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Rotationally symmetrical plane graphs and their
Fault-tolerant metric dimension

Sunny Kumar Sharma and Vijay Kumar Bhat

Abstract. For a non-trivial connected graph H, a vertex a ∈ H resolves (recognizes) two

vertices x and y in H, if d(a, x) 6= d(a, y). A subset L of distinct ordered vertices in H is
called a resolving set for H, if every two distinct vertices of H are recognized by at least

one vertex from L. The minimum cardinality of a resolving set L for H is called the metric

dimension of H, denoted by dim(H). The subset L of vertices in H is called a fault-tolerant
resolving set (FTRS) for H, if L-{x} is still the resolving set for all x ∈ L, and the minimum

cardinality of such a set L is called the fault-tolerant metric dimension (FTMD) of H. The
fault-tolerant metric dimension is an extension of metric dimension in graphs with several

intelligent systems applications, for example, robot navigation, network optimization, and

sensor networking. The graphs of convex polytopes, which are rotationally symmetric, are
essential in intelligent networks due to the uniform rate of data transformation to all vertices.

In this article, we consider three well-known rotationally symmetric families of plane graphs

and find their minimum fault-tolerant resolving sets.
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1. Introduction

The idea of studying metric dimension for graphs was brought forward by Slater [21],
and Harary and Melter in [8]. The applicability of the metric dimension was seen in
different fields of science and technology. Metric basis and resolving set have become
an integral part of molecular topology and combinatorial chemistry. Applications of
metric basis and resolving sets emerge in various fields such as coin weighing problems
[22], the connected joints in graphs and chemistry [4], robot navigation [12], network
discovery and verification [3], and strategies for the Mastermind game [7]. It is im-
perative to note that computing metric dimension in graphs is an NP-hard problem
[2]. Therefore, it is interesting to study the minimum metric dimension problem for
infinite families of graph-theoretic interest.

A set L of elements (vertices or edges) in space is said to be a generator of a
metric space if each element of the space is uniquely determined (or recognized) by
the distances between the elements of L. There are several types of metric generators
in networks today, each of which is studied in both applied and theoretical ways, based
on its eminence or applications. The metric dimension of graph H is the minimum
cardinality of the metric generator L and is denoted by dim(H). The metric generator
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L with minimum cardinality is the metric basis for H. Few recent results concerning
the metric dimension are presented in [19, 20, 27].

In an application given in [6], censors were designated as elements of metric basis.
A defective sensor will commence to the breakdown in recognizing the thief (intruder,
fire, etc.) in the system. Hernando et al. [9] proposed the concept of fault-tolerant
metric dimension to address these types of predicaments. That is, if one of the censors
is not operating, the fault-tolerant resolving set provides reliable information. As a
consequence, the fault-tolerant metric dimension has applications in all of those fields
where the metric dimension has them. For a more comprehensive study related to
this parameter, we refer to [18, 23].

Fault-tolerant metric dimension (FTMD) is considered in numerous fields of study.
Raza et al. considered applications of FTMD in some interconnection networks, and
structures of various graphs of convex polytopes [13, 14]. Mithun et al. [24] considered
FTMD for the class of circulant graph Cn(1, 2, 3). For, more in-depth review of this
particular topic we refer to some of the recent results in [15, 17, 20, 25].

The convex hull of a finite set of points in Euclidean space Rd is acknowledged as
a convex polytope. By preserving the incidence-adjacency relation between vertices,
the graphs of convex polytopes emerge from geometric structures of convex polytopes.
This class of planar geometric graphs has broadly been analyzed for graph labeling
[1], fault-tolerant metric dimension [9, 20], metric dimension [19], locating-dominating
sets [10], mixed metric dimension [16, 26].

In this paper, we consider three rotationally symmetric families of planar graphs
(viz., flower graph zn×m, Sn, and Tn [11]) and determine their fault-tolerant metric
dimension. This article is organized as follows. In Section 2, we recall some existing
results related to the metric dimension and fault-tolerant metric dimension of graphs.
In Section 3, we set upper and lower bounds of fault-tolerant metric dimension for the
flower graph zn×m, when m = 3. We compute the fault-tolerant metric dimension
for convex polytope graphs Sn, and Tn in Sections 4 and 5 respectively. Finally, the
conclusion and future work of this paper is presented in Section 6.

2. Preliminaries

In this section, we discuss some basic preliminary results.
Suppose H = (V,E) be a simple, connected, and undirected graph, with vertex

set V and edge set E. The distance d(a, b) between two vertices a and b in a simple
connected graph H is the length of the shortest a− b path between the vertices a and
b. It equals the minimum number of edges between a and b in that shortest path.
Metric Dimension: [21] If for any three vertices a, b, c ∈ V (H), we have d(a, b) 6=
d(a, c), then the vertex a is said to resolve the pair of vertices b, c (b 6= c) in V (H).
If this condition of resolvability is fulfilled by some vertices comprising a subset L ⊆
V (H) i.e., every pair of different vertices in the given undirected graph H is resolved
by at least one element of L, then L is said to be a metric generator (or resolving
set) of H. The metric dimension of the given graph H is the minimum cardinality
of the resolving set L, and is usually denoted by dim(H). The metric generator
L with minimum cardinality is the metric basis for H. For an ordered subset of
vertices L = {ε1, ε2, ε3, ..., εk}, (by L∗ for fault-tolerant metric dimension) the k-code
(coordinate or representation) of vertex c in V (H) is:
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ϕ(c|L) = (d(ε1, c), d(ε2, c), ..., d(εk, c))

In this respect, the set L is a resolving set for H, if ϕ(q|L) 6= ϕ(p|L), for any pair of
distinct vertices p, q ∈ V (H).

Example 2.1. Consider a graph H on 8 vertices as shown in Fig. 1. The set L1 =
{a1, a2, a3} is a resolving set for the graph H, since the metric codes for the vertices
of the graph H with respect to L1 are: ϕ(a1|L1) = (0, 1, 1); ϕ(a2|L1) = (1, 0, 2);
ϕ(a3|L1) = (1, 2, 0); ϕ(a4|L1) = (2, 1, 1); ϕ(a5|L1) = (1, 2, 1); ϕ(a6|L1) = (2, 1, 2);
ϕ(a7|L1) = (3, 2, 2); ϕ(a8|L1) = (4, 3, 3). However, L1 is not a minimum resolving
set, as L2 = {a1, a3} is likewise a resolving set with smaller cardinality. Then again,
the set L3 = {a1} is not a resolving set, as ϕ(a2|L3) = ϕ(a3|L3) = 1. Utilizing a
comparable contention it is anything but difficult to watch that none of singleton
vertex forms a resolving set for H, and hence dim(H) = 2.

Figure 1. The graph H

Independent resolving set: [5] A subset L consisting of distinct vertices of the
graph H is said to be an independent resolving set for H if L is both resolving and
independent set.
Fault-Tolerant Metric Dimension: [9] A fault-tolerant resolving set is a resolv-
ing set in which the removal of an arbitrary vertex keeps up the resolvability i.e., a
resolving set L∗ is said to be fault-tolerant if L∗-{a} is also a resolving set for every
a ∈ L∗. For the sake of simplicity, we can write fault-tolerant resolving set, fault-
tolerant metric codes (i.e., ϕF (c|L∗)), and fault-tolerant metric dimensions as FTRS,
FTMC, and FTMD respectively. The fault-tolerant metric basis, fault-tolerant metric
codes and fault-tolerant metric dimension are characterized correspondingly as metric
dimensions. We represent the FTMD of graph H with fdim(H). By the definition
of FTRS, it is clear that for every graph H, we have;

dim(H) + 1 ≤ fdim(H) (1)

Now, for an arbitrary graph H the following lemma represents a connection between
a resolving set and a FTRS. Suppose that N(a) represents an open neighborhood of a
vertex a ∈ V (H) where N(a) = {b ∈ V (H)|ab ∈ E(H)}, and the close neighborhood
of a vertex a is given as N[a] = N(a) ∪ {a}.

Lemma 2.1. [9] Let L represents a resolving set for a connected graph H. Then, for
any a ∈ L, let T(a) = {c ∈ V (H) : N(a) ⊆ N(c)}. Then L∗ = ∪a∈L(N[a] ∪ T(a)) is a
FTRS of the graph H.
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Imran et al. [11], studied the metric dimension for three rotationally symmetric
families of plane graphs viz., the flower graph zn×m, Sn, and Tn. For these three
rotationally symmetric graphs, they obtained the following results

Theorem 2.2. For n > 6, we have

dim(zn×3) =

{
2, if n is even;

3, if n is odd.

Theorem 2.3. dim(Sn) = 3, for every n ≥ 6.

Theorem 2.4. dim(Tn) = 3, for every n ≥ 6.

3. Bounds on FTMD for the flower graph zn×m

The plane graph z is known as a (n×m)-flower graph if it has n vertices that structure
an n-cycle and n sets of m − 2 vertices that structure m-cycles around the n cycle
so every m-cycle uniquely intersects with the n-cycle on a solitary edge. This plane
graph will be indicated by zn×m. Unmistakably zn×m has nm number of edges and
n(m− 1) vertices. The m-cycles are known as the petals of the graph zn×m and the
n-cycle is known as the center of the graph zn×m. The n vertices which structure
the center are all of valency four and the rest of the vertices have valency two. Figure
2 shows some examples of the flower graph.

Figure 2. The graphs zn×3 and z10×5

For m = 3, the graph zn×3 [11] consists of n triangular faces, a faces having n
sides, and a face having 2n sides. It has a 2n number of vertices and a 3n number of
edges (see Fig. 2(a)). For zn×3, the set of edges and vertices are denoted by E(zn×3)
and V (zn×3), respectively. Therefore, we have V (zn×3) = {aj , bj : 1 ≤ j ≤ n} and
E(zn×3) = {ajbj , ajaj+1, bjaj+1 : 1 ≤ j ≤ n}.

We call the cycle induced by the vertices {aj : 1 ≤ j ≤ n} in the graph, zn×3 as
the a-cycle, and the vertices {bj : 1 ≤ j ≤ n} in the graph, zn×3 as the b-vertices.
For our purpose, we consider a1 = an+1 and b1 = bn+1. Imran et al. [11], proved that
the flower graph zn×3 consists of a minimum resolving set with cardinality three and
it constitutes the family of the plane graph with constant metric dimension. In the
next result, we determine lower and upper bounds on the FTMD for the rotationally
symmetrical plane graph zn×3.
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Theorem 3.1. For n = 7, we have 4 ≤ fdim(zn×3) ≤ 11 and for n ≥ 8, the lower
and upper bounds for the FTMD of the graph zn×3 are

fdim(zn×3) ≥

{
3, if n is even;

4, if n is odd.

and

fdim(zn×3) ≤

{
6, if n is even;

12, if n is odd.

respectively.

Proof. From Theorem 2.2, we find that the metric dimension of the plane graph zn×3
is two when n is even and three when n is odd. In [11], it was proved that the sets
L = {b1, bw} and L = {a1, a2, aw+1} are the basis sets for the plane graph zn×3,
when n is even and odd respectively. Then by using equation (1), we obtain the lower
bound for the FTMD of zn×3 as

fdim(zn×3) ≥

{
3, if n is even;

4, if n is odd.

Next, one can easily find that, for n = 7, the upper bound for the FTMD of zn×3 is
11 (see graph zn×3 and use Lemma 2.1). Now, in order to finish the proof, we have
to set the upper bound for the FTMD of zn×3, for n ≥ 8.

Claim: zn×3 has a FTRS of cardinality 6 and 12, for n ≥ 8.
To explain this, we look more closely at the two situations that arise by using the

positive integer n i.e., n ≡ 0(mod 2) and n ≡ 1(mod 2).

Case 1 When n ≡ 0 (mod 2).
For this, the integer n can be written as n = 2w, w ∈ N, and w ≥ 3 (for n = 6 the re-
sult is also true). Then, L = {b1, bw} ⊂ V (zn×3) is a minimum resolving set for the ro-
tationally symmetric graph zn×3 [11]. Next, we will show that the plane graph zn×3
has a FTRS of cardinality 6. From Fig. 2(a), one can find that N [b1] = {b1, a1, a2},
and N [bw] = {bw, aw, aw+1}. Also, we find that λ(N(b1)) = λ(N(bw)) = φ. From
this fact and Lemma 2.1, we obtain that L∗ = {b1, a1, a2, bw, aw, aw+1} is a FTRS of
zn×3. Thus, we find that there exists a FTRS for the rotationally symmetrical plane
graph zn×3 of cardinality 6, if n is even.

Case 2 When n ≡ 1 (mod 2).
For this, the integer n can be written as n = 2w + 1, w ∈ N, and w ≥ 4. Then,
L = {a1, a2, aw+1} ⊂ V (zn×3) is a minimum resolving set for the rotationally sym-
metric graph zn×3 [11]. Next, we will show that the plane graph zn×3 has a FTRS
of cardinality 12. From Fig. 2(a), one can find that N [a1] = {a1, a2, an, b1, bn},
N [a2] = {a1, a2, a3, b1, b2}, and N [aw+1] = {aw, aw+1, aw+2, bw, bw+1}. Also, we find
that λ(N(a1)) = λ(N(a2)) = λ(N(aw+1)) = φ. From this fact and Lemma 2.1, we ob-
tain that L∗ = {a1, a2, a3, aw, aw+1, aw+2, an, b1, b2, bw, bw+1, bn} is a FTRS of zn×3.
Thus, we find that there exists a FTRS for the rotationally symmetrical plane graph
zn×3 of cardinality 12, if n is odd.
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Hence, we can obtain that there exists a FTRS of cardinality 6 and 12 for zn×3,
and thus, the claim. �

The immediate conclusion of Theorem 3.1 is the following corollary:

Corollary 3.2. The FTMD of the flower graph zn×3 is constant.

4. Fault-tolerant metric dimension for the plane graph Sn

The plane graph Sn [11] consists of n triangular faces, n pentagonal faces, n hexag-
onal faces, and a pair of faces each having n sides. It has a 5n number of ver-
tices and a 8n number of edges (see Fig. 3). For Sn, the set of edges and ver-
tices are denoted by E(Sn) and V (Sn), respectively. Therefore, we have V (Sn) =
{aj , bj , cj , dj , ej : 1 ≤ j ≤ n} and E(Sn) = {ajbj , bjcj , cjdj , djej : 1 ≤ j ≤ n} ∪
{ajaj+1, bjaj+1, djcj+1, ejej+1 : 1 ≤ j ≤ n}.

Figure 3. The graph Sn

We call the cycle induced by the vertices {aj : 1 ≤ j ≤ n} in the graph, Sn as the
a-cycle, the vertices {bj : 1 ≤ j ≤ n} in the graph, Sn as the b-vertices, the cycle
induced by the vertices {cj , dj : 1 ≤ j ≤ n} in the graph, Sn as the cd-cycle, and the
cycle induced by the vertices {ej : 1 ≤ j ≤ n} in the graph, Sn as the e-cycle. For
our purpose, we consider a1 = an+1, b1 = bn+1, c1 = cn+1, d1 = dn+1, and e1 = en+1.
Imran et al. [11], proved that the plane graph Sn consists of a minimum resolving set
with cardinality three and it constitutes the family of the plane graph with constant
metric dimension. In the next result, we determine the FTMD for the rotationally
symmetrical plane graph Sn.

Theorem 4.1. fdim(Sn) = 4, for every positive integer n ≥ 6.
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Proof. From Theorem 2.3, we find that the metric dimension of the plane graph Sn

is three, that is, dim(Sn) = 3 for every n ≥ 6.

Claim: Convex polytope graph Sn has a minimum FTRS L∗ of cardinality four.
To explain this, we look more closely at the two situations that arise by using the

positive integer n i.e., n ≡ 0 (mod 2) and n ≡ 1 (mod 2).

Case 1 When n ≡ 0 (mod 2).
From this, we have n = 2w, w ∈ N, and w ≥ 3. Suppose L∗ = {a1, a2, aw+1, aw+2} ⊂

V (Sn). Next, we give fault-tolerant metric codes to every vertex of Sn with respect
to the set L∗.

For the vertices of a-cycle {aj : 1 ≤ j ≤ n}, the FTMC are as follows

ϕF (aj |L∗) a1 a2 aw+1 aw+2

j = 1 j − 1 1 w − j + 1 w − 1
2 ≤ j ≤ w + 1 j − 1 j − 2 w − j + 1 w − j + 2
j = w + 2 2w− j + 1 j − 2 j − w − 1 w − j + 2
w + 3 ≤ j ≤ 2w 2w− j + 1 2w− j + 2 j − w − 1 j − w − 2

For the inward vertices {bj : 1 ≤ j ≤ n}, the FTMC are as follows

ϕF (bj |L∗) a1 a2 aw+1 aw+2

j = 1 j 1 w − j + 1 w
2 ≤ j ≤ w j j − 1 w − j + 1 w − j + 2
j = w + 1 2w− j + 1 j − 1 j − w w − j + 2
w + 2 ≤ j ≤ 2w 2w− j + 1 2w− j + 2 j − w j − w − 1

For the vertices of cd-cycle {cj , dj : 1 ≤ j ≤ n}, the FTMC are ϕF (cj |L∗) =
ϕF (bj |L∗) + (1, 1, 1, 1) for 1 ≤ j ≤ 2w. Next, the FTMC for the outward vertices
{dj : 1 ≤ j ≤ n} are as follows

ϕF (dj |L∗) a1 a2 aw+1 aw+2

j = 1 j + 2 3 w − j + 2 w − j + 3
2 ≤ j ≤ w − 1 j + 2 j + 1 w − j + 2 w − j + 3
j = w 2w− j + 2 j + 1 3 w − j + 3
j = w + 1 2w− j + 2 2w− j + 3 j − w + 2 3
w+2 ≤ j ≤ 2w−1 2w− j + 2 2w− j + 3 j − w + 2 j − w + 1
j = 2w 3 2w− j + 3 j − w + 2 j − w + 1

Finally, for e-cycle {ej : 1 ≤ j ≤ n}, the FTMC are ϕF (ej |L∗) = ϕF (dj |L∗) +
(1, 1, 1, 1) for 1 ≤ j ≤ 2w. From these FTMC, we see that no two elements in V (Sn)
have the same fault-tolerant metric codes, suggesting L∗ to be resolving set for Sn.
Since, by definition of FTRS, the subsets L∗r {a}, ∀ a ∈ L∗ are L1 = {a1, a2, aw+1},
L2 = {a1, a2, aw+2}, L3 = {a1, aw+1, aw+2}, and L4 = {a2, aw+1, aw+2}. Now, to
unveil that the set L∗ is the FTRS for the graph Sn, we have to prove that the sets
L1, L2, L3, and L4 are the resolving sets for Sn. Then, effortlessly one can find from
the fault-tolerant metric codes, as shown above, that the sets L1, L2, L3, and L4

are also resolving sets for Sn, as the metric representation for every different pair of
vertices of Sn are distinct with respect to the sets L1, L2, L3, and L4. Then, for
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FTMD, we have fdim(Sn) ≤ 4. Thus, from these lines, Theorem 2.3, and equation
(1), we have fdim(Sn) = 4, in this case.

Case 2 When n ≡ 1 (mod 2).
From this, we have n = 2w+1, w ∈ N, and w ≥ 3. Suppose L∗ = {a1, a2, aw+1, aw+3} ⊂
V (Sn). Next, we give fault-tolerant metric codes to every vertex of Sn r L∗ with re-
spect to the set L∗.

For the vertices of a-cycle {aj : 1 ≤ j ≤ n}, the FTMC are as follows

ϕF (aj |L∗) a1 a2 aw+1 aw+3

j = 1 j − 1 1 w − j + 1 w − 1
j = 2 j − 1 j − 2 w − j + 1 w
3 ≤ j ≤ w + 1 j − 1 j − 2 w − j + 1 w − j + 3
j = w + 2 2w− j + 2 j − 2 j − w − 1 w − j + 3
j = w + 3 2w− j + 2 2w− j + 3 j − w − 1 w − j + 3
w+4 ≤ j ≤ 2w+1 2w− j + 2 2w− j + 3 j − w − 1 j − w − 3

For the inward vertices {bj : 1 ≤ j ≤ n}, the FTMC are as follows

ϕF (bj |L∗) a1 a2 aw+1 aw+3

j = 1 j 1 w − j + 1 w
2 ≤ j ≤ w j j − 1 w − j + 1 w − j + 3
j = w + 1 2w− j + 2 j − 1 j − w w − j + 3
j = w + 2 2w− j + 2 2w− j + 3 j − w w − j + 3
w+3 ≤ j ≤ 2w+1 2w− j + 2 2w− j + 3 j − w j − w − 2

For the vertices of cd-cycle {cj , dj : 1 ≤ j ≤ n}, the FTMC are ϕF (cj |L∗) =
ϕF (bj |L∗) + (1, 1, 1, 1) for 1 ≤ j ≤ 2w + 1. Next, the FTMC for the vertices
{dj : 1 ≤ j ≤ n} are as follows

ϕF (dj |L∗) a1 a2 aw+1 aw+3

j = 1 j + 2 3 w − j + 2 w + 2
2 ≤ j ≤ w − 1 j + 2 j + 1 w − j + 2 w − j + 4
j = w j + 2 j + 1 3 w − j + 4
j = w + 1 2w− j + 3 j + 1 j − w + 2 w − j + 4
j = w + 2 2w− j + 3 2w− j + 4 j − w + 2 3
w + 2 ≤ j ≤ 2w 2w− j + 3 2w− j + 4 j − w + 2 j − w
j = 2w + 1 3 2w− j + 4 j − w + 2 j − w

Finally, for e-cycle {ej : 1 ≤ j ≤ n}, the FTMC are ϕF (ej |L∗) = ϕF (dj |L∗) +
(1, 1, 1, 1) for 1 ≤ j ≤ 2w+1. From these FTMC, we see that no two elements in V (Sn)
have the same fault-tolerant metric codes, suggesting L∗ to be resolving set for Sn.
Since, by definition of FTRS, the subsets L∗r {a}, ∀ a ∈ L∗ are L1 = {a1, a2, aw+1},
L2 = {a1, a2, aw+3}, L3 = {a1, aw+1, aw+3}, and L4 = {a2, aw+1, aw+3}. Now, to
unveil that the set L∗ is the FTRS for the graph Sn, we have to prove that the sets
L1, L2, L3, and L4 are the resolving sets for Sn. Then, effortlessly one can find from
the fault-tolerant metric codes, as shown above, that the sets L1, L2, L3, and L4

are also resolving sets for Sn, as the metric representation for every different pair of
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vertices of Sn are distinct with respect to the sets L1, L2, L3, and L4. Then, for
FTMD, we have fdim(Sn) ≤ 4. Thus, from these lines, Theorem 2.3, and equation
(1), we have fdim(Sn) = 4, in this case also and hence the theorem. �

The immediate conclusion of Theorem 4.1 is the following corollary.

Corollary 4.2. The FTMD for the convex polytope graph Sn is constant.

5. Fault-tolerant metric dimension for the plane graph Tn

The plane graph Tn [11] consists of n triangular faces, n pentagonal faces, and a
pair of faces each having n sides. It has a 3n number of vertices and a 5n number
of edges (see Fig. 4). For Tn, the set of edges and vertices are denoted by E(Tn)
and V (Tn), respectively. Therefore, we have V (Tn) = {aj , bj , cj : 1 ≤ j ≤ n} and
E(Tn) = {ajbj , bjcj , ajaj+1, bjaj+1, cjcj+1 : 1 ≤ j ≤ n}.

Figure 4. The graph Tn

We call the cycle induced by the vertices {aj : 1 ≤ j ≤ n} in the graph, Tn as the
a-cycle, the vertices {bj : 1 ≤ j ≤ n} in the graph, Tn as the b-vertices, and the cycle
induced by the vertices {cj : 1 ≤ j ≤ n} in the graph, Tn as the c-cycle. For our
purpose, we consider a1 = an+1, b1 = bn+1, and c1 = cn+1. Imran et al. [11], proved
that the plane graph Tn consists of a minimum resolving set with cardinality three
and it constitutes the family of the plane graph with constant metric dimension. In
the next result, we determine the FTMD for the rotationally symmetrical plane graph
Tn.

Theorem 5.1. fdim(Tn) = 4, for every positive integer n ≥ 6.
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Proof. From Theorem 2.4, we find that the metric dimension of the plane graph Tn
is three, that is, dim(Tn) = 3 for every n ≥ 6.

Claim: Convex polytope graph Tn has a minimum FTRS L∗ of cardinality four.
To explain this, we look more closely at the two situations that arise by using the
positive integer n i.e., n ≡ 0 (mod 2) and n ≡ 1 (mod 2).

Case 1 When n ≡ 0 (mod 2).
From this, we have n = 2w, w ∈ N, and w ≥ 3. Suppose L∗ = {a1, a2, aw+1, aw+2} ⊂
V (Tn). Next, we give fault-tolerant metric codes to every vertex of Tn with respect
to the set L∗.

For the vertices of a-cycle {aj : 1 ≤ j ≤ n}, the FTMC are as follows

ϕF (aj |L∗) a1 a2 aw+1 aw+2

j = 1 j − 1 1 w − j + 1 w − 1
2 ≤ j ≤ w + 1 j − 1 j − 2 w − j + 1 w − j + 2
j = w + 2 2w− j + 1 j − 2 j − w − 1 w − j + 2
w + 3 ≤ j ≤ 2w 2w− j + 1 2w− j + 2 j − w − 1 j − w − 2

For the inward vertices {bj : 1 ≤ j ≤ n}, the FTMC are as follows

ϕF (bj |L∗) a1 a2 aw+1 aw+2

j = 1 j 1 w − j + 1 w
2 ≤ j ≤ w j j − 1 w − j + 1 w − j + 2
j = w + 1 2w− j + 1 j − 1 j − w w − j + 2
w + 2 ≤ j ≤ 2w 2w− j + 1 2w− j + 2 j − w j − w − 1

Finally, for the vertices of c-cycle {cj : 1 ≤ j ≤ n}, the FTMC are ϕF (cj |L∗) =
ϕF (bj |L∗) + (1, 1, 1, 1) for 1 ≤ j ≤ 2w. From these FTMC, we see that no two
elements in V (Tn) have the same fault-tolerant metric codes, suggesting L∗ to be
resolving set for Tn. Since, by definition of FTRS, the subsets L∗ r {a}, ∀ a ∈ L∗
are L1 = {a1, a2, aw+1}, L2 = {a1, a2, aw+2}, L3 = {a1, aw+1, aw+2}, and L4 =
{a2, aw+1, aw+2}. Now, to unveil that the set L∗ is the FTRS for the graph Tn, we
have to prove that the sets L1, L2, L3, and L4 are the resolving sets for Tn. Then,
effortlessly one can find from the fault-tolerant metric codes, as shown above, that the
sets L1, L2, L3, and L4 are also resolving sets for Tn, as the metric representation for
every different pair of vertices of Tn are distinct with respect to the sets L1, L2, L3,
and L4. Then, for FTMD, we have fdim(Tn) ≤ 4. Thus, from these lines, Theorem
2.4, and equation (1), we have fdim(Tn) = 4, in this case.

Case 2 When n ≡ 1 (mod 2).
From this, we have n = 2w+1, w ∈ N, and w ≥ 3. Suppose L∗ = {a1, a2, aw+1, aw+3} ⊂
V (Tn). Next, we give fault-tolerant metric codes to every vertex of Tn r L∗ with re-
spect to the set L∗.

For the vertices of a-cycle {aj : 1 ≤ j ≤ n}, the FTMC are as follows
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ϕF (aj |L∗) a1 a2 aw+1 aw+3

j = 1 j − 1 1 w − j + 1 w − 1
j = 2 j − 1 j − 2 w − j + 1 w
3 ≤ j ≤ w + 1 j − 1 j − 2 w − j + 1 w − j + 3
j = w + 2 2w− j + 2 j − 2 j − w − 1 w − j + 3
j = w + 3 2w− j + 2 2w− j + 3 j − w − 1 w − j + 3
w+4 ≤ j ≤ 2w+1 2w− j + 2 2w− j + 3 j − w − 1 j − w − 3

For the inward vertices {bj : 1 ≤ j ≤ n}, the FTMC are as follows

ϕF (bj |L∗) a1 a2 aw+1 aw+3

j = 1 j 1 w − j + 1 w
2 ≤ j ≤ w j j − 1 w − j + 1 w − j + 3
j = w + 1 2w− j + 2 j − 1 j − w w − j + 3
j = w + 2 2w− j + 2 2w− j + 3 j − w w − j + 3
w+3 ≤ j ≤ 2w+1 2w− j + 2 2w− j + 3 j − w j − w − 2

Finally, for the vertices of c-cycle {cj : 1 ≤ j ≤ n}, the FTMC are ϕF (cj |L∗) =
ϕF (bj |L∗) + (1, 1, 1, 1) for 1 ≤ j ≤ 2w. From these FTMC, we see that no two
elements in V (Tn) have the same fault-tolerant metric codes, suggesting L∗ to be
resolving set for Tn. Since, by definition of FTRS, the subsets L∗ r {a}, ∀ a ∈ L∗
are L1 = {a1, a2, aw+1}, L2 = {a1, a2, aw+3}, L3 = {a1, aw+1, aw+3}, and L4 =
{a2, aw+1, aw+3}. Now, to unveil that the set L∗ is the FTRS for the graph Tn, we
have to prove that the sets L1, L2, L3, and L4 are the resolving sets for Tn. Then,
effortlessly one can find from the fault-tolerant metric codes, as shown above, that
the sets L1, L2, L3, and L4 are also resolving sets for Tn, as the metric representation
for every different pair of vertices of Tn are distinct with respect to the sets L1, L2,
L3, and L4. Then, for FTMD, we have fdim(Tn) ≤ 4. Thus, from these lines,
Theorem 2.4, and equation (1), we have fdim(Tn) = 4, in this case also and hence
the theorem. �

The immediate conclusion of Theorem 6 is the following corollary.

Corollary 5.2. The FTMD for the convex polytope graph Tn is constant.

6. Conclusion

In this article, we studied the fault-tolerant metric dimension for three rotationally
symmetrical families of the plane graphs (viz., the flower graph zn×3, Sn, and Tn). For
Sn and Tn, we proved that fdim(Sn) = fdim(Tn) = 4, and for the flower graph zn×3
we set upper and lower bounds for its FTMD. In the future, we will try to obtain the
other variants of metric dimension (for instance, edge metric dimension, fault-tolerant
edge metric dimension, mixed metric dimension, etc) for these rotationally symmetric
plane graphs.
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