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The Reticulation of a Heyting Algebra

Christina-Theresia Dan

Abstract. Through this paper H denotes a Heyting algebra. Following the construction
method presented by L.P. Belluce for non-commutative rings and for semisimple algebras of
infinite valued logic and bold fuzzy set theory, we can point out the reticulation of a Heyting
algebra which means a distributive lattice so that its prime spectrum is homeomorphic to the
prime spectrum of H.
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1. Basic notions

Definition 1.1. Let L be a lattice and let x, y ∈ L. If sup {z ∈ L |x ∧ z ≤ y } exists,
we say that it is the relative pseudocomplement of x with respect to y and we denote
it by x → y.

Hence, the definition of the relative pseudocomplement is equivalent to the exis-
tence of an element x → y so that

x ∧ z ≤ y ⇔ z ≤ x → y.

Definition 1.2. A lattice with 0 in which there exists x → y for all x, y ∈ L is called
a Heyting algebra.

Heyting algebras, considered as lattices are distributive pseudocomplemented latti-
ces but, considered as algebras, they are algebras of similarity type (2,2,2,0) instead
of type (2,2,1,0) as for pseudocomplemented lattices.

Theorem 1.1. Let H be the equational class of algebras (L, (∧,∨,→, 0)) that verifies
the following identities:

(1) A set of identities which defines a lattice with 0.
(2) x ∧ (x → y) = x ∧ y.
(3) x ∧ (y → z) = x ∧ (x ∧ y → x ∧ z) .
(4) z ∧ (x ∧ y → x) = z.

Then, H is exactly the class of Heyting algebras.

Theorem 1.2. Let x, y, z ∈ H with H a Heyting algebra. Then,
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(i) x ∧ (x → y) ≤ y.
(ii) x ∧ y ≤ z ⇔ y ≤ x → z.
(iii) x ≤ y ⇔ x → y = 1.
(iv) y ≤ x → y.
(v) x ≤ y then z → x ≤ z → y and y → z ≤ x → z.
(vi) x → (y → z) = x ∧ y → z.
(vii) x ∧ (y → z) = x ∧ (x ∧ y → x ∧ z) .
(viii) x ∧ (x → y) = x ∧ y.
(ix) (x ∨ y) → z = (x → z) ∧ (y → z) .
(x) x → y ∧ z = (x → y) ∧ (x → z) .
(xi) (x → y)∗ = x∗∗ ∧ y∗where x∗ = x → 0.

Example 1.1. If (A, (∨,∧,− , 0, 1)) is a Boole algebra, A becomes a Heyting algebra
by considering x → y = x ∨ y.

Example 1.2. The chains with 0 and 1 are Heyting algebras if we define

x → y =
{

1 if x ≤ y
y if y < x.

Example 1.3. Let (X, τ) be a topological space. Then τ is a Heyting algebra with
0 = ∅ and for D1,D2 ∈ τ we define D1 → D2 = int ((X − D1) ∪ D2).

Example 1.4. Let L be a distributive lattice with 0. Then, Id (L) the lattice ideals of
L is a Heyting algebra if we define for I, J ∈ Id(L) I → J = {x ∈ L |x ∧ i ∈ J , for all i ∈ I } .

2. The reticulation of a Heyting algebra

Let H a Heyting algebra. We denote

Spec (H) = {P |P prime ideal of H } .

We recall that P is a prime ideal if it is proper and if x ∧ y ∈ P it results that x ∈ P
or y ∈ P . For each ideal I of H we define the set r (I) = {P ∈ Spec (H) |I � P } .
Spec (H) is a Stone space considering the topology generated by this sets. Each open
compact set of this space has the form r (x) = {P ∈ Spec (H) |x /∈ P } for all x ∈ H.
It is obtained in this case a bounded Stone space and for each open compact set
U ∈ St (H) , St (H) \ Cl (U) is compact. Moreover, r (a∗) = St (H) \ Cl (r (a)) for
each a ∈ H.

Proposition 2.1. If H is a Heyting algebra,
({r (x)}x∈H ,∧,∨,→, ∅, Spec (H)

)
is a

Heyting algebra isomorphic to H.

Proof. We know that all open sets of a topological space define a Heyting algebra
from Example 1.3. Let I, J be ideals of H.

We prove that r (I) → r (J) = r (I → J) . To realize that, we have to show that
Int [(St (H) \ r (I)) ∪ r (J)] = r (I → J). Let P ∈ r (I → J) which means that I →
J � P. Then, there exists a ∈ I → J and a /∈ P . If I ⊆ P then P /∈ r (I) and so,
r (I → J) ⊆ Int [(St (H) \ r (I)) ∪ r (J)]. If I � P there exists b ∈ I and b /∈ P . But,
a ∧ b ∈ J and a ∧ b /∈ P since P is a prime ideal. It results J � P hence, P ∈ r (J)
and then, r (I → J) ⊆ Int [(St (H) \ r (I)) ∪ r (J)] .

Let us consider now that r (K) ⊆ (St (H) \ r (I)) ∪ r (J) for K an ideal of H and
we prove that r (K) ⊆ r (I → J). That is equivalent to show that K ⊆ I → J which
means that I ∩K ⊆ J . It remains to prove that r (I ∩ K) ⊆ r (J). To realize this, let
P ∈ r (I ∩ K) so, I ∩ K � P . Since P is a prime ideal, it result I � P and K � P
and so, P ∈ r (K) , P /∈ St (H) \ r (I) hence, P ∈ r (J). �
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We intend to show that the topological space Spec (H) is homeomorphic to the
prime space of a distributive lattice.

On a Heyting algebra H we define the relation

x ≡ y ⇔ for each P ∈ P (H) , x ∈ P ⇔ y ∈ P

where P (H) is the set of all prime ideals of H.

Lemma 2.1. The relation defined as above is a congruence relation on H with respect
to the distributive lattice structure of H.

Proof. Let x ≡ y and x1 ≡ y1. Then, for a prime ideal P , if x ∧ x1 ∈ P it implies
that x ∈ P or x1 ∈ P which is equivalent with y ∈ P or y1 ∈ P and then y ∧ y1 ∈ P .
If x ∨ x1 ∈ P it results x, x1 ∈ P ⇔ y, y1 ∈ P and then, y ∨ y1 ∈ P . �

In this way, H/ ≡ , which we denote by HP , becomes a bounded distributive
lattice. With x̂ we denote the congruence class of x in HP .

Definition 2.1. Let I be an ideal of H and J an ideal in HP . We define the sets:

I∗ = {x̂ |there exists y ∈ I so that y ∈ x̂}
J∗ = ∪

x̂∈J
x̂.

Proposition 2.2. With the previous notations, for each ideal I of H and J an ideal
in HP , the following statements hold:

(i) I∗ is an ideal in HP .
(ii) J∗ is an ideal in H.
(iii) (J∗)

∗ = J .
(iv) 1∈ J∗ iff 1̂ ∈ J .

Proof. (i) Let x̂, ŷ ∈ I∗. There exist x1, y1 ∈ I so that x1 ∈ x̂ , y1 ∈ ŷ. Then, x ≡ x1,
y ≡ y1 and so, x ∨ y ≡ x1 ∨ y1. Since x1 ∨ y1 ∈ I it results that x̂ ∨ ŷ ∈ I∗. Now we
consider x̂ ≤ ŷ with ŷ ∈ I∗. Then, there exists y1 ∈ I with y1 ∈ ŷ. But, x̂∧ ŷ = x̂ and
then x ≡ x ∧ y ≡ x ∧ y1. We get x ∧ y1 ∈ I and x ∧ y1 ∈ x̂ which means that x̂ ∈ I∗.

(ii) Let x, y ∈ J∗. This implies x̂, ŷ ∈ J and then x̂∨ ŷ = x̂ ∨ y ∈ J . So, x∨y ∈ J∗.
Let x ≤ y with y ∈ J∗ hence, ŷ ∈ J . But, x̂ ∧ ŷ = x̂ ∧ y = x̂ implies that x̂ ∈ J and
so x ∈ J∗.

(iii) Let x̂ ∈ (J∗)
∗ which means that there exists y ∈ J∗ , y ∈ x̂. But then,

x̂ = ŷ ∈ J hence, (J∗)
∗ ⊆ J . Conversely, for x̂ ∈ J we obtain x ∈ J∗ and then,

x̂ ∈ (J∗)
∗.

(iv) If 1 ∈ J∗ , 1̂ ∈ (J∗)
∗ = J and for 1̂ ∈ J we get 1 ∈ J∗ from the previous

definition. �

Proposition 2.3. For a Heyting algebra H, the following statements are true:
(i) If P is a prime ideal in H, then P ∗ is a prime ideal in HP .
(ii) If P is a prime ideal in H, then (P ∗)∗ = P .
(iii) If J is a prime ideal in HP , then J∗ is a prime ideal in H.

Proof. (i) Let x̂, ŷ so that x̂ ∧ ŷ ∈ P ∗. Then there exists z ∈ P so that z ∈ x̂ ∧ y.
Since z ∈ P and z ≡ x ∧ y we obtain that x ∧ y ∈ P which is a prime ideal. Hence,
x ∈ P or y ∈ P which means that x̂ ∈ P ∗ or ŷ ∈ P ∗.

(ii) Let x ∈ (P ∗)∗ so, x̂ ∈ P ∗ which implies that there exists y ∈ P so that y ∈ x̂.
x̂ = ŷ leads us to x ≡ y and y ∈ P . Hence, x ∈ P . Conversely, if x ∈ P , x̂ ∈ P ∗ and
then x ∈ (P ∗)∗ .
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(iii) Let x, y from H so that x∧ y ∈ J∗. Then, x̂ ∧ y ∈ J which is a prime ideal in
HP . Hence, x̂ ∈ J or ŷ ∈ J which implies that x ∈ J∗ or y ∈ J∗. �
Proposition 2.4. The function P → P ∗ is a bijective map from Spec (H) onto
Spec (HP).

Proof. The previous proposition assures us that this function is well defined. If P ∗ =
Q∗ , from Proposition 2.2, P = (P ∗)∗ = (Q∗)∗ = Q which means that the mapping is
an injective one. If we consider J a prime ideal in HP , then, J = (J∗)

∗ with J∗ prime
ideal in H as it is proved in Propositions 2.2 and 2.3. So, the mapping is onto. �

To have a unit of notation we shall denote now the set of all prime ideals of H with
P and the set of all prime ideals of HP with P∗.

Finally, we compare the topologies on P and on P∗. We have already mentioned
that {r (x)}x∈H generates a topology on P. Let now consider the family of sets:

t (x̂) = {J ∈ P∗ |x̂ /∈ J } , x̂ ∈ HP .

This defines a topology on HP . For each U ⊆ P we define

U∗ = {P ∗ |P ∈ U } .

Proposition 2.5. With the previous notation, (r (x))∗ = t (x̂) for each x ∈ H.

Proof. (r (x))∗ = {P ∗ |P ∈ r (x)} = {P ∗ |x /∈ P }. Let P ∗ a prime ideal with x /∈ P .
If x̂ ∈ P ∗ there exists y ∈ P with y ∈ x̂. Then, x ≡ y which is in contradiction
with x /∈ P . Hence, x̂ /∈ P ∗ and then P ∗ ∈ t (x̂). Conversely, if J ∈ t (x̂) then J
is a prime ideal and x̂ /∈ J . Then, J∗ is prime ideal in H from Proposition 2.3 and
x /∈ J∗. Hence, J∗ ∈ r (x). Since Proposition 2.2 proves that (J∗)

∗ = J we obtain
that J ∈ (r (x))∗. �

Let

τ = {r (x) |x ∈ H } , τ∗ = {t (x̂) |x̂ ∈ HP }
be the two topologies raised for discussion and we consider the mapping f : τ → τ∗

defined by f (r (x)) = (r (x))∗.

Theorem 2.1. HP is the reticulation of the Heyting algebra H.

Proof. We have to prove that the spectral spaces of H and HP are homeomorphic.
To realize that we show that the previous mapping is a bijective one, it preserves the
arbitrary reunions and the finite intersections.

If (r (x))∗ = (r (y))∗ we obtain that, for any J prime ideal in HP , x̂ /∈ J ⇔ ŷ /∈ J .
From Proposition 2.4, for each J there exists P a prime ideal in HP so that J = P ∗.
Hence, x /∈ (P ∗)∗ ⇔ y /∈ (P ∗)∗ and since (P ∗)∗ = P from Proposition 2.3, we get
r (x) = r (y) . So, f is injective. Proposition 2.2 states that f is onto.

For x, y ∈ H we remark that

f (r (x) ∩ r (y)) = (r (x) ∩ r (y))∗ = r (x ∧ y)∗ = t
(
x̂ ∧ y

)
= t (x̂ ∧ ŷ) = t (x̂) ∩ t (ŷ) = f (x) ∩ f (y) .

If we consider now xi ∈ H for each i ∈ I with I an arbitrary set, we prove that

f

(
∪

i∈I
r (xi)

)
= ∪

i∈I
f (r (xi)) which means that

(
∪

i∈I
r (xi)

)∗
= ∪

i∈I
(r (xi))

∗. To realize

this, let P ∗ ∈
(

∪
i∈I

r (xi)
)∗

. Then P ∈ ∪
i∈I

r (xi). There exists i ∈ I so that P ∈ r (xi)
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and so, P ∗ ∈ (r (xi))
∗. Hence, P ∗ ∈ ∪

i∈I
(r (xi))

∗. Conversely, if P ∗ ∈ ∪
i∈I

(r (xi))
∗

there exists i ∈ I so that P ∗ ∈ (r (xi))
∗ So, P ∈ r (xi) for an index i ∈ I. Hence,

P ∈ ∪
i∈I

r (xi) and then P ∗ ∈
(

∪
i∈I

r (xi)
)∗

. �
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