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Abstract. In this work, we obtain new inequalities of the Hermite-Hadamard type, using
generalized fractional integrals. The results obtained contain, as particular cases, several of

those reported in the literature.
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1. Introduction

Perhaps one of the most productive mathematical ideas lately, due to its variety of
uses and interrelationships with different applications, is that of the convex function.

Definition 1.1. A function f : I → R is said to be convex on interval I ⊂ R, if the
inequality f(tx+ (1− t)y) ≤ t(x) + (1− t)f(y), for x, y ∈ I is fulfilled.

We say that f is concave if −f is convex.
The consequent extensions of this concept, which have appeared lately, have trans-

formed it into an extremely complex concept. To reflect on this, we suggest that the
user read the work [21], where a fairly complete classification of most of the known
definitions is made.

On the other hand, the average value of an integrable function over a compact inter-

val [a, b] is known to all, which is given by the value 1
b−a

∫ b
a
f(x)dx, since it turns out

that between of the many important inequalities that involve convex functions, there

is one in particular that allows us to limit this mean value f
(
a+b

2

)
≤ 1

b−a
∫ b
a
f(x)dx ≤

f(a)+f(b)
2 , with a, b ∈ I, the inverse inequalities are maintained if the function f is

concave in said interval. This seminal result was proved at [11, 12] and is known as
the Hermite-Hadamard inequality (see [5], [7] and [16] for details). Since its discovery,
this inequality has received considerable attention, some extensions and generaliza-
tions of this inequality, with different fractional and generalized operators and using
different convexity operators, can be consulted in [3, 4, 8, 9, 15, 19, 20, 21, 22].

Definition 1.2. ϕ : I ⊆ R→ R is a quasi-convex function if for every a1, a2 ∈ I with
a1 < a2, and τ ∈ [0, 1], we have

ϕ
(
a1τ + a2(1− τ)

)
≤ max{ϕ(a1), ϕ(a2)}. (1)
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It is known that fractional calculus, that is, calculus with derivatives and integrals
of non-integer order, despite being contemporary with Ordinary Calculus, has been
gaining attention in the last 40 years and has become one of the most active areas in
Mathematics today. In particular, this has led to the emergence of new comprehensive
operators which are natural generalizations of the classical Riemann-Liouville frac-
tional integral. In a previous work (see [10]) the authors define a generalized operator
containing, as particular cases, several of the known fractional integral operators.

Definition 1.3. The k-generalized fractional Riemann-Liouville integral of order α
with α ∈ R, and s 6= −1 of an integrable function ϕ(u) on [0,∞), are given as follows
(right and left, respectively):

sJ
α
k

F,a+1
ϕ(u) =

1

kΓk(α)

∫ u

a1

F (τ, s)ϕ(τ)dτ

[F(u, τ)]
1−αk

, (2)

sJ
α
k

F,a−2
ϕ(u) =

1

kΓk(α)

∫ a2

u

F (τ, s)ϕ(τ)dτ

[F(τ, u)]
1−αk

, (3)

with F (τ, 0) = 1, F(u, τ) =
∫ u
τ
F (θ, s)dθ and F(τ, u) =

∫ τ
u
F (θ, s)dθ.

With the functions Γ (see [23, 24, 25, 27, 28]) and Γk defined by (cf. [5]):

Γ(z) =

∫ ∞
0

τz−1e−τ dτ, <(z) > 0, (4)

Γk(z) =

∫ ∞
0

τz−1e−τ
k/k dτ, k > 0. (5)

It is clear that if k → 1 we have Γk(z) → Γ(z), Γk(z) = (k)
z
k−1

Γ
(
z
k

)
and Γk(z +

k) = zΓk(z). As well, we define the k-beta function as follows

Bk(u, v) =
1

k

∫ 1

0

τ
u
k−1(1− τ)

v
k−1dτ,

notice that Bk(u, v) = 1
kB(uk ,

v
k ) and Bk(u, v) = Γk(u)Γk(v)

Γk(u+v) .

The main purpose of this paper, using the generalized fractional integral operator
of the Riemann- Liouville type from Definition 1.3, is to establish several integral
inequalities of Hermite-Hadamard type for quasi-convex functions, as we shall see,
our results boil down to several known theorems and results.

2. Main results

Let ϕ : Io → R be a given function, where a1, a2 ∈ Io with 0 < a1 < a2 < ∞. We

assume that ϕ ∈ L∞[a1, a2] such that sJ
α
k

F,a+1
ϕ(u) and sJ

α
k

F,a−2
ϕ(u) are well defined.

We define

ϕ̃(u) := ϕ(a1 + a2 − u), u ∈ [a1, a2]

and

G(u) := ϕ(u) + ϕ̃(u), u ∈ [a1, a2].

Notice that by using the change of variables w = τ−a1
u−a1 and v = a2−τ

a2−u , we have that

(2) and (3) becomes in
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sJ
α
k

F,a+1
ϕ(u) =

(u− a1)

kΓk(α)

∫ 1

0

F (wu+ a1(1− w), s)ϕ
(
wu+ a1(1− w)

)
dw[

F
(
u,wu+ a1(1− w)

)]1−αk , (6)

where u > a1,

sJ
α
k

F,a−2
ϕ(u) =

(a2 − u)

kΓk(α)

∫ 1

0

F (vu+ a2(1− v), s)ϕ
(
vu+ a2(1− v)

)
dv[

F
(
u, vu+ a2(1− v)

)]1−αk , (7)

where u < a2.
Applying the identity ϕ̃

(
(1− w)a1 + a2w

)
= ϕ(a1w + (1− w)a2), from (6) we get

sJ
α
k

F,a+1
ϕ̃(a2) =

(a2 − a1)

kΓk(α)

∫ 1

0

F (wa2 + (1− w)a1, s)ϕ(a1w + (1− w)a2)dw

[F
(
a2, wa2 + a1(1− w)

)
]1−

α
k

(8)

and

sJ
α
k

F,a+1
ϕ(a2) =

(a2 − a1)

kΓk(α)

∫ 1

0

F (wa2 + (1− w)a1, s)ϕ((1− w)a1 + a2w)dw

[F
(
a2, wa2 + a1(1− w)

)
]1−

α
k

. (9)

If in (7) we use the identity ϕ̃
(
(1− v)a2 + a1v

)
= ϕ(a2v + (1− v)a1), we deduce

sJ
α
k

F,a−2
ϕ̃(a1) =

(a2 − a1)

kΓk(α)

∫ 1

0

F (va1 + (1− v)a2, s)ϕ(a1v + (1− v)a2)dv

[F
(
a1, va1 + a2(1− v)

)
]1−

α
k

(10)

and

sJ
α
k

F,a−2
ϕ(a1) =

(a2 − a1)

kΓk(α)

∫ 1

0

F (va1 + (1− v)a2, s)ϕ((1− v)a2 + a1v)dv

[F
(
a1, va1 + a2(1− v)

)
]1−

α
k

. (11)

Now we are in a position to propose our first result.

Theorem 2.1. Let ϕ : I → R be a positive function, where [a1, a2] ⊂ Io with 0 <
a1 < a2 < ∞. If we also consider ϕ ∈ L∞[a1, a2] and quasi-convex function on
[a1, a2], then we get

Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)] ≤ max{ϕ(a1), ϕ(a2)}. (12)

Proof. For w ∈ [0, 1], let η1 = a1w + (1 − w)a2, η2 = (1 − w)a1 + a2w and m =
max{ϕ(a1), ϕ(a2)}. As ϕ is quasi-convex on [a1, a2], we get

ϕ(η1), ϕ(η2) ≤ m.

That is,

ϕ(a1w + (1− w)a2) + ϕ((1− w)a1 + a2w) ≤ 2m. (13)

Now, multiplying both sides of (13) by

(a2 − a1)

kΓk(α)

F (wa2 + (1− w)a1, s)

[F
(
a2, wa2 + a1(1− w)

)
]1−

α
k
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and integrating over (0, 1) with respect to w, we have

(a2 − a1)

kΓk(α)

∫ 1

0

F (wa2 + (1− w)a1, s)ϕ(a1w + (1− w)a2)dw

[F
(
a2, wa2 + a1(1− w)

)
]1−

α
k

+
(a2 − a1)

kΓk(α)

∫ 1

0

F (wa2 + (1− w)a1, s)ϕ((1− w)a1 + a2w)dw

[F
(
a2, wa2 + a1(1− w)

)
]1−

α
k

≤ 2m(a2 − a1)

kΓk(α)

∫ 1

0

F (wa2 + (1− w)a1, s)dw

[F
(
a2, wa2 + a1(1− w)

)
]1−

α
k

.

Thus, from the equalities (8), (9) and∫ 1

0

F (wa2 + (1− w)a1, s)dw

[F
(
a2, wa2 + a1(1− w)

)
]1−

α
k

=
k[F(a2, a1)]

α
k

α(a2 − a1)
, (14)

we obtain

sJ
α
k

F,a+1
ϕ̃(a2) + sJ

α
k

F,a+1
ϕ(a2) ≤ 2m[F(a2, a1)]

α
k

Γk(α+ k)
, (15)

which implies that

sJ
α
k

F,a+1
G(a2) ≤ 2m[F(a2, a1)]

α
k

Γk(α+ k)
. (16)

Analogously, multiplying both sides of (13) by

(a2 − a1)

kΓk(α)

F (wa1 + a2(1− w), s)

[F
(
wa1 + a2(1− w), a1

)
]1−

α
k

,

integrating over (0, 1) with respect to w, and from the equalities (10), (11), (14), we
also have

sJ
α
k

F,a−2
G(a1) ≤ 2m[F(a2, a1)]

α
k

Γk(α+ k)
. (17)

Finally, adding the inequalities (16) and (17), we get

sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1) ≤ 4m[F(a2, a1)]

α
k

Γk(α+ k)
.

From the above inequality we deduce the result of the theorem. �

Remark 2.1. If we choose F ≡ 1 and α = k = 1 in the previous result, we obtain
Theorem 3.3 of [6]. If we only take F ≡ 1 then the previously proved result contains
as a particular case Lemma 3 of [13].

The proof of the following result is found in [9] and it will be useful hereafter.

Lemma 2.2. If ϕ is a differentiable function on Io such that ϕ′ ∈ L[a1, a2], then we
have

ϕ(a1) + ϕ(a2)

2
− Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)]

=
(a2 − a1)

4[F(a2, a1)]
α
k

∫ 1

0

χα,s(τ)ϕ′(τa1 + (1− τ)a2)dτ, (18)
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where

χα,s(τ) = [F(τa1 + (1− τ)a2, a1)]
α
k − [F(τa2 + (1− τ)a1, a1)]

α
k

+ [F(a2, τa2 + (1− τ)a1)]
α
k − [F(a2, τa1 + (1− τ)a2)]

α
k .

Remark 2.2. If in this Lemma we put F (τ, s) = τs, we have [F+(u, τ)]
1−αk =[

us+1−τs+1

s+1

]1−αk
, so the above becomes Theorem 2.1 of [1].

Lemma 2.3. With the hypotheses of the Lemma 2.2, we obtain

∫ 1

0

|χα,s(τ)|dτ =
1

a2 − a1
[I1 + I2 + I3 + I4] , (19)

where

I1 =

∫ a2

a1+a2
2

[F(w, a1)]
α
k dw −

∫ a1+a2
2

a1

[F(w, a1)]
α
k dw,

I2 =

∫ a2

a1+a2
2

[F(a2, a1 + a2 − w)]
α
k dw −

∫ a1+a2
2

a1

[F(a2, a1 + a2 − w)]
α
k dw,

I3 =

∫ a1+a2
2

a1

[F(a2, w)]
α
k dw −

∫ a2

a1+a2
2

[F(a2, w)]
α
k dw,

I4 =

∫ a1+a2
2

a1

[F(a2 + a1 − w, a1)]
α
k dw −

∫ a2

a1+a2
2

[F(a2 + a1 − w, a1)]
α
k dw.

Proof. If we make w = a1τ + (1− τ)a2, we get∫ 1

0

|χα,s(τ)|dτ =
1

a2 − a1

∫ a2

a1

|ρ(w)|dw, (20)

where

ρ(w) = [F(w, a1)]
α
k − [F(a2 + a1 − w, a1)]

α
k + [F(a2, a2 + a1 − w)]

α
k − [F(a2, w)]

α
k .

We observe that ρ is non-decreasing function on [a1, a2]. Thus, we have ρ(a1) < 0
and ρ

(
a1+a2

2

)
= 0. Therefore , we deduce that{

ρ(w) ≤ 0 if a1 ≤ w ≤ a1+a2
2 ,

ρ(w) > 0 if a1+a2
2 < w ≤ a2.

Thus, we have ∫ a2

a1

|ρ(w)|dw =

∫ a2

a1+a2
2

ρ(w)dw −
∫ a1+a2

2

a1

ρ(w)dw. (21)

From (20) and (21), we obtain (19). �

Remark 2.3. This result contains as a particular case Lemma 2 of [18].
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Theorem 2.4. If ϕ is a differentiable function on Io such that ϕ′ ∈ L[a1, a2] and
|ϕ′| is quasi-convex on [a1, a2], then∣∣∣∣ϕ(a1) + ϕ(a2)

2
− Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)]

∣∣∣∣
≤ I1 + I2 + I3 + I4

4[F(a2, a1)]
α
k

max{|ϕ′(a1)|, |ϕ′(a2)|}, (22)

where I1, I2, I3 and I4 were defined in the Lemma 2.3.

Proof. As |ϕ′| is quasi-convex on [a1, a2], for all τ ∈ [0, 1], we get

|ϕ′(τa1 + (1− τ)a2)| ≤ max{|ϕ′(a1)|, |ϕ′(a2)|}.

Thus, by virtue of Lemmas 2.2 and 2.3, we have

∣∣∣∣ϕ(a1) + ϕ(a2)

2
− Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)]

∣∣∣∣
≤ (a2 − a1)

4[F(a2, a1)]
α
k

∫ 1

0

|χα,s(τ)||ϕ′(τa1 + (1− τ)a2)|dτ

≤ (a2 − a1)

4[F(a2, a1)]
α
k

(
max{|ϕ′(a1)|, |ϕ′(a2)|})|dτ

)∫ 1

0

|χα,s(τ)|dτ

≤ I1 + I2 + I3 + I4
4[F(a2, a1)]

α
k

max{|ϕ′(a1)|, |ϕ′(a2)|}. (23)

�

Remark 2.4. If we choose F ≡ 1 and α = k = 1 in the previous result, we obtain
Theorem 3.3 of [6]. If we only take F ≡ 1 then the previously proved result contains
as a particular case Lemma 3 of [13].

Theorem 2.5. If ϕ is a differentiable function on Io such that ϕ′ ∈ L[a1, a2] and
|ϕ′|q is quasi-convex on [a1, a2], then∣∣∣∣ϕ(a1) + ϕ(a2)

2
− Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)]

∣∣∣∣
≤ a2 − a1

4[F(a2, a1)]
α
k

(∫ 1

0

|χα,s(τ)|pdτ
) 1
p
(

max{|ϕ′(a1)|q, |ϕ′(a2)|q}
) 1
q

. (24)

where 1
p + 1

q = 1.

Proof. For τ ∈ [0, 1], since |ϕ′|q is quasi-convex on [a1, a2], we obtain

|ϕ′(τa1 + (1− τ)a2)|q ≤ max{|ϕ′(a1)|q, |ϕ′(a2)|q}. (25)

The Lemma 2.2, Holder’s inequality and the inequality (25), implies that
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∣∣∣∣ϕ(a1) + ϕ(a2)

2
− Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)]

∣∣∣∣
≤ a2 − a1

4[F(a2, a1)]
α
k

∫ 1

0

|χα,s(τ)||ϕ′(τa1 + (1− τ)a2)|dτ

≤ a2 − a1

4[F(a2, a1)]
α
k

(∫ 1

0

|χα,s(τ)|pdτ
) 1
p
(∫ 1

0

|ϕ′(τa1 + (1− τ)a2)|qdτ
) 1
q

≤ a2 − a1

4[F(a2, a1)]
α
k

(∫ 1

0

|χα,s(τ)|pdτ
) 1
p
(∫ 1

0

max{|ϕ′(a1)|q, |ϕ′(a2)|q}dτ
) 1
q

≤ a2 − a1

4[F(a2, a1)]
α
k

(∫ 1

0

|χα,s(τ)|pdτ
) 1
p
(

max{|ϕ′(a1)|q, |ϕ′(a2)|q}
) 1
q

. (26)

�

Remark 2.5. Under appropriate choices of F , and therefore of F, we have Theorem
1 of [14], Theorem 4 of [13] and Theorem 8 of [18].

Theorem 2.6. If ϕ is a differentiable function on Io such that ϕ′ ∈ L[a1, a2] and
|ϕ′|q is quasi-convex on [a1, a2], then∣∣∣∣ϕ(a1) + ϕ(a2)

2
− Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)]

∣∣∣∣
≤ I1 + I2 + I3 + I4

4[F(a2, a1)]
α
k

(
max{|ϕ′(a1)|q, |ϕ′(a2)|q}

) 1
q

. (27)

where 1
p + 1

q = 1 and I1, I2, I3 and I4 were defined in the Lemma 2.3.

Proof. Using the Lemmas 2.2 and 2.3, the Holder’s inequality and the inequality (25),
we deduce that∣∣∣∣ϕ(a1) + ϕ(a2)

2
− Γk(α+ k)

4[F(a2, a1)]
α
k

[ sJ
α
k

F,a+1
G(a2) + sJ

α
k

F,a−2
G(a1)]

∣∣∣∣
≤ a2 − a1

4[F(a2, a1)]
α
k

∫ 1

0

|χα,s(τ)|
1
p |ϕ′(τa1 + (1− τ)a2)||χα,s(τ)|

1
q dτ

≤ a2 − a1

4[F(a2, a1)]
α
k

(∫ 1

0

|χα,s(τ)|dτ
) 1
p
(∫ 1

0

|ϕ′(τa1 + (1− τ)a2)|q|χα,s(τ)|dτ
) 1
q

≤ a2 − a1

4[F(a2, a1)]
α
k

(∫ 1

0

|χα,s(τ)|pdτ
) 1
p
(

max{|ϕ′(a1)|q, |ϕ′(a2)|q}
∫ 1

0

|χα,s(τ)|dτ
) 1
q

≤ a2 − a1

4[F(a2, a1)]
α
k

(∫ 1

0

|χα,s(τ)|pdτ
)(

max{|ϕ′(a1)|q, |ϕ′(a2)|q}
) 1
q

≤ I1 + I2 + I3 + I4
4[F(a2, a1)]

α
k

(
max{|ϕ′(a1)|q, |ϕ′(a2)|q}

) 1
q

.

(28)

�
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Remark 2.6. As before, it is easy to see that this result contains as particular cases
Theorem 2 of [2], Theorem 6 of [13] and Theorem 10 of [18].

3. Conclusions

In this work we obtained several inequalities of the Hermite-Hadamard type for quasi-
convex function. The results achieved in this paper generalize [18], from (k, s)-
Riemann-Liouville fractional integrals to a generalized fractional integral operator,
which contain, for a proper choice of kernel F , several well-known integral operators
reported in the literature.

By other hand, these generalized results of the Hermite-Hadamard inequality for
the quasi-convex function through generalized fractional integrals, are a tool in ob-
taining various results of integral inequalities and some applications are also presented
in the fields of approximation theory, optimization theory and analysis, among others,
are a tool in obtaining various results of integral inequalities and some applications are
also presented in the fields of approximation theory, optimization theory and analysis,
among others.
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[3] M.A. Ali, J.E. Nápoles, A. Kashuri, and Z. Zhang, Fractional non conformable Hermite-

Hadamard inequalities for generalized φ-convex functions, Fasciculi Mathematici 64 (2020),

5–16.
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Zainúm, Monteŕıa, Colombia
E-mail address: edgardomath@gmail.com


	1. Introduction
	2. Main results
	3. Conclusions
	References

