deduce using (42) and the Cauchy-Schwarz inequal-
ity that

(31_/72[32(8)d3)/r [0l < (A = A)UU)p, < [Flly [Ully - (57)
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Note further that (51) and the dissipativeness of Aq directly yield

51/ AT < R (AL — Ao) U, Uy,
I'n

IA

* 2
(s 0,9, 2) 3 10 llagy < Co[[(us0,9,2) T, - (58)
Consequently using (57) and (58) in (56), we get

ECO

_ 232
® (201 [ o) < A 1l 10+ 52 s 002) T, - 59)
o €<ﬁ1— ) '

Ba(s)ds

1

Thanks to the Young’s inequality, we get

</ / Ba(s)v*w(-, 1, s) dsdI‘) i/ / Ba(s) |w( ,1,5)| dsdll
FN 2 1—‘N

c / / Ba(s) [v* |2 dsdr.
I'nvJm
That is using (58)

</FN/ Ba(s)v*w(- ,1,s)dde> 21/1“]\, 7:2 Ba(s) lw(-, 1, s)* dsdl
ECO/ 2ﬂ2(s)ds
TR

2
v,y 2) |5, - (60)

Furthermore, we have

<[ (ms) / lwpwdp) sat =~ [ [ o) ], dsar

= /FN 5 Ba(s) [w(-, 1, 8)? dde+2—E/ : Ba(s) [w(-, 0, 5)[2 dsdl

/ Ba(s) lw(-, 1, )7 dde+—/ / Ba(s) |v|? dsd.
I'n
Thus,

—R (i_ /FN /T <B2(s) /01 wpwdp) dde) ;g/FN / Ba(s) |w(-, 1, s)> dsdl

1 [ )
+ 7/ Bg(s)ds/ o2 dr.
2e T1 I'n
Using (57), one can write

—%( /FN/ <ﬁ2 /wpwdp) dsdI‘) —1/FN Tfﬁg(s)w(-,l,sﬂ?dsdI’
/ Bals
+2€ (ﬁl / e )”FHH”UHH

IN

(61)
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Now adding (55), (59), (61) and (60) one gets

2 1
T T
oy 2| < CollFly | v..2)T] )+ Z1El U]
0

232 eC 2
+ 7'21 HF”H ||UHH 510 ||(u,v,y,z)T||Ho
€ (51 — ﬂg(s)ds)
1 T EC()/ 52(5)615
2 T1 T
26/;]\] /7-1 ﬂQ(S) |’U)(,175)| dsdl’ + T H(U7U7y7z) HHO
) . / Ba(s)ds
2 T1
— o [ B s dsdr + 1l 10
Ty v 2e (61 — / ,62(8)d8>
That is

2 1
T T
|y 2| < CollFly | o2+ 2 1El Ul
0

232 eCo
+ A 1l 10+ 52 (1 [ Batohts) )T,

(- ﬁ@())
/ Bals
T
B

At this level we chose ¢ sufficiently small such that ¢ < - to

i (1+ [ bl

[E 3¢ 1115, -

obtain
" 187 + / Bals
|wow o, < [+ 1l 1Tl - (62)
0 2¢e (ﬂl —/ ﬂg(S)dS)
. T 2 2 T2 1 )
siuce (... 20)"[ = o[} +[ | (sﬁxs) [ utp) dp) dsdr,
FN T1 0

we deduce that

463 + / Ba(s
% (/31 / 1 62(8)d5>
T /F i / (sms) /0 1 |w<-,p7s>|2dp) dsd. (63)

2
Ul < Co+€+ [ E Nl 1U |54
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T2 1
Now we need a best estimation for / / (sﬁg (8)/ lw(-, p, s)|2dp> dsdl.
FN T1 0

Following (42) and solving the next Cauchy problem (64)

silwp +idw =1
{ w(-,0,8) =v (64)
we obtain
) 4 )
w(-,p,s) = ve AP 4 s/ 672)\5(’)70”(', o,8)do, ¥V pe(0,1). (65)
0

Using the triangular inequality, it follows from (65) that

P
(-, p, 8)] < |v|+s/ 1(,0,8)| o, V pe (0,1),
0

which leads to

P 2 p
lw(-, p, s)|2 < |v|2—i-s2 (/ [1(-, 0,58)] da) +2]v| s (/ (-, 0,9)]| dO’) , Vpe(0,1).
0 0

(66)
On the one hand, by Cauchy-Schwarz’s inequality we obtain

(/Opu(.,a,s)da)z < </Op|l(~,cr,5)2da) (/0de>
p [ oo do
[ oo

(/Op (0. s)|d0>2 < /Op|z(.,o—,s)|2dg. (67)

On the other hand, Young’s inequality guarantees that

2v| s (/Op (-, o, 5)|do> < |of® + 82 </Op|l(-,o,s)|do)2. (68)

Combining (66), (67) and (68) it follows that

IN

IN

that is

P
wp ) <200l 26 [ i) don (69)

Integrating (69) on I'y x (71, 72) % (0,1) yields

/ i / (s,é’z / (-, pr5 |dp)dsdr
2/71 5Bz (s)ds /FN|U| dr+2/FN/ s3B5(s) / (-, p, 8)|* dsdpdl
272/: Bz(S)dS/FN o dT + 273 /FN / Sﬁz(s)/o (- p, 5)[? dsdpdT"

IN

IN
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Then using (57) and the H-norm definition, the above relation can be rewritten as

. 1 27'2/ 252(5)(15
/ / (sms) / |w<-,p,s>|2dp) dsdT" < 1E N U 4272 [P,
v Jn 0 8 - / Ba(s)ds

(70)
Putting (70) in (63), it follows that

482 + 1+457'2/ Ba(s
L]

2 2
U5, < Ce Nl E Il Ul + 275 P15, (71)

where C; is a positive constant which doesn’t depend on A. More precisely,

2
1l 1Tl + 275 (113,

U5 < | o+~ +

that is

482 + (1 + dets) / Ba(s

C. =Co+ g + (72)
2e (ﬂ1 / Ba(s )
Applying Young’s inequality to (71) it follows that
2 Ce 2 e'Ce 2 2 .
U7 < % | F'l5, + +273 |F|l3,, with e > 0. (73)

One can choose ¢’ small enough such that = < 1. Consequently, (73) becomes

U3, < Ceer 113, (74)
where one sets
Ce
2% + 27'2
Coor = &5—7—. (75)
e'Ce
1 —
2
Finally (74) directly leads to (43) with
Ceer. (76)
That means the resolvent of A is uniformly bounded on the imaginary axis. The
proof of theorem 4.2 is thus completed. O
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