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1. Introduction

Probably the first thing that comes to mind about a function is its continuity. The
behavior of a continuous function at a point is similar to the behavior of the function
in a small neighborhood of that point. In calculus the definition of continuity depends
only on the notion of distance between two points. So if we can measure the distance
between the points of sets, we can study the continuity of the functions between those
sets. In 1905, Maurice René Fréchet introduced metric as a real valued function on
a set to measure distance between points of the set. The concept of a pseudo metric
is a minor abstraction of a metric. Indeed, a pseudo metric is a generalization of a
metric in which the distance between two distinct points can be zero. In fact pseudo
metric spaces behavior exactly like metric spaces except for the fact that they need
not be Hausdorff.
BCK-algebras, BCC-algebras, BL-algebras and MV -algebras are of the most im-

portant algebraic structures related to logic which have been introduced to the math-
ematics community around the second half of the last century, and their algebraic
properties have been studied. One research area of recent decades is the study of the
aforementioned structures equipped with topology. (See [10], [13] and [12].) Alge-
braic structures related to logic which are endowed with uniformity have also been
discussed in the recent years. For example, Khanegir et al., in [11], introduced the
notion of uniform BL-algebra and studied some of its properties. See [14], [6] and [5]
for some other examples.
MV -algebras, which were introduced by Chang in [7] in 1958, prove the complete-

ness theorem for ℵ0-valued Lukasiewicz logic. Our aim in this article is to intro-
duce and study MV-pseudo metrics on MV-algebras. To this end, we first define
MV-pseudo norms on MV-algebras, and study their algebraic properties. Then, in
Section 4, we will introduce MV-pseudo metrics and study the relation between them
and uniform continuity of the operations of MV-algebras.
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The article is organized as follows: in Section 2 we present some definitions and
results of the MV-algebra theory and uniform spaces which will be used later in the
paper.

In Section 3 we define the concept of MV-pseudo norm, and discuss its algebraic
properties and its relation to filters and ideals. Also, the relationship between MV-
pseudo norm on MV-algebras and quotient MV-algebras will be examined in this
section. Finally, we show that if f : A1 → A2 is an isomorphism between MV-algebras,
and NA1 is an MV-pseudo norm on A1, then NA2 = NA1 ◦f−1 is an MV-pseudo norm
on A2.

In Section 4, we define MV-pseudo metrics and examine their relations to MV-
pseudo norms. There are also a few theorems about the relationship between MV-
pseudo metrics and uniform MV-algebras. Theorem 4.12 in particular provides an
efficient way to construct an MV-pseudo metric on MV-algebras. Proposition 4.16,
shows a connection between ideals, MV-pseudo norms and uniform MV-algebras.

2. Preliminaries

In this section, we present some definitions and results of the MV-algebra theory and
uniform spaces which will be used later in the paper.

MV-algebras
An MV-algebra is an algebra (A,⊕, ∗, 0) of type (2, 1, 0) such that for every x, y ∈ A,

(M1) (A,⊕, 0) is a commutative monoid,
(M2) x⊕ 0∗ = 0∗,
(M3) (x∗)∗ = x, and
(M4) (x∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)∗ ⊕ x.[9]

In an MV-algebra A, for every x, y ∈ A, define
(M5) 1 := 0∗;
(M6) x� y := (x∗ ⊕ y∗)∗;
(M7) x	 y := x� y∗;
(M8) x→ y := (x� y∗)∗;
(M9) x y := (x⊕ y∗)∗.

In an MV-algebra A, for every x, y ∈ A, we write x ≤ y if and only if x∗ ⊕ y = 1.
It is well-know that ≤ is a partial order on A, which gives A the structure of a
distributive lattice, where the join and meet are defined by x ∧ y = y � (y∗ ⊕ x) and
x ∨ y = x⊕ (y 	 x), respectively, 0 is the least element and 1 is the greatest element.
By (M6) and (M7), for every x, y ∈ A, x ≤ y ⇐⇒ x	 y = 0.

Proposition 2.1. [9] The following hold in an MV-algebra A.
(M10) x⊕ x∗ = 1, x� x∗ = 0.
(M11) (A,�, 1) is a commutative monoid.
(M12) x� 0 = x� x∗ = 0.
(M13) x⊕ y = 0 =⇒ x = y = 0.
(M14) x� y = 1 =⇒ x = y = 1.
(M15) (x ∧ y)∗ = x∗ ∨ y∗, (x ∨ y)? = x? ∧ y∗.
(M16) x ≤ y ⇐⇒ y∗ ≤ x∗.
(M17) x ≤ y =⇒ x⊕ z ≤ y ⊕ z, x� z ≤ y � z.
(M18) x� y ≤ x ∧ y ≤ x ≤ x ∨ y ≤ x⊕ y.
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(M19) x	 y ≤ x ≤ x⊕ y.
(M20) y � (x⊕ z) ≤ x⊕ (y � z).
(M21) z � x∗ ≤ (x∗ � y)⊕ (y∗ � z).
(M22) (z ⊕ y)� y∗ ≤ z.
(M23) (y � (z ⊕ y))∗ ≤ y∗.
(M24) (x∗ � y)∗ � y = (y∗ � x)∗ � x.
(M25) x� (y � z) = (x� y)� z.
(M26) (x⊕ y)	 y ≤ y.
(M27) x� z ≤ y ⇐⇒ x ≤ z∗ ⊕ y.
(M28) x� (y → z) ≤ (x� y)→ (x� z).
(M29) (x1 → y1)� (x2 → y2) ≤ (x1 � x2)→ (y1 � y2).
(M30) (x	 y) ≤ y∗.
(M31) (x⊕ y)	 (a⊕ b) ≤ (x	 a)⊕ (y 	 b).
(M32) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.
(M33) (x	 y)⊕ y = (y 	 x)⊕ x.
(M34) x� (x∗ ⊕ y) = y � (y∗ ⊕ x).
(M35) x	 0 = x, x	 x = 0	 x = x	 1 = 0, 1	 x = x∗.
(M36) x⊕ x = x⇐⇒ x� x = x.
(M37) x⊕ (∧i∈Ixi) = ∧(x⊕ xi), x� (∨i∈Ixi) = ∨(x� xi).
(M38) x ≤ y ⇐⇒ x ∧ y = x⇐⇒ x ∨ y = y.
(M39) (x ∧ y) ∧ z = x ∧ (y ∧ z), x ∧ (y ∧ z) = (x ∧ y) ∧ (x ∧ z).
(M40) (x→ a)� (b→ y) ≤ (a→ b)→ (x→ y).

Definition 2.1. Let A be an MV-algebra.
(1) A non-empty subset I of A is called an ideal if it satisfies the following conditions.
(I1) For every x, y ∈ I, x⊕ y ∈ I.
(I2) If x ∈ I and y ≤ x, then y ∈ I. [7]
(2) A non-empty subset F of A is called a filter if it satisfies the following conditions.
(F1) For every x, y ∈ F, x� y ∈ F .
(F2) If x ∈ F and x ≤ y, then y ∈ F . [9]

Proposition 2.2. [9] Let I and F be subsets of an MV-algebra A. Then I is an ideal
if and only if
(I3) 0 ∈ I, and
(I4) y ∈ I and x	 y ∈ I imply that x ∈ I.
Also, F is a filter if and only if
(F3) 1 ∈ F , and
(F4) x ∈ F and x→ y ∈ F imply that y ∈ F .

Proposition 2.3. [9] Let F be a filter and I be an ideal of an MV-algebra A. Then
the following are congruence relations on A.

x
F≡ y ⇐⇒ x→ y ∈ F and y → x ∈ F.

x
I≡ y ⇐⇒ x	 y ∈ I and y 	 x ∈ I.

Moreover, if x/F = {y ∈ A : x
F≡ y}, A/F = {x/F : x ∈ A}, x/I = {y ∈ A : x

I≡ y}
and A/I = {x/I : x ∈ A}, then both A/F and A/I are quotient MV-algebras with
the operations

x/F � y/F = (x� y)/F, x/I ⊕ y/I = (x⊕ y)/I, (x/F )∗ = x∗/F and (x/I)∗ = x∗/I.
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Uniform Spaces
Let X be a nonempty set. A uniformity on X is a nonempty family U of subsets

of X ×X with the following properties.
(U1) 4 = {(x, x) : x ∈ X} ⊆ U , for each U ∈ U .
(U2) If U ∈ U , then U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U} belongs to U .
(U3) If U ∈ U , then V ◦ V ⊆ U for some V ∈ U , where V ◦ V = {(x, y) : ∃z ∈
X s.t. (x, z), (z, y) ∈ V }.
(U4) If U, V ∈ U , then U ∩ V ∈ U .
(U5) If U ∈ U and U ⊆ V, then V ∈ U .
The pair (X,U) is called a uniform space.

Let (X,U) be a uniform space. We say that U ∈ U is symmetric if U = U−1. A
subfamily B of U is called a base for U if each member of U contains a member of B.
A subfamily S of U is called a subbase for U if the collection of all finite intersections
of members of S is a base for U . [8]

Lemma 2.4. [8] A nonempty family B of subsets of X×X is a base for the uniformity
U = {U ⊆ X ×X : ∃B ∈ B, B ⊆ U} if and only if the following hold.
(B1) 4 = {(x, x) : x ∈ X} ⊆ U, for each U ∈ B.
(B2) If U belongs to B, then U−1 contains a member of B.
(B3) If U belongs to B, then there exists V in B such that V ◦ V ⊆ U .
(B4) If U and V are in B, then there exists W ∈ B such that W ⊆ U ∩ V .

Suppose that (X,U) and (Y,V) are uniform spaces. The product of (X,U) and
(Y,V) is a uniform space (Z,W) with the underlying set Z = X×Y and the uniformity
W on Z whose base consists of the sets

WU,V = {((x, y), (x′, y′)) ∈ Z × Z : (x, x′) ∈ U, (y, y′) ∈ V },
where U ∈ U and V ∈ V. The uniformity W is written as W = U × V .[8]

Definition 2.2. [8] Let f : (X,U) → (Y,V) be a map between uniform spaces. The
map f is uniformly continuous if for each V ∈ V, there exists U ∈ U such that
(f(x), f(y)) ∈ V for all (x, y) ∈ U, that is, (f × f)(U) ⊆ V. We denote f × f by f (2).

In Definition 2.2, if f is bijective and the maps f and f−1 are uniformly continuous,
then the map f is called a unimorphism, and X and Y are said to be uniformly
equivalent. [8].

3. MV-pseudo norms on MV-algebras

In this section, MV-pseudo norms on MV-algebras are defined and their algebraic
properties are discussed. There are also propositions that show the connection be-
tween ideals, filters and MV-pseudo norms. The method of building an MV-pseudo
norm on the quotient MV-algebras is also stated.

Definition 3.1. Let A be an MV-algebra. Then, we say that a map N : A −→ R is
an MV-pseudo norm on A if the following hold.
(N1) N(x⊕ y) ≤ N(x) +N(y).
(N2) N(x∗) ≤ N(1)−N(x).
An MV-pseudo norm is an MV-norm if
(N3) N(x) = 0⇔ x = 0.
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Proposition 3.1. Let N be an MV-pseudo norm on A. Then, the following hold.
(i) N(x∗) = N(1)−N(x).
(ii) N(0) = 0.
(iii) x ≤ y =⇒ N(x) ≤ N(y). Moreover, N(x) ≥ 0 for every x ∈ A.
(iv) |N(x)−N(y)| ≤ N(1).

Proof. (i) Since x⊕ x∗ = 1, by (N1), N(1) ≤ N(x) +N(x∗). Hence N(1)−N(x) ≤
N(x∗). By (N2), N(x∗) = N(1)−N(x).
(ii) N(0) = 0 because N(1) = N(0∗) = N(1)−N(0).
(iii) Let x ≤ y. Then x∗ ⊕ y = 1. By (N1) and (N2), N(1) ≤ N(x∗) + N(y) =
N(1)−N(x) +N(y). Therefore N(x) ≤ N(y).
(iv) Since x ≤ 1 = 1⊕ y, N(x) ≤ N(1) +N(y). So N(x)−N(y) ≤ N(1). Similarly,
N(y)−N(x) ≤ N(1). Hence |N(x)−N(y)| ≤ N(1). �

Example 3.1. Let X be a finite set and (P (X),∪, ∗,∅, X) be the MV-algebra in
which for each B ∈ P (X), B∗ is the complement of B in X, i.e., B∗ = X \B. Define
the map N : P (X) −→ R by N(B) = cardB. For any B and C of P (X), N(B∪C) =
card(B ∪ C) = cardB + cardC − card(B ∩ C) ≤ cardB + cardC. Since B ∪B∗ = X
and B ∩B∗ = ∅, N(X) = card(B ∪B∗) = cardB + cardB∗ = N(B) +N(B∗). Thus
N(B∗) = N(X) − N(B). Hence, N is an MV-pseudo norm. Finally, if N(B) = 0,
then cardB = 0⇔ B = ∅. So, N is an MV-norm.

Example 3.2. (i) Define ⊕ : [0, 1] × [0, 1] −→ [0, 1] by x ⊕ y = min{x + y, 1} and
∗ : [0, 1] −→ [0, 1] by x∗ = 1 − x. Then, ([0, 1],⊕, ∗, 0) is an MV-algebra which is
called the standard MV-algebra [7]. The map N : [0, 1] −→ R given by x 7−→ |x| is an
MV-norm because |x⊕y| = |min(1, x+y)| ≤ |x|+ |y|. Also, N(x∗) = |x∗| = |1−x| =
1− x = 1− |x|. Finally, N(x) = |x| = 0⇔ x = 0.
(ii) Let N : A −→ [0, 1] be a homomorphism between MV-algebras, where [0, 1] is the
standard MV-algebra. Then N is an MV-pseudo norm on A. Moreover, N is a norm
if and only if N is one-to-one.

Example 3.3. Let A = {0, a, b, c, 1}. Define ⊕ and ∗ as follows.

⊕ 0 a b c 1
0 0 a b c 1
a a a 1 a 1
b b 1 b c 1
c c a c 1 1
1 1 1 1 1 1

∗ 0 a b c 1

1 b a c 0

Then (A,⊕, ∗) is an MV-algebra such that 0 < a < b < 1 and 0 < a < c < 1. The
map N : A −→ R, defined by N(0) = N(a) = N(c) = 0 and N(b) = N(1) = 1, is an
MV-pseudo norm on A. Also N : A −→ R, defined by N(0) = 0 and N(a) = N(b) =
N(c) = 1/2, is an MV-norm on A.

Theorem 3.2. Let N1 and N2 be MV-pseudo norms on A and α ≥ 0, then
(i) the function N : A −→ R, defined by N(x) = αN1(x) + N2(x), is an MV-pseudo
norm. Moreover, N is an MV-norm, if N1 and N2 are MV-norms.
(ii) the map N(x) = inf{N1(z) : z ∈ x

I } is an MV-pseudo norm, where I is an ideal
in A.
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Proof. (i) The proof follows from Definition 4.16.
(ii) Since for any x, y ∈ I and every z ∈ x⊕y

I , there exist a ∈ x
I and b ∈ y

I such
that z = a ⊕ b, it is easy to prove that N(x ⊕ y) ≤ N(x) + N(y). The fact that for

each x, z ∈ A, z ∈ x∗

I if and only if z∗ ∈ x
I implies N satisfies (N2). Hence N is an

MV-pseudo norm on A. �

Proposition 3.3. Let N : A −→ R be an MV-pseudo norm on A.
(i) If ∗ ∈ {�,	,∨,∧}, then N(x ∗ y) ≤ N(x) +N(y).
(ii) N(x→ y) ≥ N(y)−N(x) and N(x y) ≥ N(y)−N(x).
(iii) N(x	 z) ≤ N(x	 y) +N(y 	 z).
(iv) N(x � y) + N(x∗ ⊕ y∗) = N(1), N(x → y) + N(x∗ ⊕ y)∗ = N(1) and N(x  
y) +N(x⊕ y∗) = N(1).
(v) N(x∗ 	 y∗) ≤ N(y).

Proof. (i) The desired result follows directly from (M18), (M19) and (N1).
(ii) By (M8), (M9), (N1) and (N2),

N(x→ y) = N(1)−N(x� y∗) ≥ N(1)− (N(x) +N(1)−N(y)) = N(y)−N(x).

The proof of the other inequality is similar.
(iii) By (M21) and (N1), N(x	 z) ≤ N((x	 y)⊕ (y 	 z)) ≤ N(x	 y) +N(y 	 z).
(iv) By (M6), N(x∗⊕y∗) = N(x�y)∗ = N(1)−N(x�y). So, N(x�y)+N(x∗⊕y∗) =
N(1). By (M8) and (M9), the proofs of the other equalities are similar.
(v) Since x∗ 	 y∗ ≤ y, by Proposition 3.1, N(x∗ 	 y∗) ≤ N(y). �

Theorem 3.4. Let I be an ideal in an MV-algebra A, and N be an MV-pseudo norm
on it. Then,
(i) the map n : AI −→ R defined by n(xI ) = inf{N(z) : z ∈ x

I } is an MV-pseudo norm

on A
I ;

(ii) if for every x ∈ A, min x
I exists and N is an MV-norm on A, then n(xI ) is also

an MV-norm on A
I .

Proof. (i) Since N is an MV-pseudo norm on A, the map n is well-defined because
N(z) ≥ 0 for each z ∈ A. To show that n satisfies (N1), let x, y ∈ A, a ∈ x

I

and b ∈ y
I . Then a ⊕ b ∈ x⊕y

I . By Proposition 3.1(iii), n(xI ⊕
y
I ) = n(x⊕yI ) ≤

N(a⊕b) ≤ N(a)+N(b), which implies that n(xI ⊕
y
I ) ≤ n(xI )+n(yI ). Now we show that

n(xI )∗ ≤ n(1)− n(xI ). If a ∈ (xI )∗, then a∗ ∈ x
I and so n(xI ) ≤ N(a∗) = N(1)−N(a).

Thus N(a) ≤ 1−n(xI ). Hence n(xI )∗ ≤ 1−n(xI ). Therefore, n is an MV-pseudo norm.
(ii) To claim that n satisfies (N3), suppose that n(xI ) = 0 for some x ∈ A. By the
hypothesis, there exists a ∈ A such that a = min x

I . It is easy to see that N(a) =
n(xI ) = 0.

Since N is an MV-norm, 0 = a ∈ x
I . Hence x

I = 0
I . �

Theorem 3.5. Let F be a filter in an MV-algebra A, and N be an MV-pseudo norm
on it. Then,
(i) the map n : AF −→ R defined by n( xF ) = inf{N(z) : z ∈ x

F } is an MV-pseudo norm

on A
F ;

(ii) if for every x ∈ A, max x
F exists and N is an MV-norm on A, then n is an

MV-norm on A
F .

Proof. The proof is similar to the proof of Theorem 3.4. �
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Theorem 3.6. Let I be an ideal in an MV-algebra A. Then,
(i) the set IN = {x ∈ A : N(x) = 0} is an ideal in A if N is an MV-pseudo norm on
A;
(ii) if n is an MV-pseudo norm on A

I , then N(x) = n(xI ) is an MV-pseudo norm on

A. Moreover, n is an MV-norm on A
I if and only if I = IN .

Proof. (i) Since N(0) = 0, 0 ∈ IN . If x, y ∈ IN , then N(x) = N(y) = 0, which implies
that N(x ⊕ y) = 0. Hence x ⊕ y ∈ IN . Now suppose y ∈ IN and x ≤ y. Then by
Proposition 3.1(iii), N(x) ≤ N(y) = 0. Therefore, N(x) = 0 and x ∈ IN .
(ii) Let n be an MV-pseudo norm on A

I . Then it is easy to prove that N(x) = n(xI )

is an MV-pseudo norm on A. Let n be an MV-norm on A
I . If x ∈ I, then N(x) =

n(xI ) = n( 0
I ) = 0. If N(x) = 0 for some x ∈ A, then n(xI ) = 0, which implies that

x
I = 0

I and so x ∈ I. Hence I = {x ∈ A : N(x) = 0}.
Conversely, let I = {x ∈ A : N(x) = 0} and n(xI ) = 0. Then N(x) = 0 and so x ∈ I.

Hence x
I = 0

I . Thus, the MV-pseudo norm n satisfies (N3) and it is, accordingly, an
MV-norm. �

Theorem 3.7. Let f be an isomorphism from an MV-algebra (A1,⊕, 0) to an MV-
algebra (A2,⊕, 0). If NA1

is an MV-pseudo norm on A1, then NA2
: A2 −→ R,

defined by NA2(y) = NA1 ◦ f−1(y) for every y ∈ A2, is an MV-pseudo norm on A2,
and NA2(f(x)) = NA1(x).

Proof. Let y, y′ ∈ A2. Since f is a bijection, there exist x, x′ ∈ A1 such that f(x) =
y and f(x′) = y′. Hence NA2

(y) = NA1
(x), NA2

(y′) = NA1
(x′) and since f−1 is

homomorphism,

NA2(y ⊕ y′) = NA1(f−1(y)⊕ f−1(y′)) = NA1(x⊕ x′) ≤ NA1(x) +NA1(x′)

= NA2(y) +NA2(y′).

This means that NA2 satisfies (N1). Now, we show that NA2(y∗) ≤ NA2(1)−NA2(y).
To see this, let y = f(x) ∈ A2. Then NA2

(y∗) = NA1
(f−1(y∗)) = NA1

(x∗) ≤
NA1

(1)−NA1
(x) = NA1

(f−1(1))−NA1
◦ f−1(y) = NA2

(1)−NA2
(y). Therefore, NA2

is an MV-pseudo norm on A2. Clearly, NA2
(f(x)) = NA1

(x) for every x ∈ A. �

Theorem 3.8. Let A1 and A2 be MV-algebras, and NA1
be an MV-pseudo norm on

A1. If f : A1 −→ A2 is an epimorphism, then NA2
: A2 −→ R defined by y 7−→

inf{NA1(z) : f(z) = y} is an MV-pseudo norm on A2, and NA2(f(x)) ≤ NA1(x).

Proof. Let y1, y2 ∈ A2 and x1, x2 be arbitrary elements of A1 such that f(x1) = y1 and
f(x2) = y2. Since f is a homomorphism, f(x1⊕x2) = y1⊕ y2. Thus, NA2

(y1⊕ y2) ≤
NA1

(x1⊕x2) ≤ NA1
(x1) +NA1

(x2). So NA2
(y1⊕ y2)−NA1

(x2) ≤ NA1
(x1). Since x1

is an arbitrary element of A which satisfies f(x1) = y1,

NA2(y1 ⊕ y2)−NA1(x2) ≤ inf{N(z) : f(z) = y1} = NA2(y1).

Similarly, since x2 is an arbitrary element of A which satisfies f(x2) = y2, by the
above inequality,

NA2
(y1 ⊕ y2)−NA2

(y1) ≤ inf{N(z) : f(z) = y2} = NA2
(y2).

Therefore, NA2
satisfies (N1). Now, we show that NA2

(y∗) ≤ NA2
(1) −NA2

(y). To
see this, let z be an arbitrary element of A such that f(z) = y∗. Since f(z∗) = y,
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NA2
(y) ≤ NA1

(z∗) = NA1
(1)−NA1

(z). Since NA1
(z) ≥ NA2

(y∗), NA1
(1)−NA1

(z) ≤
NA1(1)−NA2(y∗). But NA2(1) ≤ NA1(1), hence

NA2
(y) ≤ NA1

(z∗) ≤ NA1
(1)−NA1

(z) ≤ NA2
(1)−NA2

(y∗).

Thus, NA2
is an MV-pseudo norm on A2. The inequality NA2

(f(x)) ≤ NA1
(x) can

be verified easily. �

Corollary 3.9. Let (A1,⊕, 0) and (A2,⊕, 0) be MV-algebras and A = A1×A2. If A
has an MV-pseudo norm, then A1 and A2 have MV-pseudo norms.

Proof. Let A has an MV-pseudo norm, say N . Since the map πi : A −→ Ai defined
by πi(x1, x2) = xi is an epimorphism, by Theorem 3.8, NA1

(x) = inf{N(x, z) : z ∈
A2} and NA2(y) = inf{N(z, y) : z ∈ A1} are MV-pseudo norms on A1 and A2,
respectively. �

4. MV-pseudo metrics on MV-algebras

The MV-pseudo metrics are defined in this section and their algebraic properties and
their relationship with MV-pseudo norms are presented. Theorem 4.12 shows the
method of constructing MV-pseudo metrics and Theorem 4.14 states the relationship
between MV-pseudo metric spaces and topological MV-algebras. We also talk about
the relationship between uniform MV-algebras and MV-pseudo metric spaces.

Recall the map d : X ×X −→ R+ is called a pseudo metric on X if the following
conditions hold for all x, y, z ∈ X.
(D1) d(x, y) ≥ 0 and d(x, x) = 0.
(D2) d(x, y) = d(y, x).
(D3) d(x, z) ≤ d(x, y) + d(y, z).
A pseudo metric d on A is a metric if it satisfies the following condition.
(D4) d(x, y) = 0⇐⇒ x = y.[8]

Definition 4.1. A pseudo metric d on an MV-algebra A is called an MV-pseudo
metric if for every x, y, a, b ∈ A,
(D5) d(x⊕ y, a⊕ b) ≤ d(x, a) + d(y, b), and
(D6) d(x∗, y∗) ≤ d(x, y).
An MV-metric on A is an MV-pseudo metric that satisfies (D4).

Proposition 4.1. If d is an MV-pseudo metric on an MV-algebra A and ? ∈ {�,	,→
, ,∧,∨}, then for every x, y, a, b ∈ A,
(i) d(x ? y, a ? b) ≤ d(x, a) + d(y, b),
(ii) x ≤ y =⇒ d(x, 0) ≤ d(y, 0),
(iii) d(x, y) = d(x∗, y∗), and
(iv) d(x⊕ a, y ⊕ a) ≤ d(x, y).

Proof. (i) Let x, y, a, b ∈ A. Then by (M6), (D5) and (D6),

d(x� y, a� b) ≤ d(x∗ ⊕ y∗, a∗ ⊕ b∗) ≤ d(x∗, a∗) + d(y∗, b∗) ≤ d(x, a) + d(y, b).

The proofs of the other cases are similar.
(ii) Let x ≤ y. Then x∗⊕y = 1. Hence d(x, 0) = d((x∗)∗, (x∗⊕y)∗) ≤ d(x∗, x∗⊕y) ≤
d(0, y).
The proofs (iii), (iv) are straightforward. �
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Proposition 4.2. Let d be an MV-pseudo metric on an MV-algebra A. Then d(0, 1) =
d(0, x) + d(x, 1) if and only if N(x) = d(x, 0) is an MV-pseudo norm on A. Further-
more, N is an MV-norm if d is an MV-metric.

Proof. Let for any x ∈ A, d(0, 1) = d(0, x) + d(x, 1). We prove that N(x) = d(x, 0)
is an MV-pseudo norm on A. For do this, suppose x and y are in A. By (D5),
N(x ⊕ y) = d(x ⊕ y, 0) ≤ d(x, 0) + d(y, 0) = N(x) + N(y). By (D6), N(x∗) =
d(x∗, 0) = d(x, 1) = d(1, 0)− d(0, x) = N(1)−N(x). Therefore, N is an MV-pseudo
norm on A. Conversely, let N(x) = d(x, 0) be an MV-pseudo norm. By Proposition
4.1(iii),

d(0, x) + d(1, x) = d(0, x) + d(0, x∗) = N(x) +N(x∗) = N(1) = d(1, 0).

If d is an MV-metric, then N is an MV-norm clearly. �

Theorem 4.3. If N is an MV-pseudo norm on an MV-algebra A, then dN (x, y) =
N(x	 y) +N(y 	 x) is an MV-pseudo metric on A.

Proof. Let x, y, z, a and b be in A. Obviously, dN (x, y) ≥ 0, dN (x, x) = 0 and
dN (x, y) = dN (y, x). By (M21), N(x	z) ≤ N(x	y)+N(y	z) and N(z	x) ≤ N(z	
y)+N(y	z). Hence dN (x, z) ≤ dN (x, y)+dN (y, z). Thus dN is a pseudo metric. Now
we show that dN satisfies (D5) and (D6). By (M31), (x⊕y)	(a⊕b) ≤ (x	a)⊕(y	b),
and so N((x⊕ y)	 (a⊕ b)) ≤ N(x	 a) +N(y	 b). Similarly, N((a⊕ b)	 (x⊕ y)) ≤
N(a	 x) +N(b	 y). Hence (D5) holds for dN . The map dN satisfies (D6) because
by (M7), dN (x∗, y∗) = N(x∗� y) +N(y∗�x) = N(y	x) +N(x	 y) = dN (x, y). �

Corollary 4.4. MV-pseudo metric dN of Theorem 4.3, satisfies the following prop-
erties.
(i) For every x, dN (0, x) + dN (1, x) = N(1).
(ii) The mapping dN is an MV-metric if and only if N is an MV-norm.
(iii) For every x, dN (x, x∗) ≤ N(1).

Proof. (i) dN (0, x) + dN (1, x) = N(x) +N(x∗) = N(1).
(ii) Suppose N is an MV-norm and dN (x, y) = 0. Then N(x 	 y) = N(y 	 x) = 0,
which implies that x	 y = y 	 x = 0. Hence x = y. Therefore, dN is an MV-metric.
Conversely, suppose dN is an MV-metric and N(x) = 0. Then dN (x, 0) = N(x	 0) +
N(0	 x) = N(x) = 0. So x = 0. Hence N is an MV-norm on A.
(iii) By (M30), x	x∗ ≤ x and x∗	x ≤ x∗. So dN (x, x∗) = N(x	x∗)+N(x∗	x) ≤
N(x) +N(x∗) = N(1). �

Remark. From now on, if N is an MV-pseudo norm on an MV-algebra, then dN
is the MV-pseudo metric induced by N in Theorem 4.3.

Proposition 4.5. Let f : A1 −→ A2 be an isomorphism between MV-algebras. If N1

is an MV-pseudo norm on A1, then there exist MV-pseudo metrics d1 and d2 on A1

and A2, respectively, such that f is isometry, i.e, d1(x, y) = d2(f(x), f(y)).

Proof. By Theorem 3.7, the map N2 : A2 −→ R defined by N2(y) = N1 ◦ f−1(y) is
an MV-pseudo norm on A2. By Theorem 4.3, dN1 and dN2 are MV-pseudo metrics
on A1 and A2, respectively. If x, y ∈ A, then by Theorem 3.7, dN2

(f(x), f(y)) =
N2(f(x	 y)) +N2(f(y 	 x)) = N1(x	 y) +N1(y 	 x) = dN1

(x, y). �
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Proposition 4.6. Let f : A1 −→ A2 be an epimorphism from an MV-algebra A1 to
an MV-algebra A2. If N1 is an MV-pseudo norm on A1, then there exist MV-pseudo
metrics d1 and d2 on A1 and A2, respectively, such that d2(f(x), f(y)) ≤ d1(x, y).

Proof. By Theorem 3.8, the map N2 : A2 −→ R, given by N2(y) = inf{N(z) : f(z) =
y}, is an MV-pseudo norm on A2 such that N2(f(x)) ≤ N1(x) for every x ∈ A. By
Theorem 4.3, dN1

and dN2
are MV-pseudo metrics on A1 and A2, respectively. For

every x, y ∈ A1,

dN2(f(x), f(y)) = N2(f(x	 y)) +N2(f(y 	 x)) ≤ N1(x	 y) +N1(y 	 x) = dN1(x, y).

�

Proposition 4.7. Let A1, A2 and A = A1 ×A2 be MV-algebras. Then:
(i) If N1, N2 are MV-pseudo norms on A1 and A2, respectively, then there is an MV-
pseudo norm N on A such that dN (x, y, a, b) = dN1

(x, a) + dN2
(y, b);

(ii) if N is an MV-pseudo norm on A, then there exist MV-pseudo norms N1 and N2

on A1 and A2, respectively, such that dN (x, y, a, b) ≥ dN1
(x, a) and dN2

(y, b).

Proof. (i) The map N : A→ R defined by N(x, y) = N1(x) +N2(y) is an MV-pseudo
norm on A. Now dN (x, y, a, b) = N(x 	 a, y 	 b) + N(a 	 x, b 	 y) = N1(x 	 a) +
N2(y 	 b) +N1(a	 x) +N2(b	 y) = dN1

(x, a) + dN2
(y, b).

(ii) By Corollary 3.9, N1(x) = inf{N(x, z) : z ∈ A2} and N2(x) = inf{N(z, x) : z ∈
A1} are MV-pseudo norms on A1 and A2, respectively. Let x, a ∈ A1 and y, b ∈ A2.
Then

dN (x, y, a, b) = N(x	 a, y 	 b) +N(a	 x, b	 y) ≥ N1(x	 a) +N1(a	 x) = dN1
(x, a).

In a similar way, we can show that dN (x, y, a, b) ≥ dN2
(y, b). �

Let {Ai : i ∈ I} be a family of MV-algebras and Ni be an MV-pseudo norm
on Ai, for any i ∈ I. If the family {Ni(1i) : i ∈ I} is bounded, then it is easy to

verify that N({xi}i∈I) =
∑∞
i=1

Ni(xi)
2i is an MV-pseudo norm on A =

∏∞
i=1Ai such

that dN ({xi}i∈I , {yi}i∈I) =
∑∞
i=1

dNi
(xi,yi)

2i . Also, if N is an MV-pseudo norm on
MV-algebra A =

∏∞
i=1Ai, then for each k ∈ I, the map Nk : Ak → R defined by

Nk(x) = inf{N({xi}i∈I) : xk = x, xi ∈ Ai} is an MV-pseudo norm on Ak such that

dN ({xi}i∈I , {yi}i∈I) ≥ dNk
(xk, yk).

In continue we are going to talk about the relation between MV-pseudo metrics
and uniform MV-algebras. To do this, we first recall the definition of uniform MV-
algebras.

Let A be an MV-algebra and U be a uniformity on A. By Definition 2.2,
(i) the operation ⊕ : (A × A,U × U) → (A,U) is uniformly continuous if for every
W ∈ U , there exist U, V ∈ U such that U⊕V ⊆W or equivalently, for every (x, x′)∈ U
and (y, y′)∈ V , (x⊕ y, x′ ⊕ y′)∈W ;
(ii) the map ∗ : (A,U) → (A,U) is uniformly continuous if for every W ∈ U , there
exists V ∈ U such that if (x, y) ∈ V , then (∗(x), ∗(y)) ∈W .
The pair (A,U) is called a uniform MV-algebra if ⊕ and ∗ are uniformly continuous.

Let d be an MV-pseudo metric on an MV-algebra A. Then, it is easy to prove that
the set B = {Uε : ε > 0} is a base for a uniformity Ud on A, where Uε = {(x, y) :
d(x, y) < ε}. Thus, by Definition 2.2 and (D5) and (D6), the operations ⊕ and ∗ are
uniformly continuous.
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Example 4.1. (i) Let ([0, 1],⊕, ∗, 0) be the standard MV-algebra and d(x, y) = |x−y|,
for any x, y ∈ [0, 1]. Then for every x, y ∈ [0, 1], d(x∗, y∗) = |x∗−y∗| = |1−x−1+y| =
|y−x| = d(x, y). Hence d satisfies (D6). The following steps show that d satisfies (D5).
Let x, x′, y and y′ be arbitrary element of [0, 1]. Then:

Step 1. If x+ x′ < 1 and y + y′ < 1, then

d(x⊕ x′, y ⊕ y′) = |x+ x′ − y − y′| ≤ |x− y|+ |x′ − y′| = d(x, y) + d(x′, y′).

Step 2. If x+ x′ < 1 and y + y′ ≥ 1, then

d(x⊕x′, y⊕y′) = |x+x′−1| ≤ |y+y′−x−x′| ≤ |y−x|+ |y′−x′| = d(x, y)+d(x′, y′).

Step 3. If x+ x′ ≥ 1 and y + y′ < 1, the proof is similar to that of step 2.

Step 4. If x+ x′ ≥ 1 and y + y′ ≥ 1, then

d(x⊕ x′, y ⊕ y′) = |x⊕ x′ − y ⊕ y′| = |1− 1| = 0 < d(x, y) + d(x′, y′).

Therefore, ([0, 1],Ud) is a uniform MV-algebra.

Proposition 4.8. Let U be a uniformity on an MV-algebra A. If ∗ is uniformly
continuous, then:
(i) uniformly continuity ⊕,�,	,→, and  are equivalent;
(ii) the map f : (A,U) × (A,U) −→ (A,U) given by f(x, y) = x ⊕ y∗ is uniformly
continuous if and only if the map ⊕ is uniformly continuous.

Proof. (i) Since the composition of two uniformly continuous functions is uniformly
continuous, the conditions (M6), (M7), (M8) and (M9) show that uniformly conti-
nuity ⊕,�,	,→, and  are equivalent.

(ii) Let ⊕ be uniformly continuous and W ∈ U . Then there exist U1, U2 and V
in U such that U1 ⊕ U2 ⊆ W and V ∗ ⊆ U2. Hence U1 ⊕ V ∗ ⊆ U1 ⊕ U2 ⊆ W
and so f is uniformly continuous. Conversely, let f be uniformly continuous and
W be in U . Then for some U, V, V1 ∈ Ud, U ⊕ V1

∗ ⊆ W and V ∗ ⊆ V1. Hence
U ⊕V = U ⊕ (V ∗)∗ ⊆ U ⊕V1∗ ⊆W, which shows that ⊕ is uniformly continuous. �

Proposition 4.9. Let N be an MV-pseudo norm on an MV-algebra A. Then:
(i) there are pseudo metrics d′N and d′′N on A such that ⊕ and ∗ are uniformly con-
tinuous in the uniform spaces (A, d′N ) and (A, d′′N ), respectively.
(ii) there is a uniformity UN on A such that (A,UN ) is a uniform MV-algebra and
UdN ⊆ UN , where dN is the MV-pseudo metric in Theorem 4.3.

Proof. (i) The maps d′N and d′′N from A×A to R+ defined by d′N (x, y) = |N(x)−N(y)|
and

d′′N (x, y) =

{
0 if x = y

N(x) +N(y) if x 6= y

are pseudo metrics on A, which satisfy the inequalities d′N (x∗, y∗) ≤ d′N (x, y) and
d′′N (x⊕ y, a⊕ b) ≤ d′N (x, a) + d′N (y, b). Hence ∗ and ⊕ are uniformly continuous in
(A, d′N ) and (A, d′′N ), respectively.

(ii) It is easy to prove that x
IN≡ y if and only if dN (x, y) = 0, where IN = {x ∈

A : N(x) = 0}. If UN = {(x, y) : x
IN≡ y}, then the set {UN} satisfies (B1), (B2) and

(B3) of Lemma 2.4. Hence {UN} is a base for a uniformity UN on A. By Theorem
4.3 and Corollary 4.4, UN ⊕ UN ⊆ UN and U∗N = UN . Hence (A,UN ) is a uniform
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MV-algebra. Since {Uε}ε>0, where Uε = {(x, y) : dN (x, y) < ε}, is a base for the
uniformity UdN , obviously, UdN ⊆ UN . �

Proposition 4.10. If N is an MV-pseudo norm on an MV-algebra A, then N and
dN are uniformly continuous in uniform MV-algebra (A,UdN ), where dN is the MV-
pseudo metric in Theorem 4.3.

Proof. For every x, y ∈ A, y ≤ (y 	 x) ⊕ x because y∗ ⊕ (y � x∗) ⊕ x = (x ⊕ y∗) ⊕
(y � x∗) = 1. By (N2), N(y) ≤ N(x) +N(y 	 x) and so N(y)−N(x) ≤ N(y 	 x) ≤
N(y	x)+N(x	y). Similarly, N(x)−N(y) ≤ N(x	y) ≤ N(x	y)+N(y	x). Hence
|N(x) − N(y)| ≤ dN (x, y), which implies that N is uniformly continuous. Since the
composition of uniformly continuous functions is uniformly continuous, by Proposition
4.8, the MV-pseudo metric dN is uniformly continuous. �

A subset S of an MV-algebra A is said to be convex if for any x, y, z ∈ A, x ≤ z ≤ y,
and x, y ∈ S imply that z ∈ S.

Proposition 4.11. Let A be an MV-algebra, S ⊆ A and Ŝ = {x ∈ A : ∃ y ∈
S such that x ≤ y}. Then,
(i) if 0 ∈ S, then S is convex if and only if for any x, y ∈ A, if x ≤ y and y ∈ S, then
x ∈ S;

(ii) 0 ∈ Ŝ and Ŝ is the smallest convex set of A containing S;

(iii) if S ⊆ T , then Ŝ ⊆ T̂ ;

(iv) Ŝ ⊕ T̂ ⊆ Ŝ ⊕ T .

Proof. By the definition of convex set, the proofs of (i), (ii) and (iii) are obvious. We

only prove (iv). Let z ∈ Ŝ ⊕ T̂ . Then for some x ∈ Ŝ and y ∈ T̂ , z = x ⊕ y. Since

x ∈ Ŝ and y ∈ T̂ , there are x1 ∈ S and y1 ∈ T such that x ≤ x1 and y ≤ y1. Now

z = x⊕ y ≤ x1 ⊕ y1 ∈ S ⊕ T . So z ∈ Ŝ ⊕ T . �

Remark. Let d be a pseudo metric on MV-algebra A. We denote the set {x :
d(x, 0) < r} by B(r) i.e B(r) = {x : d(x, 0) < r}. Also, we recall that the first part of
the proof of the following theorem is from [1].

Theorem 4.12. Let {Un}n>0 be a family of subsets of an MV-algebra A such that
0 ∈ Un and Un+1 ⊕Un+1 ⊆ Un for any n ≥ 0. Then there is an MV-pseudo metric d
on A such that the operations ⊕ and ∗ are uniformly continuous on (A,Ud) and for
any n ≥ 0,

{x : d(x, 0) < 1/2n} ⊆ Ûn ⊆ {x : d(x, 0) < 2/2n}.
Moreover, d is an MV-metric if and only if

⋂
n≥0 Ûn = 0.

Proof. Let V (1) = U0, n ≥ 0 and assume that V ( m2n ) are defined for each m =

1, 2, 3, ..., 2n such that 0 ∈ V ( m2n ). Put then V ( 1
2n+1 ) = Un+1, V ( 2m

2n+1 ) = V ( m2n ) for

m = 1, 2, 3, ..., 2n and for each m = 1, 2, 3, ..., 2n − 1, V ( 2m+1
2n+1 ) = V ( m2n ) ⊕ Un+1 =

V ( m2n ) ⊕ V ( 1
2n+1 ). We also define V ( m2n ) = A, when m > 2n. By induction on n we

prove that for any m > 0 and n ≥ 0,

(∗) V (
m

2n
)⊕ V (

1

2n
) ⊆ V (

m+ 1

2n
).

First notice that if m + 1 > 2n, then (∗) is obviously true. Let m < 2n. If n = 1,
then m is also 1, so V ( 1

2 ) ⊕ V ( 1
2 ) = U1 ⊕ U1 ⊆ U0 = V (1). Assume that (∗) holds
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for some n. We verify it for n + 1. If m = 2k, then by the definition of V ( 2m+1
2n+1 ),

V ( m
2n+1 ) ⊕ V ( 1

2n+1 ) = V ( 2k
2n+1 ) ⊕ V ( 1

2n+1 ) = V ( k
2n ) ⊕ V ( 1

2n+1 ) = V ( 2k+1
2n ). Suppose

now that m = 2k + 1 < 2n+1 for some x ≥ 0. Then

V (
m

2n+1
)⊕ V (

1

2n+1
) = V (

2k + 1

2n+1
)⊕ Un+1 = V (

k

2n
)⊕ Un+1 ⊕ Un+1

⊆ V (
k

2n
)⊕ Un = V (

k

2n
)⊕ V (

1

2n
).

But by the inductive assumption, V ( m
2n+1 )⊕ V ( 1

2n+1 ) ⊆ V (k+1
2n ) = V (m+1

2n+1 ).

By Proposition 4.11, for any r ≥ 0, V̂ (r) is a convex set containing 0, it is easy to

derive that the map f : A −→ R defined by f(x) = inf{r : x ∈ V̂ (r)} is increasing
bounded function. Define the map N : A −→ R by N(x) = sup{f(x⊕ z)− f(z) : z ∈
A}. The function N is obviously well defined and increasing. In a similar method
with the proof of Theorem 4.3, we can show that dN (x, y) = N(x	 y) +N(y 	 x) is
an MV-pseudo metric. By (D5) and (D6), we can prove that the operations ⊕ and ∗
are uniformly continuous on (A,UdN ). Let us prove that dN satisfies

{x : dN (x, 0) <
1

2n
} ⊆ Ûn ⊆ {x : dN (x, 0) ≤ 2

2n
}.

Notice that f(0) = 0, hence if dN (x, 0) < 1
2n , then f(x) = f(x⊕ 0)− f(0) ≤ N(x) =

dN (x, 0) < 1
2n . Hence for some 0 ≤ r < 1

2n , x ∈ V̂ (r). Since V (r) ⊆ V ( 1
2n ) = Un,

x ∈ V̂ (r) ⊆ V̂ ( 1
2n ) = Ûn. Now let x ∈ Ûn. Then there is a x′ ∈ Un such that x ≤ x′.

Clearly for any z ∈ A, there exists a k ≥ 0 such that k−1
2n ≤ f(z) ≤ k

2n . Since

z ∈ V̂ ( k
2n ), there is a z′ ∈ V ( k

2n ) such that z ≤ z′. From condition (∗) it follows

that z′ ⊕ x′ ∈ V ( k
2n ) ⊕ V ( 1

2n ) ⊆ V (k+1
2n ) and from z ⊕ x ≤ z′ ⊕ x′ deduces that

z ⊕ x ∈ V̂ (k+1
2n ). Hence f(x⊕ z)− f(z) ≤ k+1

2n −
k−1
2n = 2

2n .

In the end of proof, let us prove that dN is an MV-metric if and only if
⋂
n≥0 Ûn = 0.

Let
⋂
n≥0 Ûn = 0 and dN (x, y) = 0. Then N(x 	 y) = N(y 	 x) = 0. Hence for any

n ≥ 0, x	 y and y	x are in Ûn. This concludes that x	 y = y	x = 0 and so x = y.
Therefore dN is metric.

Conversely let dN be metric and x ∈
⋂
n≥0 Ûn. Since Ûn ⊆ {x : dN (x, 0) ≤ 2

2n } for

every n ≥ 0, we derive that dN (x, 0) = 0. This implies that x = 0. �

Corollary 4.13. In Theorem 4.12, if g : A −→ A is an isomorphism such that
g(Un) = Un for any n ≥ 0, then dN (g(x), g(y)) = dN (x, y) for any x, y ∈ A, i.e.
g : (A,UdN ) −→ (A,UdN ) is uniformly continuous.

Proof. Since g is an isomorphism map and g(Un) = Un for any n ≥ 0, g(V (r)) = V (r)
for every r ≥ 0. Let x ∈ A. Then f ◦ g(x) = inf{r : g(x) ∈ V (r)} = inf{r : x ∈
g−1(V (r))} = inf{r : x ∈ V (r)} = f(x). From this, we deduce that N(g(x)) =
sup{f(g(x) ⊕ z) − f(z) : z ∈ A} = sup{f(g(x) ⊕ g(z′)) − f(g(z′)) : z′ ∈ A} =
sup{f ◦ g(x ⊕ z′) − f ◦ g(z′) : z′ ∈ A} = sup{f(x ⊕ z′) − f(z′) : z′ ∈ A} = N(x).
Thus it is obvious that dN (g(x), g(y)) = dN (x, y) for any x, y ∈ A. This implies that
g : (A,UdN ) −→ (A,UdN ) is uniformly continuous. �

Theorem 4.14. Let A be a MV-algebra. Then, there is an MV-pseudo metric d on
A such that (A,Ud) is a uniform MV-algebra if and only if there is a topology τ on
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A such that (A, τ) is a topological MV-algebra and τ has a countable local base at 0.
Moreover, d is continuous in (A, τ).

Proof. The necessity is obvious. We prove the sufficiency. Fix a countable base
{Wn : n ≥ 0} of a topological MV-algebra (A, τ) at 0. Since ⊕ is continuous, by
induction, we obtain a sequence {Un : n ≥ 0} of open neighborhoods of 0 such that
Un ⊆ Wn and Un+1 ⊕ Un+1 ⊆ Un for each n ≥ 0. This sequence is also a base of
(A, τ) at 0. By Theorem 4.12, there exists an MV-pseudo metric dN on A such that

(A,UdN ) is a uniform MV-algebra and B( 1
2n ) ⊆ Ûn ⊆ {x : dN (x, 0) ≤ 2

2n }, where N
is the map defined in Theorem 4.12.

We are now going to show that dN is continuous in (A, τ). To do this, we first
prove that N is continuous at 0 and then derive that N is continuous on A. Let
ε > 0 be arbitrary. Then there exists an n ≥ 1 such that 2

2n < ε. Now the relation,

Un ⊆ Ûn ⊆ {x : dN (x, 0) ≤ 2
2n }, deduces that N is continuous at 0. To continuity N

on A, take a b ∈ A and assume that ε > 0 is arbitrary. It is easy to verify that for
arbitrary x in A, N(x⊕ b) ≤ N(x) +N(b). By (M33), (b	x)⊕x = (x	 b)⊕ b ≥ b, so
N(b) ≤ N(b	 x) +N(x). This inequality implies that | N(x)−N(b) |≤ max{N(b	
x), N(x 	 b)}. Since N is continuous at 0, there is an n ≥ 0 such that N(x) < ε, for
any x ∈ Un. Since 	 is continuous and b	 b = 0 ∈ Un, there is an open neighborhood
V of b such that b	 V ⊆ Un and V 	 b ⊆ Un. Thus for each x ∈ V, | N(x)−N(b) |≤
max{N(b	 x), N(x	 b)} < ε, which implies that N is continuous at b. Finally, since
N and 	 are continuous, it follows that dN is also continuous. �

If d is an MV-pseudo metric on MV-algebra A, then it is easy to derive that
B(r) = {x : d(x, 0) < r} is a convex set. Hence {B( 1

2n ) : n ≥ 0} is a countable local
base at 0 which every element of it is convex. In Theorem 4.14, for any n ≥ 0, there

is a k ≥ 0 such that 0 ∈ Uk ⊆ Ûk ⊆ {x : d(x, 0) ≤ 2
2k
} ⊆ {x : d(x, 0) < 1

2n }. Hence

the sequence {B( 1
2n ) : n ≥ 0} is a local base at 0 of τ such that for any n ≥ 0 the

set B( 1
2n ) is a convex set. Moreover, if transfer map x→ x⊕ b is open in (A, d) and

(A, τ), for every b ∈ A, then continuity ⊕ implies that τ is a uniform topology.

Corollary 4.15. Let A be a MV-algebra. Then, there is a continuous MV-pseudo
metric d on A such that (A,Ud) is a uniform MV-algebra if and only if there is a
uniformity U on A such that (A,U) is a uniform MV-algebra and U has a countable
base.

Proof. The necessity is obvious. Let U be a uniformity on A such that (A,U) is a
uniform MV-algebra and {Un : n ≥ 0} be a countable base of it. Then the sequence
{Un[0] : n ≥ 0} is a local base at 0. Now by Theorem 4.14, the proof is clear. �

Proposition 4.16. Let S = {Ni : i ∈ I} be a chain of MV-pseudo norms on an
MV-algebra A. Then, there exists a uniformity U on A such that (A,U) is a uniform
MV-algebra.

Proof. It is easy to prove that if Ni, Nj ∈ S, then INj
⊆ INi

if Nj ≥ Ni, where
INi

= {x : Ni(x) = 0}. If I = {INi
: i ∈ I}, then I is, clearly, a family of ideals that

is closed under finite intersection. Let Ui = {(x, y) : x
INi≡ y} and H = {Ui : i ∈ I}.

Then it is easy to verify that H satisfies (B1), (B2), (B3) and (B4) of Lemma 2.4.
So, it is a base for the uniformity U = {U ⊆ A × A : Ui ⊆ U, for some Ui ∈ H}.
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Let (x, y), (a, b) ∈ Ui ∈ H. Then x
INi≡ y and a

INi≡ b. By Proposition 2.3,
INi≡ is

a congruence relation. So, a ⊕ x
INi≡ b ⊕ y and a∗

INi≡ b∗. Hence Ui ⊕ Ui ⊆ Ui and
U∗i ⊆ Ui. This implies that (A,U) is a uniform MV-algebra. �

Proposition 4.17. Suppose A is an MV-algebra, I is an ideal and q : A −→ A
I , given

by q(x) = x
I , is the quotient map. Then there are uniformities ηI and εI on A and

A
I such that (A, ηI) and (AI , εI) are uniform MV-algebras and q : (A, ηI)→ (AI , εI) is
uniformly continuous.

Proof. Before proving the theorem, we first show that the set S ⊆ A
I is an ideal in A

I

if and only if S = J
I for some ideal J of A containing I. Suppose S is an ideal of A

I

and J =
{
x ∈ A : xI ∈ S

}
. Since S is an ideal, 0

I ∈ S, and so 0 ∈ J. If y, x 	 y ∈ J,
then y

I ,
x
I 	

y
I ∈ S. Since S is an ideal, x

I ∈ S and so x ∈ J. Thus J is an ideal of A

such that I ⊆ J. To prove S = J
I , let x

I ∈
J
I . Then for some z ∈ J, zI = x

I . Hence

x 	 z ∈ I ⊆ J . Since z ∈ J , by Proposition 2.2, x ∈ J . This implies that J
I ⊆ S. It

is easy to see that S ⊆ J
I . Hence J

I = S. Conversely, suppose J is an ideal of A such

that I ⊆ J and S =
{
x
I |x ∈ J

}
. Then 0 ∈ J implies that 0

I ∈ S. If y
I ,

x	y
I ∈ S, then

y, x 	 y ∈ J. By Proposition 2.2, x ∈ J. Hence x
I ∈ S. Consequently, S is an ideal of

A
I .

Now to prove theorem let H be the family of ideals J in A such that I ⊆ J and let

H ′ = {JI : J ∈ H}. Put UJ = {(x, y) : x
J≡ y} and U J

I
= {(xI ,

y
I ) : xI

J
I≡ J
I }, for every

J ∈ H. Since H and H ′ are closed under finite intersection, the sets B = {UJ : J ∈ H}
and B′ = {U J

I
: J ∈ H} satisfy (B1), (B2), (B3) and (B4) of Lemma 2.4. Hence they

are bases for uniformities ηI and εI on A and A
I , respectively. In a similar way to

the proof of Proposition 4.16, we can obtain that (A, ηI) and (AI , εI) are uniform

MV-algebras. If J is an ideal of A containing I, then U J
I

= q(2)(UJ), because for

every x, y ∈ A,

(
x

I
,
y

I
) ∈ U J

I
⇔ x	 y

I
,
y 	 x
I
∈ J

I
⇔ x	 y, y 	 x ∈ J ⇔ (x, y) ∈ UJ .

Hence q : (A, ηI)→ (AI , εI) is uniformly continuous. �

Proposition 4.18. Let N be an MV-pseudo norm and I be an ideal in an MV-algebra
A. Then there exists an MV-pseudo metric Dn on A

I such that (AI ,UDn
) is a uniform

MV-algebra and the quotient map q : (A,UdN ) −→ (AI ,UDn
), given by q(x) = x

I , is
uniformly continuous.

Proof. By Proposition 3.4, the mapping n(xI ) = inf{N(z) : z ∈ x
I } is an MV-pseudo

norm on A
I , and by Theorems 4.3, the map Dn(xI ,

y
I ) = n(xI 	

y
I ) + n(yI 	

x
I ) is an

MV-pseudo metric on A
I such that (AI ,UDn) is a uniform MV-algebra. It is easy to

prove that Dn(xI ,
y
I ) ≤ dN (x, y). Hence, the quotient map q : A −→ A

I is uniformly
continuous. �

Proposition 4.19. Let N be an MV-pseudo norm on an MV-algebra A. Then:
(i) for every e ∈ A, the set Ie = {x ∈ A : N(e ⊕ x) = 0} ∪ {0} is an ideal contained
in IN . Moreover, there exists a uniformity U on A such that (A,U) is a uniform
MV-algebra;
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(iii) there exists an MV-pseudo metric D on A
Ie

such that ( AIe ,UD) is a uniform MV-
algebra;

Proof. (i) Let x, y ∈ Ie. Then N(e ⊕ (x ⊕ y)) ≤ N(e ⊕ x) + N(e ⊕ y) = 0. Hence
x ⊕ y ∈ Ie. If x ≤ y and y ∈ Ie, then the inequality e ⊕ x ≤ e ⊕ y implies that
N(e ⊕ x) = 0. So x ∈ Ie. Thus Ie is an ideal in A. By (M19), it is obvious that
Ie ⊆ IN .

The set B = {Ie : e ∈ A} is a family of ideals which is closed under finite intersec-

tion because Ie ∩ Ic = Ie⊕c, for every e, c ∈ A,. If for any e ∈ A, Ue = {(x, y) : x
Ie≡ y},

then it is easy to show that the set B = {Ie : e ∈ A} satisfies (B1), (B2) and (B3) of
Lemma 2.4. Hence it is a base for a uniformity U on A. In a similar way to the proof
of Proposition 4.16, we can prove that operations ⊕ and ∗ are uniformly continuous
in (A,U).

(ii) Define the map D : A
Ie
× A

Ie
−→ R by D( xIe ,

y
Ie

) = dN (x, y). If x
Ie

= a
Ie

and
y
Ie

= b
Ie

, then

N(e⊕(x	a)) = N(e⊕(a	x)) = N(e⊕(y	b)) = N(e⊕(b	y)) = N(e⊕(b	y)) = 0.

By (M21) and (M7),

x	 y ≤ (x	 a)⊕ (a	 b)⊕ (b	 y) ≤ [e⊕ (x	 a)]⊕ (a	 b)⊕ [e⊕ (b	 y)].

Hence N(x	y) ≤ N(a	b). In a similar way, N(a	b) ≤ N(x	y), and so N(x	y) =
N(a	 b). Similarly N(y 	 x) = N(b	 a). So, D( xIe ,

y
Ie

) = D( aIe ,
b
Ie

). Since dN is an

MV-pseudo metric, it is easy to prove that D is an MV-pseudo metric on A
Ie

. Hence

the operations ⊕ and ∗ are uniformly continuous in ( AIe ,UD).
�

Proposition 4.20. Let N be an MV-pseudo norm and E be the set of all idempotents
in an MV-algebra A. Then:
(i) for every e ∈ E, the set Ie = {x ∈ A : N(x	 e) = 0} is an ideal in A containing
IN ;
(ii) there exist uniformities U and V on A such that (A,U) and (A,V) are uniform
MV-algebras and V ⊆ U .

Proof. (i) Let e ∈ E. Clearly, e, 0 ∈ Ie. If x and y are in Ie, then by e ⊕ e = e and
(M21), we get (x⊕y)	 e ≤ (x	 e)⊕ (y	 e). Hence N((x⊕y)	 e) = 0, which implies
that x ⊕ y ∈ Ie. If x ≤ y and y ∈ Ie, since x 	 e ≤ y 	 e, N(x 	 e) = 0. So x ∈ Ie.
Thus Ie is an ideal. By (M19), it is easy to see that IN ⊆ Ie.

(ii) The sets I = {Ie : e ∈ E} and I ′ = {Ie : e ∈ E} are closed under finite
intersections because for every e1, e2 ∈ E, Ie1⊕e2 = Ie1 ∩ Ie2 and Ie1∧e2 ⊆ Ie1 ∩ Ie2 ,
where Ie is the ideal defined in Theorem 4.19. Now, the sets B = {UIe : e ∈ E} and
B′ = {UIe : e ∈ E} are bases for uniformities U and V, respectively, such that (A,U)
and (A,V) are uniform MV-algebras. For each e ∈ E, the ideal Ie is a subset of Ie.
Hence UIe ⊆ UIe , which implies that V ⊆ U . �

5. Conclusion

In this article, MV-pseudo norms and MV-pseudo metrics are defined on MV-algebras.
The relation between them and uniform MV-algebras has been studied. In future,
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researchers can search some conditions under which an MV-algebra endowed to an
MV-norm becomes a Tychonoff space. They can also find continuous homomorphisms
between these spaces.
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[15] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Actualités Sci.ind.
(1937).

(F. Rajabisotudeh) Department of Mathematics, University of Sistan and Baluchestan,
Zahedan, Iran
E-mail address: Rajabisotudeh@gmail.com

(N. Kouhestani) Department of Mathematics, University of Sistan and Baluchestan,
Zahedan, Iran

E-mail address: kouhestani@math.usb.ac.ir

https://doi.org/10.1007/s00500-012-0852-2
https://doi.org/10.1007/s00500-012-0808-6
https://doi.org/10.2478/s12175-012-0078-x
https://doi.org/0.1016/S0166-8641(97)00027-8
https://doi.org/0.1016/S0166-8641(97)00027-8
https://doi.org/10.1007/s00500-018-3533-y
https://doi.org/10.1016/j.fss.2016.04.012
https://doi.org/10.4134/CKMS.2002.17.3.403

	1. Introduction
	2. Preliminaries
	3. MV-pseudo norms on MV-algebras
	4. MV-pseudo metrics on MV-algebras
	5. Conclusion
	Acknowledgments
	References

