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Characterization of wavelets associated with AB-MRA on
L2(Rn)
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Abstract. A wavelet with composite dilations is a function generating an orthonormal basis

or a Parseval frame for L2(Rn) under the action of lattice translations and dilations by products
of elements drawn from non-commuting matrix sets A and B. Typically, the members of B

are matrices whose eigenvalues have magnitude one, while the members of A are matrices

expanding on a proper subspace of Rn. In this paper, we provide the characterization of
composite wavelets based on results of affine and quasi affine frames. Furthermore all the

composite wavelets associated with AB-MRA on L2(Rn) are also characterized.
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1. Introduction

The concept of wavelet is defined and studied extensively in the Euclidean spaces
Rn. The wavelet characterization of L2(R) was obtained independently by Wang [13]
and Gripenberg [7] in terms of two basic equations involving the Fourier transform of
the wavelet (see also [6] and [11]). This result was generalized to L2(Rn) by Frazier,
Garrigos, Wang, and Weiss [13] for dilation by 2 and by Calogero [4] for wavelets
associated with a general dilation matrix. Bownik [2] provided a new approach to
characterizing multiwavelets in L2(Rn). This characterization was obtained by using
the results about shift invariant systems and quasi-affine systems.

The notion of multiresolution analysis (MRA) is closely related to wavelets. In
fact, it is well known that one can always construct a wavelet from a MRA. But, all
wavelets are not obtained in this way. It was proved independently by Gripenberg [7]
and Wang [14] that a wavelet arises from a MRA if and only if its dimension function
is 1 a.e. Calogero and Garrigos [5] gave a characterization of wavelet families arising
from biorthogonal MRAs of multiplicity d. This result was improved by Bownik and
Garrigos in [3], where they provided this characterization in terms of the dimension
function. Several results in this direction can be found in [1] and the references
therein.

Guo, Labate, Lim, Weiss, and Wilson [8, 9, 10] introduced the theory of composite
dilation wavelets and detailed the extension of a multiresolution analysis (MRA) to
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this setting. Let ψ` ∈ L2(Rn). Then the affine systems with composite dilations are
defined by

ΨAB = {DaDbTkψ` : k ∈ Zn, b ∈ B, a ∈ A, ` = 1, 2, . . . , L} ,

where the Translation operator Tk is defined by Tkf(x) = f(x−k), Dilation operator
by Daf(x) = |det a|−1/2f(a−1x). A ⊂ GLn(R) consist of elements having some ex-
panding properties and B ⊂ GLn(R) consist elements having determinant of absolute
value one. By choosing ψ`, A,B, approximately, ΨAB can be made orthonormal basis
or more generally a Parseval frame for L2(Rn). Here we call Ψ = {ψ1, ψ2, . . . , ψL} an
orthonormal AB-multiwavelet or a Parseval Frame AB-multiwavelet. For L = 1, i.e.,
when we have single generator, we have wavelet instead of multiwavelet.

This paper is organised in the following manner. In Section 2, we recall some
basic results and use them to characterize composite wavelets. Here we also give
another characterization of these wavelets. In Section 3, we characterize the wavelets
associated with the AB-MRA on L2(Rn).

2. Characterization of composite wavelets

For any function f ∈ L2(Rn), we define the dilation operator Dj and the translation
operator Tk as follows:

Djf(x) = q1/2f(Ax) and Tkf(x) = f(x− k).

where j ∈ Z, A ⊂ GLn(R) and k ∈ Rn

Definition 2.1. Let Ψ =
{
ψ1, ψ2, . . . , ψL

}
be a finite family of functions in L2(Rn).

The affine system generated by Ψ is the collection

X(Ψ) =
{
ψ`m,j,k(x) = qj/2ψ`

(
AjBmx− k

)
, j ∈ Z, k ∈ Zn, 1 ≤ ` ≤ L, 1 ≤ m ≤M,

}
where M = min{r : Br = I, r ≥ 1, r ∈ Z}, A is an n × n expansive real matrix with
eigenvalues λ satisfying |λ| > 1, B is a rotation matrix, ABmk ∈ Zn(∀ k ∈ Zn, 1 ≤
m ≤M), whose AB = BA and q = |detA|. It is clear that X(Ψ) = DjTkψ

`(x). The
quasi-affine system generated by Ψ is

X̃(Ψ) =
{
ψ̃`m,j,k : j ∈ Z, k ∈ Zn, 1 ≤ ` ≤ L, 1 ≤ m ≤M

}
,

where

ψ̃`j,k(x) =

 DjDmTkψ
`(x) = qj/2ψ`

(
AjBmx− k

)
, j ≥ 0,

qj/2TkDjDmψ
`(x) = qj/2ψ`

(
AjBm(x− k)

)
, j < 0.

(2.1)

We say that Ψ is a set of basic wavelets of L2(Rn) if the affine system X(Ψ) forms
an orthonormal basis for L2(Rn).

Definition 2.2. A subset X of L2(Rn) is called a Bessel family if there exists a
constant b > 0 such that∑

η∈X
|〈f, η〉|2 ≤ b

∥∥f∥∥2
for all f ∈ L2(Rn). (2.2)
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If, in addition, there exists a constant a > 0, a ≤ b such that

a
∥∥f∥∥2 ≤

∑
η∈X
|〈f, η〉|2 ≤ b

∥∥f∥∥2
for all f ∈ L2(Rn), (2.3)

then X is called a frame. The frame is tight if we can choose a and b such that a = b.
The affine system X(Ψ) is an affine frame if (2.3) holds for X = X(Ψ). Similarly, the

quasi-affine system ?X̃(Ψ) is a quasi-affine frame if (2.3) holds for X = X̃(Ψ).

Theorem 2.1. [13] Let Ψ =
{
ψ1, ψ2, . . . , ψL

}
be a finite subset of L2(Rn). Then

(a) X(Ψ) is a Bessel family if and only if X̃(Ψ) is a Bessel family. Furthermore,
their exact upper bounds are equal.

(b) X(Ψ) is an affine frame if and only if X̃(Ψ) is a quasi-affine frame. Further-
more, their lower and upper exact bounds are equal.

Definition 2.3. Given {ti : i ∈ N} ⊂ l2(Zn), define the operator H : l2(Zn)→ l2(N)
by

H(v) = (〈v, ti〉)i∈N for v =
(
v(k)

)
k∈Zn ∈ l2(Zn).

If H is bounded then G̃ = H?H : l2(Zn) → l2(Zn) is called the dual Gramian of

{ti : i ∈ N}. Observe that ?G̃ is a non negative definite operator on l2(Zn). Also,
note that for k, p ∈ Zn, we have〈

G̃ek, ep

〉
= 〈Hek, Hep〉 =

∑
i∈N

ti(k)ti(p),

where {ei : i ∈ N} is the standard basis of l2(Zn).

Theorem 2.2. [13] Let {ϕi : i ∈ N} ⊂ l2(Zn) and for a.e. ξ ∈ Tn, let G̃(ξ) denote the
dual Gramian of {ti : i ∈ N} ⊂ l2(Zn). The system of translates {Tkϕi : k ∈ Zn, i ∈
N} is a frame for L2(Rn) with constants a and b if and only if G̃(ξ) is bounded for
a.e. ξ ∈ Tn and

a
∥∥v∥∥2 ≤

〈
G̃(ξ)v, v

〉
≤ b
∥∥v∥∥2

for v ∈ l2(Zn), a.e., ξ ∈ Tn

that is, the spectrum of ?G̃(ξ) is contained in [a, b] for a.e. ξ ∈ Tn.

Lemma 2.3. Suppose that Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊂ L2(Rn). The affine system X(Ψ)

is orthonormal in L2(Rn) if and only if for j ≥ 0 and 1 ≤ `, `′ ≤ L,

M∑
m=1

∑
k∈Zn

ψ̂`(ξ + k)ψ̂`′
(
A∗jB∗m(ξ + k)

)
= δ`,`′δj,0δm,0, for a.e. ξ ∈ Rn, . (2.4)

Proof. By a simple change of variables, one can observe that for j, j′ ∈ Z, k, k′ ∈
Zn, 1 ≤ `, `′ ≤ L and 1 ≤ m,m′ ≤M ,〈

ψ`m,j,k, ψ
`′

m′,j′,k′

〉
= δ`,`′δj,j′δk,k′δm,m′

is equivalent to 〈
ψ`m,j,k, ψ

`′

0,0,0

〉
= δ`,`′δj,0δk,0δm,0.
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Taking any j ≥ 0, k ∈ Zn, 1 ≤ `, `′ ≤ L and 1 ≤ m ≤ M , we have by Plancherel’s
formula〈

ψ`m,j,k, ψ
`′

0,0,0

〉
=

〈
ψ̂`m,j,k, ψ̂

`′

0,0,0

〉
=

∫
Rn

q−j/2ψ̂`
(
A∗−jB∗−mξ

)
e−2πiA∗−jB∗−mkξψ̂`′(ξ)dξ

= qj/2
∫
Rn

ψ̂`(ξ)e−2πikξψ̂`′
(
B∗mA∗jξ

)
dξ

= qj/2
∑
s∈Zn

∫
s+Tn

ψ̂`(ξ)ψ̂`′
(
B∗mA∗jξ

)
e−2πikξdξ

= qj/2
∫
Tn

{∑
s∈Zn

ψ̂`(ξ + s)ψ̂`′
(
B∗mA∗j(ξ + s)

)}
e−2πikξdξ.

If
〈
ψ`m,j,k, ψ

`′

0,0,0

〉
= δ`,`′δj,0δk,0δm,0 for all j ≥ 0, k ∈ Zn, 1 ≤ `, `′ ≤ L, 1 ≤ m ≤ M,

then the L1(Tn) functions

K(ξ) =
∑
s∈Zn

ψ̂`(ξ + s)ψ̂`′
(
B∗mA∗j(ξ + s)

)
has the property that its Fourier coefficients are all zero except for the coefficient
corresponding to k = 0, which is 1 if j = 0 and ` = `′. Hence, K(ξ) = δ`,`′δj,0 for
a.e. ξ ∈ Tn. Conversely, if K(ξ) = δ`,`′δj,0, then the same calculation shows that〈
ψ`m,j,k, ψ

`′

0,0,0

〉
= δ`,`′δj,0δk,0δm,0. This completes the proof of Lemma. �

Suppose Ψ =
{
ψ1, ψ2, . . . , ψL

}
be a finite family of functions in L2(Rn). For

j ≥ 0 and 1 ≤ m ≤ M , let Dj be a set of qj representatives of distinct cosets of
Zn \ AjBmZn, where q = |detA|. For j < 0, we define Dj = {0}. Since the quasi

affine system X̃(Ψ) is invariant under integer, we have

X̃(Ψ) =
{
Tkϕ : k ∈ Zn, ϕ ∈ A

}
, A :=

{
ψ̃`m,j,d : j ∈ Z, d ∈ Dj , 1 ≤ ` ≤ L, 1 ≤ m ≤M

}
.

(2.5)

The dual Gramian G̃(ξ) of the quasi affine system X̃(Ψ) at ξ ∈ Tn is defined as the
dual Gramian of

{(
ϕ̂(ξ+k)

)
k∈Zn : ϕ ∈ A

}
⊂ l2(Zn), where A is defined by (2.5). We

now compute G̃(ξ) in terms of Fourier transforms of functions in Ψ and show that it
does not depend upon the choice of representatives Dj .

For s ∈ Zn \ABZn, define the function

ts(ξ) =

L∑
`=1

M∑
m=1

∞∑
j=0

ψ̂`
(
A∗jB∗mξ

)
ψ̂`
(
A∗jB∗m(ξ + s)

)
, ξ ∈ Rn. (2.6)
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Lemma 2.4. Let Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊂ L2(Rn) and G̃(ξ) be the dual Gramian of

X̃(Ψ) at ξ ∈ Tn. Then〈
G̃(ξ)ek, ek

〉
=

L∑
`=1

M∑
m=1

∑
j∈Z

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 , for ξ ∈ Zn, (2.7)

〈
G̃(ξ)ek, ep

〉
= tB∗−mA∗−m(p−k)

(
B∗−mA∗−mξ +B∗−mA∗−mk

)
, for k 6= p ∈ Zn,

(2.8)
where m = max

{
j ∈ Z : B∗−mA∗−j(p−k) ∈ Zn

}
and the functions ts, s ∈ Zn\ABZn,

are given by (2.6).

Proof. For k, p ∈ Zn, we have〈
G̃(ξ)ek, ep

〉
=

∑
ϕ∈A

ϕ̂(ξ + k)ϕ̂(ξ + p)

=

L∑
`=1

M∑
m=1

∑
j<0

ψ̂`
(
A∗−jB∗−m(ξ + k)

)
ψ̂`
(
A∗−jB∗−m(ξ + p)

)

+

L∑
`=1

M∑
m=1

∑
j≥0

ψ̂`
(
A∗−jB∗−m(ξ + k)

)
ψ̂`
(
A∗−jB∗−m(ξ + p)

)
×
∑
d∈Dj

q−je−2πidB∗−mA∗−j(p−k)

=

L∑
`=1

M∑
m=1

r∑
j=−∞

ψ̂`
(
A∗−jB∗−m(ξ + k)

)
ψ̂`
(
A∗−jB∗−m(ξ + p)

)
,

where r = max
{
j ∈ Z : B∗−mA∗−j(p − k) ∈ Zn

}
and r = ∞ when k = p. The sum

over Dj is equal to 1 if (k − p) ∈ A∗jB∗mZn and 0 otherwise. Therefore, if k = p,
then (2.7) holds. If k 6= p, then〈
G̃(ξ)ek, ep

〉

=

L∑
`=1

M∑
m=1

∑
j≥0

ψ̂`
(
A∗−j−rB∗−m(ξ + k)

)
ψ̂`
(
A∗−j−rB∗−m(ξ + p)

)

=

L∑
`=1

M∑
m=1

∑
j≥0

ψ̂`
(
A∗−jB∗−m(A∗−rξ +A∗−rk)

)
×ψ̂`

(
A∗−jB∗−m

(
A∗−rξ +A∗−mk +A∗−r(p− k)

))
= tB∗−mA∗−r(p−k)

(
B∗−mA∗−rξ +B∗−mA∗−rk

)
.

This completes the proof. �
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Theorem 2.5. Suppose that Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊂ L2(Rn). The affine system

X(Ψ) is tight frame with constant 1 for L2(Rn) i.e.,

L∑
`=1

M∑
m=1

∑
j∈Z

∑
k∈Zn

∣∣f, ψ`m,j,k∣∣2 =
∥∥f∥∥2

2
for all f ∈ L2(Rn)

if and only if the functions ψ1, ψ2, . . . , ψL satisfy the following two conditions:

L∑
`=1

M∑
m=1

∑
j∈Z

∣∣∣ψ̂`(A∗jB∗mξ)∣∣∣2 = 1, for a.e. ξ ∈ Rn, (2.9)

and

tm(ξ) = 0, for a.e. ξ ∈ Rn,m ∈ Zn \ABZn. (2.10)

In particular, Ψ is a set of basic wavelets of L2(Rn) if and only if
∥∥ψ`∥∥

2
= 1 for

` = 1, 2, ..., L and (2.9) and (2.10) hold.

Proof. It follows from Theorem 2.1 that X(Ψ) is a tight frame with constant 1 if and

only if X̃(Ψ) is a tight frame with constant 1. By Theorem 2.5, this is equivalent to

the spectrum of G̃(ξ) consisting of a single point 1, i.e., G̃(ξ) is identity on l2(Zn) for
a.e. ξ ∈ Tn. By Lemma 2.4, this is equivalent to the fact that Eqs. (2.9) and (2.10)
hold. The second assertion follows since a tight frame X(Ψ) with constant 1 is an
orthonormal basis if and only if

∥∥ψ`∥∥
2

= 1 for ` = 1, 2, ..., L (see Theorem 1.8, section

7.1 in [12]). This completes the proof. �

Theorem 2.6. Suppose that Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊂ L2(Rn). Assume that X(Ψ) is

a Bessel family with constant 1. Then the following are equivalent:
(a) X(Ψ) is a tight frame with constant 1.
(b) Ψ satisfies equality (2.9).
(c) Ψ satisfies

L∑
`=1

∫
Rn

∣∣∣ψ̂`(ξ)∣∣∣2 dξ

ρ(ξ)
= 1, (2.11)

for some quasi-norm ρ associated with B∗A∗.

Proof. It is obvious from Theorem 2.5 that (a)⇒ (b). To show (b) implies (c), assume
that (2.10) holds. Then, since

{
A∗jB∗mS : 1 ≤ ` ≤ L, j ∈ Z} is a partition of Rn

(modulo sets of measure zero), for any S ⊂ Rn, we have

L∑
`=1

∫
Rn

∣∣∣ψ̂`(ξ)∣∣∣2 dξ

ρ(ξ)
=

L∑
`=1

M∑
m=1

∑
j∈Z

∫
A∗jB∗mS

∣∣∣ψ̂`(ξ)∣∣∣2 dξ

ρ(ξ)

=

L∑
`=1

∫
S

M∑
m=1

∑
j∈Z

∣∣∣ψ̂`(A∗jB∗mξ)∣∣∣2 dξ

ρ(ξ)

= 1.

To prove (c) ⇒ (a), we assume that (2.11) holds. Since X(Ψ) is a Bessel family

with constant 1, so is X̃(Ψ), by condition (a) of Theorem 2.1. Let G̃(ξ) be the dual
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Gramian of X̃(Ψ) at ξ ∈ Tn. By Theorem 2.2, we have ‖G̃(ξ)‖ ≤ 1 for a.e. ξ ∈ Tn.

In particular, ‖G̃(ξ)ek‖ ≤ 1. Hence,

1 ≥
∥∥G̃(ξ)

∥∥2
=
∑
p∈Zn

∣∣∣〈G̃(ξ)ek, ep

〉∣∣∣2 =
∣∣∣〈G̃(ξ)ek, ep

〉∣∣∣2 +
∑

p∈Zn,p6=k

∣∣∣〈G̃(ξ)ek, ep

〉∣∣∣2 .
(2.12)

By Lemma 2.4, we have

L∑
`=1

M∑
m=1

∑
j∈Z

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 ≤ 1, for k ∈ Zn, ξ ∈ Tn.

Hence,

1 =

∫
S

L∑
`=1

M∑
m=1

∑
j∈Z

∣∣∣ψ̂`(A∗jB∗m(ξ)
)∣∣∣2 dξ

ρ(ξ)
≤
∫
D

dξ

ρ(ξ)
= 1,

From this it follows that
∑L
`=1

∑M
m=1

∑
j∈Z

∣∣ψ̂`(A∗jB∗mξ)∣∣2 = 1 for a.e. ξ ∈ D and

hence for a.e. ξ ∈ Rn. This means that equation (2.9) holds. By Lemma 2.4 and

equality (2.9),
∣∣〈G̃(ξ)ek, ep

〉∣∣2 = 1 for all k ∈ Zn. Thus, by (2.12), it follows that〈
G̃(ξ)ek, ep

〉
= 0 for k 6= p so that G̃(ξ) is the identity operator on l2(Zn). Hence, by

Theorem 2.2, X̃(Ψ) is a tight frame with constant 1. Therefore, X(Ψ) is also a tight
frame with constant 1, by Theorem 2.1 This completes the proof. �

In the consequence of above theorem, we provide a new characterization of wavelets.

Theorem 2.7. Suppose Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊂ L2(Rn). Then the following are

equivalent:
(a) Ψ is a set of basic wavelets of L2(Rn).
(b) satisfies (2.4) and (2.9).
(c) satisfies (2.4) and (2.11).

Proof. It follows from Theorem 2.5 and Lemma 2.4 that (a)⇒(b)⇒(c).We now prove
that (c) implies (a). Assume that Ψ satisfies (2.4) and (2.11). The equation (2.4)
implies that X(Ψ) is an orthonormal system, hence it is a Bessel family with constant
1. By Theorem 2.5 and (2.11), X(Ψ) is a tight frame with constant 1. Since each ψ`

has L2 norm 1, it follows that X(Ψ) is an orthonormal basis for L2(Rn). That is, Ψ
is a set of basic wavelets of L2(Rn). �

3. Characterization of composite MRA wavelets

As usual, we construct wavelets from multiresolution analysis(MRA).

Definition 3.1. A closed subspaces sequence {Vj}j∈Z of L2(Rn) is called an AB-
multiresolution analysis or Composite multiresolution analysis with A and B same as
in Section 2, if the following conditions are satisfied:
(1) Vj ⊂ Vj+1, ∀j ∈ Z;

(2)
⋃
j∈Z Vj = L2(Rn);

(3)
⋂
j∈Z Vj = {0};

(4) f(x) ∈ Vj if and only if f(Ax) ∈ Vj+1;
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(5) there exists a function ϕ(x) ∈ V0, such that {ϕ0,`,k}k∈Zn is an orthonormal basis
of V0,`, in addition, V0 = ⊕L`=1V0,`, where {V0,`}1≤`≤L are mutually orthogonal. Here
function ϕ(x) is called the scaling function (or generator).

Let Ψ =
{
ψ1, ψ2, . . . , ψL

}
be a set of basic wavelets of L2(Rn). We define the spaces

Wj , j ∈ Z, by Wj = span{ψ`m,j,k : 1 ≤ ` ≤ L, 1 ≤ m ≤ M,k ∈ Zn}. We also define

Vj = ⊕m<jWm, j ∈ Z. Then it follows that {Vj : j ∈ Z} satisfies the properties
(a)-(d) in the definition of a MRA. Hence, {Vj : j ∈ Z} will form a MRA of L2(Rn)
if we can find a function ϕ ∈ L2(Rn) such that the system {ϕ(x− k) : k ∈ Zn} is an
orthonormal basis for V0. In this case, we say that Ψ is associated with a MRA, or
simply that Ψ is a MRA-wavelet.
Now suppose that

{
ψ1, ψ2, . . . , ψq−1

}
is a set of basic wavelets for L2(Rn) associated

with a MRA {Vj : j ∈ Z}. Let ϕ ∈ L2(Rn) be the corresponding scaling function.
Then in view of [1], we have

ϕ(A−1x) =

M∑
m=1

∑
k∈Zn

d1,m,kϕ
(
Bmx− k

)
, (3.1)

for any {d1,m,k}1≤m≤M,k∈Zn ∈ l2(N0). Taking Fourier transform of equation (3.1),
we get

ϕ̂
(
A∗ξ

)
=

M∑
m=1

h
(m)
0 (ξ)ϕ̂

(
B∗−mξ

)
, (3.2)

where

h
(m)
0 (ξ) =

∑
k∈Zn

d1,m,ke
−2πikξ

is an integral periodic function in L∞(Tn). Also, since {ψ1, ψ2, . . . , ψq−1} are the
wavelets associated with a MRA corresponding to the scaling function ϕ, there exist

integral-periodic functions h
(m)
1,` , 1 ≤ m ≤M, 1 ≤ ` ≤ q − 1, such that the matrix

M(m)(ξ) =
[
h

(m)
1,`1

(
ξ + `2

)]q−1

`1,`2=0

is unitary for a.e. ξ ∈ [0, 2π] and

ψ̂`
(
A∗ξ

)
=

M∑
m=1

h
(m)
1,` (ξ)ϕ̂

(
B∗−mξ

)
, (3.3)

where

h
(m)
1,` (ξ) =

∑
k∈Zn

c`,m,ke
−2πikξ.

Hence, by (3.2), we have

∣∣ϕ̂(A∗ξ)∣∣2 +

q−1∑
`=1

∣∣∣ψ̂(A∗ξ)∣∣∣2 =

∣∣∣∣∣
M∑
m=1

h
(m)
0 (ξ)ϕ̂

(
B∗−mξ

)∣∣∣∣∣
2

+

q−1∑
`=1

∣∣∣∣∣
M∑
m=1

h
(m)
1,` (ξ)ϕ̂

(
B∗−mξ

)∣∣∣∣∣
2

=

M∑
m=1

∣∣ϕ(B∗−mξ)∣∣2(q−1∑
`=0

∣∣∣h(m)
1,` (ξ)

∣∣∣2) .



CHARACTERIZATION OF WAVELETS ASSOCIATED WITH AB-MRA ON L2(Rn) 301

Since M(m)(ξ) is unitary for each m, 1 ≤ m ≤M , we have∣∣ϕ̂(A∗ξ)∣∣2 +

q−1∑
`=1

∣∣∣ψ̂(A∗ξ)∣∣∣2 =

M∑
m=1

∣∣ϕ(B∗−mξ)∣∣2 .
Thus equality holds for for a.e, ξ ∈ Rn. Hence, we have

|ϕ̂(ξ)|2 =

M∑
m=1

(∣∣ϕ̂(A∗B∗mξ)∣∣2 +

q−1∑
`=1

∣∣ψ`(A∗B∗mξ)∣∣2)
Iterating for any integer N ≥ 1, we get,

|ϕ̂(ξ)|2 =

M∑
m=1

∣∣ϕ̂(A∗NB∗mξ)∣∣2 +

q−1∑
`=1

N∑
j=1

ψ`
(
A∗jB∗mξ

) .

Since |ϕ̂(ξ)|2 ≤ 1, the sequence


q−1∑
`=1

M∑
m=1

N∑
j=1

ψ`
(
A∗jB∗mξ

)
: N ≥ 1

 of real numbers

is increasing and is bounded by 1, hence it converges.

Therefore limN→∞

M∑
m=1

∣∣ϕ̂(A∗NB∗mξ)∣∣2 also exists. Now

∫
RN

M∑
m=1

∣∣ϕ̂(A∗NB∗mξ)∣∣2 ξ = q−N
∫
Rn

|ϕ̂(ξ)|2 dξ → 0 as N →∞.

Hence, by Fatou’s Lemma, we have∫
Rn

lim
N→∞

M∑
m=1

∣∣ϕ̂(A∗NB∗mξ)∣∣2 dξ ≤ lim
N→∞

∫
Rn

M∑
m=1

∣∣ϕ̂(A∗NB∗mξ)∣∣2 dξ = 0.

This shows that limN→∞

M∑
m=1

∣∣ϕ̂(A∗NB∗mξ)∣∣2 = 0. Hence, we get

|ϕ̂(ξ)|2 =

q−1∑
`=1

M∑
m=1

∞∑
j=1

∣∣∣ψ̂`(A∗jB∗mξ)∣∣∣2 .
Since {ϕ(x− k) : k ∈ Zn} is an orthonormal system, we get for a.e. ξ ∈ Rn,

1 =
∑
k∈Zn

|ϕ̂(ξ + k)|2 =

q−1∑
`=1

M∑
m=1

∞∑
j=1

∑
k∈Zn

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 .

Definition 3.2. Suppose Ψ = {ψ1, ψ2, . . . , ψL} is a set of basic wavelets for L2(Rn).
The dimension function of Ψ is defined as

DΨ(ξ) =

q−1∑
`=1

M∑
m=1

∞∑
j=1

∑
k∈Zn

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 . (3.4)

Note that if ψ1, ψ2, . . . , ψL ∈ L2(Rn), then∫
[0,2π]

M∑
m=1

∞∑
j=1

∑
k∈Zn

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 dξ =

∞∑
j=1

∫
R

∣∣∣ψ̂`(ξ)∣∣∣2 dξ <∞. (3.5)
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Then DΨ is well defined for a.e. ξ ∈ Rn. In particular,
∑
k∈Zn

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 <

∞ for a.e. ξ ∈ Rn. Thus for all j ≥ 1, 1 ≤ ` ≤ L, 1 ≤ m ≤ M , and a.e. ξ ∈ Rn, we
can define the vector ω`j,m(ξ) ∈ l2(Zn), where

ω`j,m(ξ) =
{
ψ̂`
(
A∗jB∗m(ξ + k)

)
: k ∈ Zn

}
.

Hence, DΨ can also be written as

DΨ(ξ) =

L∑
`=1

M∑
m=1

∞∑
j=1

∥∥ω`j,m(ξ)
∥∥2

l2(Zn)
. (3.6)

We have thus proved that if Ψ = {ψ1, ψ2, . . . , ψL} is a set of basic wavelets associated
with a MRA of L2(Rn), then it is necessary that DΨ(ξ) = 1 a.e. Our aim is to show
that this condition is also sufficient. We will show that if Ψ = {ψ1, ψ2, . . . , ψL} is a
set of basic wavelets of L2(Rn) and DΨ(ξ) = 1 a.e., then Ψ is an AB-MRA wavelet.
To prove this we need the following lemma.

Lemma 3.1. For all j ≥ 1, 1 ≤ ` ≤ q − 1, and a.e. ξ ∈ Rn, we have

ω`j,m(ξ) =

q−1∑
h=1

M∑
m=1

∞∑
i=1

〈
ω`j,m(ξ), ωhi,m(ξ)

〉
ωhi,m(ξ). (3.7)

Proof. The series appearing in the lemma converges absolutely by (3.5) for a.e. ξ ∈
Rn. We first show that

ψ̂`
(
A∗jB∗mξ

)
=

q−1∑
h=1

M∑
m=1

∞∑
j=1

∑
k∈Zn

ψ̂`
(
A∗jB∗m(ξ+k)

)
ψ̂h(A∗iB∗m(ξ + k))ψ̂h

(
A∗jB∗mξ

)
.

(3.8)
Let us denote the series on the right of (3.8) by G`j,m(ξ). Then by using Lemma 2.3
and equation (2.6), we have

G`j,m(ξ) =
∑
k∈Zn

M∑
m=1

ψ̂`
(
A∗jB∗m(ξ + k)

) q−1∑
h=1

∞∑
i=1

ψ̂h(A∗iB∗m(ξ + k))ψ̂h
(
A∗jB∗mξ

)
=
∑
k∈Zn

M∑
m=1

ψ̂`
(
A∗jB∗m(ξ + k)

){
tk(ξ)−

q−1∑
h=1

∞∑
i=1

ψ̂h((ξ + k))ψ̂h(ξ)

}

=
∑

k∈ABZn

M∑
m=1

ψ̂`
(
A∗jB∗m(ξ + k)

)
tk(ξ)

=

q−1∑
h=1

∑
k∈Zn

M∑
m=1

∞∑
i=0

ψ̂`(A∗jB∗m(ξ +B∗A∗k))ψ̂h(A∗iB∗m(ξ +B∗A∗k))ψ̂h
(
A∗jB∗mξ

)
=

q−1∑
h=1

∑
k∈Zn

M∑
m=1

∞∑
i=1

ψ̂`(A∗j+1B∗m+1(A∗−1B∗−1ξ + k))

× ψ̂h(A∗iB∗m(A∗−1B∗−1ξ + k))ψ̂h(A∗jB∗mA∗−1B∗−1ξ)

= G`j+1,m+1(A∗−1B∗−1ξ).
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This is equivalent to G`j,m(ξ) = G`j−1,m−1(A∗B∗ξ). Iterating this equation, we obtain,

G`j,m(ξ) = G`1,m(A∗j−1B∗m−1ξ). We now calculate G`1,m(ξ). We have

G`1,m(ξ) =
∑
k∈Zn

ψ̂`(A∗B∗(ξ + k))

q−1∑
h=1

M∑
m=1

∞∑
i=1

ψ̂h(A∗iB∗m(ξ + k))ψ̂h(A∗iB∗mξ)

=
∑
k∈Zn

ψ̂`(A∗B∗ξ +A∗B∗k))

q−1∑
h=1

M∑
m=1

∞∑
i=1

ψ̂h(A∗iB∗m(A∗B∗ξ +A∗B∗k))

×ψ̂h(A∗iB∗mA∗B∗ξ)

=
∑

k∈ABZn

ψ̂`(A∗B∗ξ + k)

q−1∑
h=1

M∑
m=1

∞∑
i=1

ψ̂h(A∗iB∗m(A∗B∗ξ + k))

×ψ̂h(A∗iB∗mA∗B∗ξ)

=

q−1∑
h=1

M∑
m=1

∞∑
i=1

ψ̂h(A∗iB∗mA∗B∗ξ)δi,0δm,0δ`,h

= ψ̂`(A∗B∗ξ).

Thus G`j(ξ) = ψ̂`(A∗−jB∗−mξ) a.e. ξ ∈ Rn. Since
〈
ω`j(ξ), ω

h
i (ξ)

〉
is integral periodic,

(3.7) follows. This completes the proof. �

Lemma 3.2. Let {νj : j ≥ 1} be a family of vectors in a Hilbert space H such that

(i)

∞∑
n=1

∥∥νn∥∥2
= C <∞,

(ii) νn =

∞∑
n=1

〈νn, νm〉νm for all n ≥ 1. Let F = span{νj : j ≥ 1}. Then

dimF =

∞∑
j=1

∥∥νj∥∥2
= C.

Theorem 3.3. A wavelet Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊂ L2(Rn) is an AB-MRA wavelet

if only if DΨ(ξ) = 1 for almost every ξ ∈ Rn.

Proof. We have already observed that DΨ(ξ) = 1 for almost every ξ ∈ Rn when Ψ
is an AB-MRA wavelet. We now prove the converse. Assume that DΨ(ξ) = 1 for
almost every ξ ∈ Rn. Let E be the subset of Tn on which DΨ(ξ) is finite and (3.7) is
satisfied. Then ω`j,m are well-defined on E. For ξ ∈ E, we define the space

F(ξ) = span
{
ω`j,m(ξ) : 1 ≤ ` ≤ q − 1, 1 ≤ m ≤M, j ≥ 1

}
.

Then, by Lemmas 3.1 and 3.2, we have

dimF(ξ) =

q−1∑
`=1

M∑
m=1

∞∑
j=1

∥∥ω`j,m(ξ)
∥∥2

2
= DΨ(ξ) = 1. (3.9)

That is, for each ξ ∈ E,F(ξ) is generated by a single unit vector U(ξ). We now
choose a suitable vector. For j ≥ 1, let us define

Xj =
{
ξ ∈ E : ω`j,m(ξ) 6= 0 and ω`m,m(ξ) = 0,∀ m < j and 1 ≤ ` ≤ q−1, 1 ≤ m ≤M

}
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and

X0 =
{
ξ ∈ Tn : ω`j,m(ξ) 6= 0,∀ j ≥ 1, and 1 ≤ ` ≤ q − 1, 1 ≤ m ≤M

}
.

Then {Xj : j = 0, 1, 2, . . . } forms a partition of E. Note that X0 = {ξ ∈ Tn : DΨ(ξ) =
0}. So for a.e. ξ ∈ E \X0, there exists j ≥ 1 such that ξ ∈ Xj . Hence, there exists
at least one `, 1 ≤ ` ≤ q − 1, and one m, 1 ≤ m ≤ M such that ω`j,m(ξ) 6= 0. Choose
the smallest such ` and m define

U(ξ) =
ω`j,m(ξ)∥∥ω`j,m(ξ)

∥∥
l2

.

Thus, U(ξ) is well defined and
∥∥U(ξ)

∥∥
l2

= 1 for a.e. ξ ∈ Tn. We write U(ξ) =

{uk(ξ) : ξ ∈ Zn}. Now, define ϕ̂(ξ) = uk(ξ − k), where k is the unique integer in Zn
such that ξ ∈ Tn + k. This defines ϕ̂ on Rn. We first show that ϕ ∈ L2(Rn) and
{ϕ(x− k) : k ∈ Zn} is an orthonormal system in L2(Rn). We have∥∥ϕ̂∥∥2

2
=

∫
Rn

|ϕ̂(ξ)|2 dξ =

∫
Tn

∑
k∈Zn

|ϕ̂(ξ + k)|2 dξ

=
∑
k∈Zn

∫
Tn

|uk(ξ)|2 dξ =

∫
Tn

∥∥U(ξ)
∥∥2

l2
dξ

= 1.

Thus ϕ ∈ L2(Rn). Also,∑
k∈Zn

|ϕ̂(ξ + k)|2 =
∑
k∈Zn

|uk(ξ)|2 =
∥∥U(ξ)

∥∥2

l2
= 1. (3.10)

This is equivalent to the fact that {ϕ(x − k) : k ∈ Zn} is an orthonormal system.

We now define V #
0 = span{ϕ(x − k) : k ∈ Zn}. Let Wj = span{ψ`m,j,k : 1 ≤ ` ≤

q − 1, 1 ≤ m ≤ M,k ∈ Zn} and V0 = ⊕j<0Wj . If we can show that V #
0 = V0, then

it will follow that {Vj : j ∈ Z} is the required MRA.

We first show that V #
0 ⊂ V0. It is sufficient to verify that ψ`m,j,k ∈ V

#
0 , k ∈ Zn, j <

0, 1 ≤ ` ≤ q − 1, 1 ≤ m ≤M . For each j ≥ 1, there exists a measurable function ν`j,m
on Tn such that ω`j,m(ξ) = ν`j,m(ξ)U(ξ) for a.e. ξ ∈ Tn. That is,

ψ̂`
(
A∗jB∗m(ξ + k)

)
= ν`j,m(ξ)ϕ̂(ξ + k) for all ξ ∈ Tn, k ∈ Zn.

Therefore, by (3.10), for a.e. ξ ∈ Tn, we have∑
k∈Zn

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 =

∑
k∈Zn

∣∣ν`j,m(ξ)
∣∣2 |ϕ̂(ξ + k)|2 =

∣∣ν`j,m(ξ)
∣∣2 . (3.11)

This shows that ν`j,m ∈ L2(Tn) so that we can write its Fourier series expansion.

Thus, for j ≥ 1, there exists {a`m,j,k : k ∈ Zn} ∈ l2(Zn) such that ν`j,m(ξ) =∑
k∈Zn

a`m,j,ke
−2πikξ, with convergence in L2(Tn). Extending ν`j,m integer periodically,

we have
ψ̂`
(
A∗jB∗mξ

)
= ν`j,m(ξ)ϕ̂(ξ), for a. e. ξ ∈ Zn, j ≥ 1. (3.12)

Taking inverse Fourier transform, we get

ψ`−j,−m,0(x) = qj/2
∑
k∈Zn

a`m,j,kϕ(ξ − k), j ≥ 1.
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Hence, ψ`−j,−m,0 ∈ V
#
0 for j ≥ 1. Moreover, since V #

0 is invariant under translations

by k, k ∈ Zn, we have ψ`m,j,k ∈ V
#
0 , j < 0, k ∈ Zn, 1 ≤ ` ≤ q − 1, 1 ≤ m ≤M .

To show the reverse inclusion, it suffices to show that V #
0 ⊥ Wj , for j ≥ 0. For

j ≥ 0, k ∈ Zn, 1 ≤ ` ≤ q − 1, 1 ≤ m ≤M , we have〈
ϕ,ψ`m,j,k

〉
=

〈
ϕ̂, ψ̂`m,j,k

〉
=

∫
Rn

ϕ̂(ξ)q−j/2ψ̂`
(
A∗jB∗mξ

)
e−2πiA∗jB∗mkξdξ

= qj/2
∫
Rn

ϕ̂(B∗−mA∗−jξ)ψ̂`(ξ)e−2πikξdξ

= qj/2
∫
Tn

∑
n∈Zn

ϕ̂(B∗−mA∗−j(ξ + n))ψ̂`(ξ + n)e−2πikξdξ. (3.12)

Using Equation (3.11), we get

q−1∑
`=1

M∑
m=1

∞∑
j=1

∣∣ν`j,m(ξ)
∣∣2 =

q−1∑
`=1

M∑
m=1

∞∑
j=1

∑
k∈Zn

∣∣∣ψ̂`(A∗jB∗m(ξ + k)
)∣∣∣2 = 1 for a. e. ξ ∈ Zn.

Hence, for such ξ and for all j ≥ 0, there exists j0 ≥ 1 such that ν`j,m
(
A∗jB∗mξ

)
6=

0. Thus, (3.12) implies that ψ̂`
(
A∗j+j0B∗mξ

)
= ν`j0,m

(
B∗−mA∗−jξ

)
ϕ̂
(
B∗−mA∗−jξ

)
.

Therefore, for k ∈ Zn, we get

ψ̂`
(
A∗j+j0B∗m(ξ + k)

)
= ν`j0,m

(
B∗−mA∗−j(ξ + k)

)
ϕ̂
(
B∗−mA∗−j(ξ + k)

)
Using integral periodicity of ν`j0 , we get

ϕ̂
(
B∗−mA∗−j(ξ + k)

)
=

1

ν`j0,m
(
B∗−mA∗−jξ

) ψ̂`(A∗j+j0B∗m(ξ + k)
)
.

Therefore, using Lemma 2.3, for any h with 1 ≤ h ≤ q − 1 and for 1 ≤ m ≤ M , we
have ∑

k∈Zn

ϕ̂
(
B∗−mA∗−j(ξ + k)

)
ψ̂(ξ + k)

=
1

ν`j0,m
(
B∗−mA∗−jξ

) ∑
k∈Zn

ψ̂`
(
A∗j+j0B∗m(ξ + k)

)
ψ̂(ξ + k) = 0,

since j + j0 ≥ 1. Substituting this in (3.12), we get
〈
ϕ,ψ`m,j,k

〉
= 0 for j ≥ 0, k ∈

Zn, 1 ≤ ` ≤ q− 1, 1 ≤ m ≤M . From this we conclude that V #
0 ⊂ V0. This completes

the proof of theorem. �
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