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Abstract. A new concept of differentiability is introduced and developed, in the framework of
super-additive normed linear spaces. This notion is intended to be the first step in rephrasing
the grounds of general relativity.
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When we mean to build, We first survey the plot, then draw the model
- William Shakespeare, King Henry IV. Part II., Sc. 3

1. Introduction

The last ten years have seen rapid advances in the understanding of differentiable
four-manifolds, not least of which has been the discovery of new “exotic” manifolds.

This recent revolution in differential topology related to the discovery of non-
standard smoothness structures on topologically trivial manifolds such as R

4 sug-
gests many exciting opportunities for applications of potentially deep importance for
the spacetime models of theoretical physics, especially general relativity. This rich
panoply of new differentiable structures lies in the previously unexplored region be-
tween topology and geometry. Just as physical geometry was thought to be trivial
before Einstein, physicists have continued to work under the tacit - but now shown
to be incorrect - assumption that differentiability is uniquely determined by topology
for simple four-manifolds. Since diffeomorphisms are the mathematical models for
physical coordinate transformations, Einstein’s relativity principle requires that these
models be physically inequivalent.

We shall mention here some recent advances in theoretical physics developed in
the last years.

1.1. Superstring Theory. Superstring theory apparently resolves the most enig-
matic problem of the twentieth century theoretical physics: the mathematical in-
compatibility of the quantum mechanics and the General Theory of Relativity. In
doing so, string theory modifies our understanding of spacetime and the gravitational
force. One recently discovered consequence of this modification is that spacetime can
undergo remarkable rearrangements of its basic structure requiring the fabric of space-
time to tear apart and subsequently reconnect. Such processes are at best unlikely
and probably impossible in pre-string theories as they would be accompanied by vio-
lent physical effects. In string theory, on the contrary, these processes are physically
sensible and thoroughly common.
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The usual domains of general relativity and quantum mechanics are quite different.
General relativity describes the force of gravity and hence is usually applied to the
largest and most massive structures including stars, galaxies, black holes and even,
in cosmology, the universe itself. Quantum mechanics is most relevant in describing
the smallest structures in the universe such as electrons and quarks. In most ordi-
nary physical situations, therefore, either general relativity or quantum mechanics is
required for a theoretical understanding, but not both. There are, however, extreme
physical circumstances which require both of these fundamental theories for a proper
theoretical treatment.

Prime examples of such situations are spacetime singularities such as the central
point of a black hole or the state of the universe just before the Big Bang. These exotic
physical structures involve enormous mass scales (thus requiring general relativity)
and extremely small distance scales (thus requiring quantum mechanics). Unfortu-
nately, general relativity and quantum mechanics are mutually incompatible: any
calculation which simultaneously uses both of these tools yields nonsensical answers.

String theory solves the deep problem of the incompatibility of the above mentioned
two fundamental theories by modifying the properties of general relativity when it
is applied to scales on the order of the Planck length. String theory is based on the
premise that the elementary constituents of matter are not described correctly when
we model them as point-like objects. Rather, according to this theory, the elementary
“particles” are actually tiny closed loops of string with radii approximately given by
the Planck length. Modern accelerators can only probe down to distance scales around
10 cm and hence these loops of string appear to be point objects. However, the string
theoretic hypothesis that they are actually tiny loops, changes drastically the way in
which these objects interact on the shortest of distance scales. This modification is
what allows gravity and quantum mechanics to form a harmonious union.

There is a price to be paid for this solution, however. It turns out that the equations
of string theory are self consistent only if the universe contains, in addition to time,
nine spatial dimensions. As this is in gross conflict with the perception of three spatial
dimensions, it might seem that string theory must be discarded. This is not true.

1.2. Kaluza-Klein Theory. The idea that our universe might have more than the
three familiar spatial dimensions is one which was introduced more than half a century
before the advent of string theory by T. Kaluza and O. Klein. The basic premise
of such Kaluza-Klein theories is that a dimension can be either large and directly
observable or small and essentially invisible. No experiment rules out the possible
existence of additional spatial dimensions curled up on scales smaller than 10 cm ,
the limit of present day accessibility. Although originally introduced in the context of
point particle theories, this notion can be applied to strings. String theory, therefore,
is physically sensible if the six extra dimensions which it requires curl up in this
fashion.

A remarkable property of these theories is that the precise size, shape, number of
holes, etc. of these extra dimensions determines properties such as the masses and
electric charges of the elementary “particles”.

1.3. Gravitational Fluctuations and the Topology of Spacetime. A number
of issues, unresolved at present, prevent the application of string theory to the analysis
of the kind of spacetime singularities described above. The theory can be successfully
applied, though, to another class of singularities which control the topology of the
universe (see [17]).
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General relativity predicts that the spacetime will smoothly deform its size and
shape in response to the presence of matter and energy. A familiar manifestation
of this spacetime stretching is the expansion of the universe. The topology of the
universe, however, remains fixed.

In general, a manifold is defined to be a patchwork of coordinate patches, each
indistinguishable from a region of a model space, together with their gluing instruc-
tions; n-folds are simply n-dimensional manifolds. Such a manifold is said to be
modelled on the model space. For example, Euclidean manifolds are modelled on the
Euclidean space. For a euclidean 2-fold, each patch is given (local) coordinates, in
which it “looks” like a region in the affine (x, y)-plane. The gluing instructions then
simply tell how to slightly overlap these patches and specify the transition functions,
i.e., how the coordinates of the overlapping regions are to be identified in the overlap.

Taking into consideration the nature of the transition functions, the manifolds are
said to be smooth, algebraic, holomorphic (complex-analytic), etc. For a manifold of
one category to also belong to another, there is typically an additional object (“struc-
ture”) to be found on it. For example, for a smooth manifold to be Riemannian, it
must admit a global rank-2 covariant, i.e., type-(0, 2) tensor, the metric, the eigenval-
ues of which are real and positive at every point of the manifold. Pseudo-Riemannian
manifolds admit metrics with s positive and t negative eigenvalues, are said to have
signature (s, t); metrics in the “real” spacetime have signature (3, 1). The metric may
be “read off” from the expression for the square of the line element: where summation
over the indices m,n = 0, 1, 2, 3 is implied, 0 labeling the temporal axis, and 1, 2, 3
the three spactial axes, as exemplified after the second equality; the third statement
is an alternative representation of the same statement. Complex (holomorphic) man-
ifolds (for which the transition functions are holomorphic) are real even-dimensional
smooth manifolds which in addition admit a rank-2 mixed, i.e., type-(1, 1) tensor, the
complex structure, precisely a half of the eigenvalues of which are positive and the
other half negative. The eigenvectors with positive eigenvalues are the holomorphic
(complex) coordinates, and those with negative eigenvalues are the anit-holomorphic
(conjugate) coordinates.

Alternatively, instead of specifying a manifold as a patchwork of coordinate patches
(each of which is a copy of an affine and well understood “model” space) together
with gluing instructions, it may be specified as a subspace of another, presumably
more easily describable space.

It is known that (i) a diffeomorphism of manifolds with indefinite metrics pre-
serving degenerate r-plane sections is conformal, (ii) a sectional curvature-preserving
diffeomorphism of manifolds with indefinite metrics of dimension 4 is generically an
isometry.

Is it possible to isometrically embed a non-Euclidean manifold in a Euclidean man-
ifold of higher dimension? If we limit ourselves to just ONE new dimension the answer
is no. This was proved around 1901 by Hilbert, who showed that the original non-
Euclidean space (the 2D hyperbolic plane of Lobachevski, Bolyai, et al.) cannot be
isometrically embedded in its entirety in 3D Euclidean space. However, it can be
embedded in 6D Euclidean space, and, probably, even in 5D Euclidean space. Ap-
parently the question of whether there exists a complete isometric embedding in 4D
Euclidean space remains open. In any case, we can always embed a smooth metrical
non-Euclidean space in a higher-dimensional Euclidean space, but it usually takes
more than just one extra dimension.
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2. A possible categorical approach

2.1. Open Problem. Let Cat be the category of all small categories. We need for
a (non-trivial) “topology” on Morph (Cat) (there is, the class of functors between
small categories), with the following property: for each u in Morph (Cat) and each
D in Ob (Cat) there are

C
v→ D

in Morph (Cat), a functor F : Cat → Cat with F (u) = v and “open neighbour-
hoods” V and W of u and v , respectively, such that F (acting on Morph (Cat)) is
a “homeomorphism” between V and W . Here the topological notions are also to be
defined, even in a weaker sense that Giraud-Grothendieck’s one.

2.2. Notations. In the sequel, we shall use the following notations:
E = the 4-dimensional Euclidean space R

4.
Mink4 = the Minkowski space-time R × R

3 (see e.g. [10], [11]).
Mink2 = the Minkowski plane R × R.
Man = the category of differentiable manifolds.
Top = the category of topological spaces.
Cat = the category of small categories.
Ob (C) = the objects of category C.
If S is in Ob (C), then Isom (S) will denote the isomorphisms of S.
If X is a linear space, we shall denote by Norm (X) the family of all norms defined

on X.
The basic cone we shall introduce is the set of functions K = {ω : R

+ → R
+},

satisfying the following properties:

− ω is non-decreasing
− lim

t→∞
ω(t)

t = 0.

To work in GR, one must define first pseudo-Riemannian manifolds. To define
pseudo-Riemannian manifolds, one must define first smooth manifolds. To define
smooth manifolds, one must define first the Euclidean space, endowed with its topol-
ogy, which is generated by its old-fashioned (positive definite) norm. Of course, gen-
eral relativity is invariant under diffeomorphisms. But we should raise the following
question: Could one explain why

- there are nonlinear f in Diff (Mink2) both preserving/reversing the causal order
- there is no such f in Diff (Mink4).
What makes the difference?
As it is widely known, the Einstein-Podolski-Rosen criticism to the Copenhagen

Interpretation of Quantum Mechanics resulted in several attempts to improve the
foundational bases of QM (Hidden Variable Theories, The Many-Worlds Interpre-
tation, The Transactional Interpretation, ....). After our knowledge, no comparable
efforts were made in GR (preserving exactly GR, not string or Kaluza-Klein like
theories).

2.3. Space-time decomposition. The 3-metric gij and extrinsic curvature (second
fundamental form) Kij are the fundamental variables describing the geometry in
any space-time decomposition of the Einstein equations. (g,K) describe the local
geometry of a single space-like hypersurface M , and it is then natural to describe the
evolution of the space-time geometry by a 1-parameter family (g (t) ,K (t)) , describing
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the local geometry of the (space-like) hypersurfaces Mt. In order to piece these
hypersurfaces together, however, we must also specify the lapse N and shift vector
Xi , which describe the relation between the time evolution vector ∂1

t and the space-
time vector n normal to the hypersurfaces:

∂t = Nn + Xi∂i, n = N−1
(
∂t − Xi∂i

)
.

The space-time metric is then fully determined, by
ds2 = −N2dt2 + gij(dxi + Xidt)(dxj + Xjdt),

and the inverse metric in terms of [gij ] = [gij ]−1 is

gab∂a ⊗ ∂b = −N−2
(
∂t − Xi∂i

)2
+ gij∂i ⊗ ∂j ,

where to reduce the risk of confusion we use gab to denote the space-time metric
components. Conversely we have

N2 = −g00 + g0ig0jg
ij

= −1/g00,

Xi = gijX
j = g0i,

Xi = −g0i/g00,

gij = gij − g0ig0j/g00.

Any numerical formulation brings with it coordinates
(
t, xi

)
- one important chal-

lenge then is to develop good choices of the lapse and shift, so that the space-like
hypersurfaces (level sets of t) and the spatial coordinates xi remain as smooth and
regular as possible. In geometric terms this amounts to constructing “good” coor-
dinates, where “good” can mean many things. For example, a popular choice for
the time coordinate requires that the hyper surfaces are maximal, i.e. trK = 0.
Because this amounts to an elliptic equation (analogous to the minimal surface equa-
tion satisfied by soap films), the t coordinate is as smooth as the space-time allows,
so coordinate breakdown signals serious geometrical problems, rather than spurious
coordinate effects. On the other hand, the resulting elliptic equation on the lapse

∆gN = N |K|2 = NKijK
ij

is expensive to solve numerically, and is “non-local”.
The relation between (g,K) and

(
N,Xi

)
is

Kij =
1
2
N−1 (∂tgij −∇iXj −∇jXi) ,

where ∇iXj denotes the spatial covariant derivate,

∇iXj = ∂i (Xj) − ΓijkXk.

This shows that if (g,K) is given, and
(
N,Xi

)
chosen appropriately, then ∂tgij is

determined. By analogy with the usual wave equation, it is perhaps not surprising
that (g,K) form the geometric initial data for the Einstein equations. However, one
point at which the analogy with the wave equation �u = 0 breaks down, is the matter
of constraints.

Whereas the initial data for the wave equation consists of arbitrary functions
(u0, u1) with u (x, 0) = u0 (x) , ∂tu (x, 0) = ut (x) , for the Einstein equations the
data (g,K) are not freely specifiable, but must satisfy the constraint equations

G00 = R (g) + |K|2 − (trgK)2

G0i = 2
(∇jKij −∇itrgK

)
,
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where G0a, a = 0, ..., 32 are components of the Einstein tensor Gab = Rab − 1
2Rgab.

The Einstein equations

Gab = 8πkTab

connect the space-time curvature with the stress-energy tensor Tab, which reflects the
matter content of any additional fields (perfect fluid, Maxwell, Yang-Mills, dilation
etc) present in the simulation. For the vacuum Einstein equations, the stress energy
tensor Tab vanishes, so we can consider G0a = 0 for simplicity. Note that T00 is inter-
preted physically as describing the local energy density as measured by an observer
with world line in the direction e0 , and likewise T0i, i = 1, 2, 3 describes the local
momentum density vector.

We think this brilliant non-Euclidean construction (GR) is built on a non-adequate
Euclidean foundation (more precisely, using the Euclidean math apparatus existing
at the time when General Relativity was born). The question is: can we preserve
the building and change its foundation? In other words, should we seek for new
foundations of GR ?

2.4. Connections to general relativity (GR). It is well-known that topology
is not well-adapted to the study of relativity. Indeed, there exist points A, B, C
in the spacetime such that the absolute distances AB and BC are both less than
the Planck length, and yet the distance AC is the radius of the observable universe.
Also, the huge homeomorphism group of R

4 is of no physical significance. Actually,
the natural spacetime “metric” is super-additive with respect to the causal order of
Mink4. In order to formalize this fact, we shall introduce a new category, called
X, a non-topological analogue of Top. For example, Mink4 belongs to Ob (X) (of
course, Mink4 is also in Ob (Top), but it is not the same Mink4). The self-morphisms
of Mink4 in X are just the Lorentz transformations (see [1], [2], [4], [6], [15], [18]).
Moreover, one could prove that Top and X are non-isomorphic categories. Unfortu-
nately, the next step of our approach to relativity, namely introducing in the above
framework a category of “differentiable manifolds”, say X − Man, seems to be an
extremely difficult task, because we don’t know what a differentiable structure should
be in this non-topological context. Therefore, we are trying to use for the above pur-
pose the Category Theory. More precisely, we are trying to introduce “differentiable
manifolds” without introducing differentiability. From this viewpoint (remark that
we have a natural forgetful functor Man → Top), our problem can be reformulated
as:

“X − Man should be to X, as Man is to Top”.

Of course, in order to be able to work in Cat, we should restrict our discussion to
subcategories of small size. We would like to remind that our original problem was a
purely categorical one. In free translation: request for a “Local Inversion Theorem”
in Cat, the category of small categories.

Let us observe that it’s not the metric, but the concept of “locality” in Relativity
Theory which we are attacking. On the other hand, at least for the sake of physical
measurements, we must assume metrisability. Also, the group of diffeomorphisms
of R

4 is of no relativistic relevance. A general nonlinear diffeomorphism of R
4 has

nothing to do with causality. Despite of the fact that there are some exotic structures
on the Minkowskian space-time Mink4, which were developed around 1970 (see e.g.
[12], [13], [17], [19], [20]), one must remark that they essentially reflect the anisotropic
structure of spacetime, hence they are NOT locally Euclidean, hence NOT manifolds.
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For the sake of simplicity, in what follows we will describe only the “metrisable”
version of some newly introduced category X . Super-additivity does not arise only
in Relativity. This notion may be encountered also in the theory of classical Banach
spaces (Lp spaces, and C (S)), and also in game theory. Furthermore, whenever
someone divides the proof of a “heavy” theorem into a (finite) sequence of easier-to-
prove lemmas, then super-additivity is being used. From this viewpoint, the objects of
X are triples (W,K, d), where (W,K) is an ordered set, and d : K → [0,∞) satisfies:

a) d (x, y) = 0 if x = y and
b) x ≤ y and y ≤ z imply d (x, y)+ d (y, z) ≤ d (x, z), i.e. d is super-additive on K.
If x is an element of W and ε > 0, then every subset A of W satisfying d (x, a) ≥ ε,

for all a in A will be called a slice of future of x. A function f : (W1,K1, d1) →
(W2,K2, d2) will be called inflationnary if for each x in W1 and A slice of future of x,
f (A) is a slice of future of f (x) in W2. The inflationnary functions are the morphisms
of X. In fact, X is much more bigger than this: it contains all the classical Banach
spaces, sets of ordinals, and lexicographically ordered spaces.

Maybe one could use, alternatively, something like sheaf theory? I.e., maybe one
could define a “manifold” as a pair (Y, F ), where Y is in Ob (X) and F is a “sheaf”
of morphisms over Y where (Y, F ), “locally” looks like Minkowski spacetime? We are
wondering if this idea could be combined with that one of considering the category
of manifolds with pseudo-Riemannian metric, the morphisms being metric preserving
maps), but, unfortunately, “locally” is not a natural concept in X.

2.5 In order to explain what’s wrong with Man from the relativistic viewpoint,
one cannot resist to the temptation of raising the following

METACONJECTURE. One cannot define, using the formal language of Man,
a subcategory C of Man with the following properties:

1) if Y , Z are in Ob (C), then C (Y,Z) is nonempty;
2) for each d > 1 there exists Md in Ob(C) such that Isom (Md) is isomorphic to

the special Lorentz group of the spacetime R × R
d−1;

3) C has direct products;
4) R belongs to Ob (C).
Here are a few miscellaneous open questions:
Let M be a smooth n-dimensional manifold and let Diff (M) denote the collection

of all diffeomorphisms of M .
(1) Is there a topology τ on the set M such that the homeomorphism group of

(M, τ) is exactly (or, at least, isomorphic to) Diff (M)? In other words (alternatively,
“vaguely speaking”), can a new (exotic) topology on M incorporate (alternatively,
contain intrinsically) its (old) differential structure?

(2) If M is connected, is Diff (M) a simple group? If S is connected, is
Autohomeo(S) a simple group?

(3) What are the right topologies for Diff (M) and Autohomeo(S)? For
Autohomeo(S), our wild guess would be to take the compact open topology on the
space C (S, S), of continuous maps S → S and give Autohomeo(S) the relative topol-
ogy from C (S, S)×C (S, S), after identifying an autohomeomorphism f with the pair
(f, g), where g is the inverse of f .

(4) Are the aforementioned “right” topologies on Diff (M) and Autohomeo(S)
determined by the group structures?

(5) Doesn’t Diff (M) admit a structure of Frechet manifold with some kind of dif-
ferentiable structure of its own? (let us remark that J.A. Leslie, in [7], considered the
differential structure on the group of diffeomorphism of compact connected manifold
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M . The conclusion of that paper is as follows: Diff (M) is a locally Frechet C∞

group. The author used the notion of quasi-topological space which has been elabo-
rately studied by A. Bastiani). Does Autohomeo(S) ever admit such a structure?

Unfortunately, there is no “Local Inversion Theorem” in categories known until
now.

3. Super-additive normed spaces

3.1. Super-additivity generated by probability measures [9]. Let g0 : I →
R

+, be a strictly positive potential which belongs to BV and admits a conformal
measure m. By L0 we designate the usual Perron-Frobenius operator (or transfer
operator) associated to the dynamic and g0. The operator L0 acts on L1(m) and BV :

L0f(x) =
∑

Ty=x

f(y)g0(y).

Here, an useful tool is the transfer operator L defined by

L(f) = L0(f 1X0).

We can now define the functional

∧(f) := lim
n→∞ inf

x∈Dn

Lnf(x)
Ln1(x) .

The relevant properties of the above functional are the following:
• ∧(1) = 1;
• ∧ is continuous in the L∞ norm;
• f ≥ g implies ∧(f) ≥ ∧(g) (monotonicity);
• ∧(λf) = λ ∧ (f) (homogeneity);
• ∧(f + g) ≥ ∧(f)+ ∧(g) (super-additivity);
• (∀) b ∈ R, ∧(f + b) = ∧(f) + b;
• if for p ⊂ I there exists n ∈ N such that p ∩ Xn = φ, then ∧(1p) = 0.

3.2. Trace functions and super-additivity (according to [8]). The convexity
of the function x → Tr(f(x)), when f is a convex function of one variable and x is a
self-adjoint operator, was known to von Neumann, cf. J. von Neumann [14, p.390].
An early proof for f(x) = exp(x) can be found, e.g. in D. Ruelle [16].

More generally, we replace the trace Tr in a Hilbert space setting by τ , a densely
defined, lower semi-continuous trace on a C∗- algebra A; i.e. a functional defined on
the set A+ of positive elements with values in [0,∞], such that τ(x∗x) = τ(xx∗) for
all x in A.

Then, in particular, we can easily see that

(
τ

(
(x + y)1/p

))p

≥ (
τ

(
x1/p

))p
+

(
τ

(
y1/p

))p
,

for all x, y in A+, so that the Schatten p-norms are super-additive for p < 1.
As a consequence, the Kadison-Fuglede determinant ∆ associated with a tracial

state τ on a C∗- algebra A:

∆(x) = exp(τ(log |x|)) whenever x ∈ A−1

is a concave map on the set of positive invertible elements.
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3.3. Bayesian theory and super-additivity (see [3]). Quasi-Bayesian theory,
like Bayesian theory, assumes the existence of a utility function. A decision is a
function f that assigns a utility value for each possible state of the world. The key
problem is how to compare decisions. A preference pattern must be defined so that
the decision-maker can compare functions.

The axioms below are valid for a preference relation ≥ defined for pairs of functions.
The statement f � g means f is at least as preferred as g. To simplify notation, define
the strict preference relation  by: f  g if and only if f � g and not g � f .

Giron and Rios’ axioms are:
1. If f � g and g � h then f � h. (transitivity)
2. If f > g then f  g. (dominance)
3. For λ ∈ (0, 1], f � g if and only if λf + (1 − λ)h � λg + (1 − λ)h. (convex

combination)
4. If fi → f and g � fi � h for all i, then g � f � h. (convergence)
These axioms are similar to axioms proposed by Walley. Actually, Walley indicates

that his axioms are “apparently equivalent” to Giron and Rios’ axioms. The following
theorem proves the equivalence of the Giron-Rios and Walley systems.

Theorem 3.1. Giron and Rios’ axioms are equivalent to the following axioms:
1. If f = −1 and g = 0, it is not the case that f � g. (sure gain)
2. If f � g and g � h then f � h. (transitivity)
3. If f ≥ g then f � g. (monotonicity)
4. If f � g and λ > 0 then λf � λg. (positive homogeneity)
5. If f + λ � g for all λ > 0 then f � g. (continuity)
6. f � g if and only if f − g � 0. (cancellation)

To investigate the consequences of the axioms, define a functional E [f ], called the
lower expectation of function f :

E [f ] = max
µ

[f � µ] .

Theorem 3.2. Lower expectations have the following properties:
1. E [f ] ≥ inf f .
2. E [λf ] = λE [f ] for λ > 0. (positive homogeneity)
3. E [f + g] ≥ E [f ] + E [g]. (super-additivity)

The above mentioned three concepts of super-additivity arising from various math-
ematical fields lead us to introduce the following natural analogue of normed linear
spaces.

3.4. Definition.

Definition 3.1. Let L be a real linear space ordered by some cone K of positive
vectors.

The functional ‖·‖ : K → R
+ shall be named a super-additive norm if it satisfies

the following three axioms:
(1) ‖x‖ = 0 ⇐⇒ x = 0;
(2) ‖λ · x‖ = λ · ‖x‖, for all λ ∈ R

+ and x ∈ K;
(3) ‖x + y‖ ≥ ‖x‖ + ‖y‖ , for each x, y ∈ K.
The triplet (L,K, ‖·‖) will be called a super-additive normed space.
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In what follows, we will denote by SAN the category of super-additive normed
spaces, and by D (E,F ) the family of all inflationnary morphisms acting between
two super-additive normed spaces E and F . Recall that a (positive) linear operator
T from E to F is called inflationnary iff there is some a > 0 such that ‖Tx‖ ≥
a ‖x‖ (x ∈ E+) . In this case, we shall write T ∈ D (E,F ). Also, we shall denote
by Iso (E,F ) the family of all isotone (not necessarily linear) operators from E to
F . Conversely, for a detailed study of nonlinear contractions on spaces endowed with
indefinite metrics, one may take a look on [5].

4. The construction of super-additive differentiability

It is important to observe that a bilinear (or equivalently, quadratic) form can-
not be inflationnary (using the terminology of P.Taylor). Therefore, we are lead to
the following methodological principle, which we shall call, by analogy to complex
analysis, The Super-Additive Morera Principle (briefly, SAMP).

Theorem 4.1. (The Super-Additive Morera Principle) If E,F ∈ Ob (SAN) and T ∈
D (E,F ) is “differentiable” in any suitable sense, then T must be “C∞” (infinitely)
differentiable.

Obstructions arising when trying to define super-additive manifolds:
- the linear obstruction: a linear inflationnary operator acting between two SAN

spaces must be differentiable. But, if we try to define the differentiability along
the traditional lines, then the derivative of a linear operator would be constant
at each point, hence not inflationnary (recall that a inflationnary map is strictly
isotone). Therefore, a linear inflationnary operator will be differentiable, but not
of class “C1” , which is hard to imagine and, on the other hand, does not permit
us to define “C∞” manifolds.

- the dimensional obstruction: there is no natural number n = Dim (E) , with
E ∈ Ob (SAN), E finite-dimensional, such that

a) Dim (E) = Dim (F ) implies E is isomorphic to F .
b) Dim (E × F ) = Dim (E) + Dim (F ).
For, suppose that Dim (R) = s ∈ N. Let E = R

2, endowed with the super-additive
norm |(x, y)| = min {x, y} , x, y ≥ 0. Then, Dim (E) = 2s. Since R is linearly
ordered, and E is not, it follows that s > 0. Now, let d = Dim (Mink4) > 0. Then
Dim

(
Ed

)
= Dim

(
Mink2s

4

)
, and, consequently, Ed

≈ Mink2s
4 in the category SAN.

But Ed (= R
2d) is a lattice, and Mink2s

4 is not, contradiction.
Moreover, let us observe that, even on R

2, there are uncountable many non-
isomorphic super-additive structures generated by super-additive norms. Therefore,
the only naturally dimension of a SAN is its isomorphism type.

An useful hint: If E,F ∈ Ob (SAN), and T ∈ D (E,F ) then, if we want T to be
differentiable in any reasonable sense, we must impose

Ty − Tx ≥ L (y − x) (x < y)

for some L ∈ Ld (E,F ).
Of course, this is a necessary condition only.

Definition 4.1. Let E, F be two real linear spaces. A cone of nonlinear operators
(quickly, CNO) with respect to (E,F ) is a set C = {T : E → F} ⊂ FE with the
following four properties:

1) T, S ∈ C =⇒ T + S ∈ C.
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2) T ∈ C, λ > 0 =⇒ λT ∈ C.
3) constants ⊂ C.
4) (C − C) ∩ L (E,F ) = {0} .

(Note that C is not a cone in the classical sense, due to 3)).

Definition 4.2. Let X,Y be two real linear spaces. A nonlinear mapping T : X → Y
is said to have sub-linear growth (shortly, SLG) if it satisfies the following condition:

For each p ∈ Norm (Y ) there is q in Norm (X) and ω ∈ K such that

p (Tx) ≤ ω (q (x)) (x ∈ X) .

We shall denote by SLG (X,Y ) the above introduced class of mappings.

Example 4.1. Let X = Y = R
N . Then each asymptotically zero operator T : X → Y ,

i.e. satisfying

lim
‖x‖→∞

‖Tx‖
‖x‖ = 0,

where ‖·‖ denotes the Euclidean norm, belongs to SLG, due to the equivalence of all
finite-dimensional norms.

Example 4.2. In the case dim (X) = dim (Y ) = ∞ , where X,Y are two Banach
spaces, let y ∈ Y , y �= 0, α ∈ (0, 1) and define T : X → Y by

Tx = ‖x‖α
y.

Then it is easily shown that T belongs to SLG (X,Y ).

Remark 4.1. Warning ! There is no topology here; we use only the elementary
axioms of a norm (and a lot of norms!). In fact, a norm p can be non-topologically
viewed also as −q, with q super-additive and negative.

Remark 4.2. Another useful class (for our purposes) of nonlinear operators, which
can be defined without using norms, but is perhaps more restrictive than SLG, is the
following:

{T : E → F, (∃) α ∈ (0, 1) , f ∈ E∗
d and w ∈ F+ such that

Tu − Tv ≤ [1 + f (u − v)]α w wherever u, v ∈ X, v ≤ u}
where E,F ∈ Ob (SAN) .

But here we must demand on each super-additive normed space X that

−X is directed (X = X+ − X−)
−X∗

d is separating ( (∀) x ∈ X, x �= 0, ∃f ∈ X∗
d , f (x) �= 0)

Now, let E,F ∈ Ob (SAN).

Proposition 4.1. (The Splitting Scheme)
1. SLG (X,Y ) is a CNO.
2. (linear inflationnary) ◦ (SLG) = (SLG) .
3. (SLG) ◦ (linear inflationnary + SLG) = (SLG) .
4. A mapping T can be written in at most one way as (linear inflationnary)

+ (SLG).

Proof. The only nontrivial aspects are:

(SLG (E,F ) − SLG (E,F )) ∩ L (E,F ) = {0} , (2) and (3) .
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Let T, S ∈ SLG (E,F ) such that T − S = L ∈ L (E,F ) , L �= 0. Take x ∈ E with
Lx �= 0 and p ∈ Norm (F ). For each t > 0 we get

tp (Lx) ≤ p (T (tx)) + p (S (tx)) ≤ ω1 (tq1 (x)) + ω2 (tq2 (x)) ,

hence, after dividing by t and letting t → ∞,

p (Lx) ≤ 0,

contradiction.
Proof of 2. Let T ∈ SLG (E,F ) and L ∈ Ld (F,G) with E,F,G ∈ Ob (SAN) . Take
p ∈ Norm (G) and an arbitrary p∗ ∈ Norm (F ) . Define p∗∗ = p◦L+p∗ ∈ Norm (F ) .

Then there is q ∈ Norm (E) and ω ∈ K such that

p∗∗ (Tx) ≤ ω (q (x)) ,

and consequently p (LTx) ≤ ω (q (x)) , thus LT ∈ SLG (E,G) .
Proof of 3. Let T ∈ SLG (F,G) , L ∈ Ld (E,F ) and S ∈ SLG (E,F ), with E,F,G as
above. Put H = T (L + S) and let p ∈ Norm (G) .

Let p ∈ Norm (G). There are ω1 ∈ K and q ∈ Norm (F ) such that

p (Tx) ≤ ω1 (q (x)) (x ∈ F ) .

There also exist ω2 ∈ K and q∗ ∈ Norm (E) such that

q (Sx) ≤ ω2 (q∗ (x)) (x ∈ E) .

Then let us define q∗∗ ∈ Norm (E) ,

q∗∗ = q ◦ L + q∗.

Take t0 > 0 such that
ω2 (t) ≤ t (t ≥ t0) .

and define ω3 ∈ K expressed by

ω3(t) = ω1(t + ω2(t0)) (t ≥ 0) .

We obtain

p (Hx) ≤ ω1 (q (Lx + Sx)) ≤ ω1 (q (Lx) + ω2 (q∗ (x))) ≤
≤ ω1 (q (Lx) + q∗ (x) + ω2 (t0)) =
= ω3 (q∗∗ (x)) , (x ∈ E)

thus H ∈ SLG (E,G) .
The SAMP and The Splitting Scheme will be the two foundational pillars of

our construction of super-additive differentiability.
In what follows, E,F ∈ Ob (SAN). We define

D∞ (E,F ) = Ld (E,F ) + (SLG (E,F ) ∩ Iso (E,F )) .

If T ∈ D∞ (E,F ), T = L + U , with L ∈ Ld (E,F ) and U ∈ SLG (E,F ) , then we
introduce the “super-additive derivative” DT : E → FE , expressed by

(DT ) (x) = (p → Lx + Up) (x, p ∈ E) .

We shall use also the notation

(DT )p (x) = Lx + Up.

Let us observe that DT is affine and inflationnary, thus also “super-additively
differentiable”, i.e. there also exist D2T , D3T , ...
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Here is perhaps the most striking aspect of super-additivity. This concept has only
a separating role; it cannot analyze nonlinear structures (due probably to the simple
fact that the “tangent space” must be the same at each point, which in turn, is the
effect of denying locality).

Einstein stated this problem as follows: “But on one point we should, in my opinion,
absolutely hold fast: the real factual situation of system S1 is independent of what
is done with system S2, which is spatially separated from the former” (in Albert
Einstein, Philosopher Scientist, ed. P.A. Schilpp, Library of Living Philosophers,
Evanston, IL, 1949).

Theorem 4.2. Let T, S ∈ D∞ (E,F ) and λ > 0. Then we have:
1. D (λT ) = λDT.
2. D (T + S) = DT + DS.
3. For every p ∈ E,

D (TS)p = (DT )Sp
◦ (DS)p .

The proof is straightforward.

Example 4.3. Let f : R → R, f (x) = 2x + log (2 + |x|) sgn x. Then f ∈ D∞ (R,R)
and Df : R → R

R,

(Df)p (x) = 2x + log (2 + |p|) sgn p (x, p ∈ R) .
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