The Reticulation of a Heyting Algebra

Christina-Theresia Dan

ABSTRACT. Through this paper H denotes a Heyting algebra. Following the construction method presented by L.P. Belluce for non-commutative rings and for semisimple algebras of infinite valued logic and bold fuzzy set theory, we can point out the reticulation of a Heyting algebra which means a distributive lattice so that its prime spectrum is homeomorphic to the prime spectrum of H.

2000 Mathematics Subject Classification. 06D20, 03G10, 06D15. Key words and phrases. Heyting algebra, reticulation, lattice.

1. Basic notions

Definition 1.1. Let L be a lattice and let $x, y \in L$. If $\sup \{z \in L | x \land z \leq y\}$ exists, we say that it is the relative pseudocomplement of x with respect to y and we denote it by $x \to y$.

Hence, the definition of the relative pseudocomplement is equivalent to the existence of an element $x \to y$ so that

 $x \wedge z \leq y \ \Leftrightarrow \ z \leq x \to y.$

Definition 1.2. A lattice with 0 in which there exists $x \to y$ for all $x, y \in L$ is called a Heyting algebra.

Heyting algebras, considered as lattices are distributive pseudocomplemented lattices but, considered as algebras, they are algebras of similarity type (2,2,2,0) instead of type (2,2,1,0) as for pseudocomplemented lattices.

Theorem 1.1. Let **H** be the equational class of algebras $(L, (\land, \lor, \rightarrow, 0))$ that verifies the following identities:

(1) A set of identities which defines a lattice with 0.

- (2) $x \wedge (x \to y) = x \wedge y.$
- (3) $x \wedge (y \to z) = x \wedge (x \wedge y \to x \wedge z)$.
- (4) $z \wedge (x \wedge y \to x) = z.$

Then, \mathbf{H} is exactly the class of Heyting algebras.

Theorem 1.2. Let $x, y, z \in H$ with H a Heyting algebra. Then,

Received: 14 November 2003.

 $x \wedge (x \to y) \le y.$ (i) $x \wedge y \leq z \ \Leftrightarrow \ y \leq x \to z.$ (ii)(iii) $x \leq y \Leftrightarrow x \to y = 1.$ (iv) $y \leq x \rightarrow y.$ (v) $x \leq y$ then $z \to x \leq z \to y$ and $y \to z \leq x \to z$. $x \to (y \to z) = x \land y \to z.$ (vi) $x \wedge (y \to z) = x \wedge (x \wedge y \to x \wedge z).$ (vii) $(viii) \quad x \land (x \to y) = x \land y.$ (ix) $(x \lor y) \to z = (x \to z) \land (y \to z).$ $x \to y \land z = (x \to y) \land (x \to z).$ (x) $(x \rightarrow y)^* = x^{**} \wedge y^*$ where $x^* = x \rightarrow 0$. (xi)

Example 1.1. If $(A, (\lor, \land, ^-, 0, 1))$ is a Boole algebra, A becomes a Heyting algebra by considering $x \to y = \overline{x} \lor y$.

Example 1.2. The chains with 0 and 1 are Heyting algebras if we define

$$x \to y = \begin{cases} 1 & \text{if } x \le y \\ y & \text{if } y < x. \end{cases}$$

Example 1.3. Let (X, τ) be a topological space. Then τ is a Heyting algebra with $0 = \emptyset$ and for $D_1, D_2 \in \tau$ we define $D_1 \to D_2 = int ((X - D_1) \cup D_2)$.

Example 1.4. Let L be a distributive lattice with 0. Then, Id(L) the lattice ideals of L is a Heyting algebra if we define for $I, J \in Id(L)$ $I \to J = \{x \in L | x \land i \in J, \text{ for all } i \in I\}$.

2. The reticulation of a Heyting algebra

Let H a Heyting algebra. We denote

 $Spec(H) = \{P | P \text{ prime ideal of } H\}.$

We recall that P is a prime ideal if it is proper and if $x \wedge y \in P$ it results that $x \in P$ or $y \in P$. For each ideal I of H we define the set $r(I) = \{P \in Spec(H) | I \nsubseteq P\}$. Spec(H) is a Stone space considering the topology generated by this sets. Each open compact set of this space has the form $r(x) = \{P \in Spec(H) | x \notin P\}$ for all $x \in H$. It is obtained in this case a bounded Stone space and for each open compact set $U \in St(H)$, $St(H) \setminus Cl(U)$ is compact. Moreover, $r(a^*) = St(H) \setminus Cl(r(a))$ for each $a \in H$.

Proposition 2.1. If H is a Heyting algebra, $(\{r(x)\}_{x\in H}, \wedge, \vee, \rightarrow, \emptyset, Spec(H))$ is a Heyting algebra isomorphic to H.

Proof. We know that all open sets of a topological space define a Heyting algebra from Example 1.3. Let I, J be ideals of H.

We prove that $r(I) \to r(J) = r(I \to J)$. To realize that, we have to show that $Int[(St(H) \setminus r(I)) \cup r(J)] = r(I \to J)$. Let $P \in r(I \to J)$ which means that $I \to J \nsubseteq P$. Then, there exists $a \in I \to J$ and $a \notin P$. If $I \subseteq P$ then $P \notin r(I)$ and so, $r(I \to J) \subseteq Int[(St(H) \setminus r(I)) \cup r(J)]$. If $I \nsubseteq P$ there exists $b \in I$ and $b \notin P$. But, $a \land b \in J$ and $a \land b \notin P$ since P is a prime ideal. It results $J \nsubseteq P$ hence, $P \in r(J)$ and then, $r(I \to J) \subseteq Int[(St(H) \setminus r(I)) \cup r(J)] \cup r(J)]$.

Let us consider now that $r(K) \subseteq (St(H) \setminus r(I)) \cup r(J)$ for K an ideal of H and we prove that $r(K) \subseteq r(I \to J)$. That is equivalent to show that $K \subseteq I \to J$ which means that $I \cap K \subseteq J$. It remains to prove that $r(I \cap K) \subseteq r(J)$. To realize this, let $P \in r(I \cap K)$ so, $I \cap K \nsubseteq P$. Since P is a prime ideal, it result $I \oiint P$ and $K \nsubseteq P$ and so, $P \in r(K)$, $P \notin St(H) \setminus r(I)$ hence, $P \in r(J)$. We intend to show that the topological space Spec(H) is homeomorphic to the prime space of a distributive lattice.

On a Heyting algebra H we define the relation

 $x \equiv y \Leftrightarrow \text{for each } P \in \mathcal{P}(H) \ , x \in P \Leftrightarrow y \in P$

where $\mathcal{P}(H)$ is the set of all prime ideals of H.

Lemma 2.1. The relation defined as above is a congruence relation on H with respect to the distributive lattice structure of H.

Proof. Let $x \equiv y$ and $x_1 \equiv y_1$. Then, for a prime ideal P, if $x \wedge x_1 \in P$ it implies that $x \in P$ or $x_1 \in P$ which is equivalent with $y \in P$ or $y_1 \in P$ and then $y \wedge y_1 \in P$. If $x \vee x_1 \in P$ it results $x, x_1 \in P \Leftrightarrow y, y_1 \in P$ and then, $y \vee y_1 \in P$.

In this way, H/\equiv , which we denote by $H_{\mathcal{P}}$, becomes a bounded distributive lattice. With \hat{x} we denote the congruence class of x in $H_{\mathcal{P}}$.

Definition 2.1. Let I be an ideal of H and J an ideal in $H_{\mathcal{P}}$. We define the sets:

$$I^* = \{ \widehat{x} \mid \text{there exists } y \in I \text{ so that } y \in \widehat{x} \} \\ J_* = \bigcup_{\widehat{x} \in I} \widehat{x}.$$

Proposition 2.2. With the previous notations, for each ideal I of H and J an ideal in $H_{\mathcal{P}}$, the following statements hold:

(i) I^* is an ideal in $H_{\mathcal{P}}$. (ii) J_* is an ideal in H. (iii) $(J_*)^* = J$. (iv) $1 \in J_*$ iff $\widehat{1} \in J$.

Proof. (i) Let $\hat{x}, \hat{y} \in I^*$. There exist $x_1, y_1 \in I$ so that $x_1 \in \hat{x}, y_1 \in \hat{y}$. Then, $x \equiv x_1, y \equiv y_1$ and so, $x \lor y \equiv x_1 \lor y_1$. Since $x_1 \lor y_1 \in I$ it results that $\hat{x} \lor \hat{y} \in I^*$. Now we consider $\hat{x} \leq \hat{y}$ with $\hat{y} \in I^*$. Then, there exists $y_1 \in I$ with $y_1 \in \hat{y}$. But, $\hat{x} \land \hat{y} = \hat{x}$ and then $x \equiv x \land y \equiv x \land y_1$. We get $x \land y_1 \in I$ and $x \land y_1 \in \hat{x}$ which means that $\hat{x} \in I^*$.

(*ii*) Let $x, y \in J_*$. This implies $\hat{x}, \hat{y} \in J$ and then $\hat{x} \lor \hat{y} = \hat{x} \lor \hat{y} \in J$. So, $x \lor y \in J_*$. Let $x \leq y$ with $y \in J_*$ hence, $\hat{y} \in J$. But, $\hat{x} \land \hat{y} = \hat{x} \land y = \hat{x}$ implies that $\hat{x} \in J$ and so $x \in J_*$.

(*iii*) Let $\hat{x} \in (J_*)^*$ which means that there exists $y \in J_*$, $y \in \hat{x}$. But then, $\hat{x} = \hat{y} \in J$ hence, $(J_*)^* \subseteq J$. Conversely, for $\hat{x} \in J$ we obtain $x \in J_*$ and then, $\hat{x} \in (J_*)^*$.

(*iv*) If $1 \in J_*$, $\hat{1} \in (J_*)^* = J$ and for $\hat{1} \in J$ we get $1 \in J_*$ from the previous definition.

Proposition 2.3. For a Heyting algebra H, the following statements are true:

- (i) If P is a prime ideal in H, then P^* is a prime ideal in $H_{\mathcal{P}}$.
- (ii) If P is a prime ideal in H, then $(P^*)_* = P$.
- (iii) If J is a prime ideal in $H_{\mathcal{P}}$, then J_* is a prime ideal in H.

Proof. (i) Let \hat{x}, \hat{y} so that $\hat{x} \wedge \hat{y} \in P^*$. Then there exists $z \in P$ so that $z \in \widehat{x \wedge y}$. Since $z \in P$ and $z \equiv x \wedge y$ we obtain that $x \wedge y \in P$ which is a prime ideal. Hence, $x \in P$ or $y \in P$ which means that $\hat{x} \in P^*$ or $\hat{y} \in P^*$.

(*ii*) Let $x \in (P^*)_*$ so, $\hat{x} \in P^*$ which implies that there exists $y \in P$ so that $y \in \hat{x}$. $\hat{x} = \hat{y}$ leads us to $x \equiv y$ and $y \in P$. Hence, $x \in P$. Conversely, if $x \in P$, $\hat{x} \in P^*$ and then $x \in (P^*)_*$.

68

(*iii*) Let x, y from H so that $x \land y \in J_*$. Then, $\widehat{x \land y} \in J$ which is a prime ideal in $H_{\mathcal{P}}$. Hence, $\widehat{x} \in J$ or $\widehat{y} \in J$ which implies that $x \in J_*$ or $y \in J_*$. \Box

Proposition 2.4. The function $P \to P^*$ is a bijective map from Spec(H) onto $Spec(H_{\mathcal{P}})$.

Proof. The previous proposition assures us that this function is well defined. If $P^* = Q^*$, from Proposition 2.2, $P = (P^*)_* = (Q^*)_* = Q$ which means that the mapping is an injective one. If we consider J a prime ideal in $H_{\mathcal{P}}$, then, $J = (J_*)^*$ with J_* prime ideal in H as it is proved in Propositions 2.2 and 2.3. So, the mapping is onto.

To have a unit of notation we shall denote now the set of all prime ideals of H with \mathcal{P} and the set of all prime ideals of $H_{\mathcal{P}}$ with \mathcal{P}^* .

Finally, we compare the topologies on \mathcal{P} and on \mathcal{P}^* . We have already mentioned that $\{r(x)\}_{x\in H}$ generates a topology on \mathcal{P} . Let now consider the family of sets:

$$t(\widehat{x}) = \{J \in \mathcal{P}^* \mid \widehat{x} \notin J\}, \ \widehat{x} \in H_{\mathcal{P}}.$$

This defines a topology on $H_{\mathcal{P}}$. For each $\mathcal{U} \subseteq \mathcal{P}$ we define

$$\mathcal{U}^* = \{ P^* \mid P \in \mathcal{U} \}$$

Proposition 2.5. With the previous notation, $(r(x))^* = t(\hat{x})$ for each $x \in H$.

Proof. $(r(x))^* = \{P^* | P \in r(x)\} = \{P^* | x \notin P\}$. Let P^* a prime ideal with $x \notin P$. If $\hat{x} \in P^*$ there exists $y \in P$ with $y \in \hat{x}$. Then, $x \equiv y$ which is in contradiction with $x \notin P$. Hence, $\hat{x} \notin P^*$ and then $P^* \in t(\hat{x})$. Conversely, if $J \in t(\hat{x})$ then J is a prime ideal and $\hat{x} \notin J$. Then, J_* is prime ideal in H from Proposition 2.3 and $x \notin J_*$. Hence, $J_* \in r(x)$. Since Proposition 2.2 proves that $(J_*)^* = J$ we obtain that $J \in (r(x))^*$.

Let

$$\tau = \{r(x) | x \in H\}, \ \tau^* = \{t(\hat{x}) | \hat{x} \in H_{\mathcal{P}}\}$$

be the two topologies raised for discussion and we consider the mapping $f: \tau \to \tau^*$ defined by $f(r(x)) = (r(x))^*$.

Theorem 2.1. $H_{\mathcal{P}}$ is the reticulation of the Heyting algebra H.

Proof. We have to prove that the spectral spaces of H and $H_{\mathcal{P}}$ are homeomorphic. To realize that we show that the previous mapping is a bijective one, it preserves the arbitrary reunions and the finite intersections.

If $(r(x))^* = (r(y))^*$ we obtain that, for any J prime ideal in $H_{\mathcal{P}}$, $\hat{x} \notin J \Leftrightarrow \hat{y} \notin J$. From Proposition 2.4, for each J there exists P a prime ideal in $H_{\mathcal{P}}$ so that $J = P^*$. Hence, $x \notin (P^*)_* \Leftrightarrow y \notin (P^*)_*$ and since $(P^*)_* = P$ from Proposition 2.3, we get r(x) = r(y). So, f is injective. Proposition 2.2 states that f is onto.

For $x, y \in H$ we remark that

Ĵ

$$f(r(x) \cap r(y)) = (r(x) \cap r(y))^* = r(x \wedge y)^* = t\left(\widehat{x \wedge y}\right)$$
$$= t(\widehat{x} \wedge \widehat{y}) = t(\widehat{x}) \cap t(\widehat{y}) = f(x) \cap f(y).$$

If we consider now $x_i \in H$ for each $i \in I$ with I an arbitrary set, we prove that $f\left(\bigcup_{i \in I} r(x_i)\right) = \bigcup_{i \in I} f(r(x_i))$ which means that $\left(\bigcup_{i \in I} r(x_i)\right)^* = \bigcup_{i \in I} (r(x_i))^*$. To realize this, let $P^* \in \left(\bigcup_{i \in I} r(x_i)\right)^*$. Then $P \in \bigcup_{i \in I} r(x_i)$. There exists $i \in I$ so that $P \in r(x_i)$

C.-T. DAN

and so, $P^* \in (r(x_i))^*$. Hence, $P^* \in \bigcup_{i \in I} (r(x_i))^*$. Conversely, if $P^* \in \bigcup_{i \in I} (r(x_i))^*$ there exists $i \in I$ so that $P^* \in (r(x_i))^*$ So, $P \in r(x_i)$ for an index $i \in I$. Hence, $P \in \bigcup_{i \in I} r(x_i)$ and then $P^* \in \left(\bigcup_{i \in I} r(x_i)\right)^*$.

References

- [1] R. Balbes, Ph. Dwinger, Distributive Lattices, University of Missouri Press, 1974.
- [2] L. P. Belluce, Semisimple algebras of infinite valued logic and bold fuzzy set theory, Can. J. Math., XXXVIII(6), 1356-1379 (1986).
- [3] L. P. Belluce, Spectral spaces and non-commutative rings, Communications in Algebra, 19(7), 1855-1865 (1991).
- [4] G. Georgescu, The reticulation of a quantale, Rev. Roum. Math. Pures et Appl., 40, 619-631 (1995).
- [5] H. Simmons, Reticulated rings, J. Algebra, 66, 169-192 (1980).

(Christina-Theresia Dan) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, AL. I. CUZA STREET, 13, CRAIOVA RO-200585, ROMANIA, TEL/FAX: 40-251412673 *E-mail address*: christinad@central.ucv.ro