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Pattern recognition based on multiple attribute decision
making in intuitionistic fuzzy environment

Ion Iancu

Abstract. In this paper we adapt an algorithm from the multiple attribute decision making
field in order to be used in pattern recognition, working with intuitionistic fuzzy sets and

intuitionistic fuzzy multi sets. Our method is implemented in two versions: using the score

matrix (that is characteristic of decision making problems) and using a similarity measure (that
is characteristic of pattern recognition problems). Firstly, the method is built to work with

intuitionistic fuzzy sets and after it is extended for intuitionistic fuzzy multi sets. Experimental

results demonstrate the superiority of the second versions in pattern recognition problems. For
each example we compare our results with those given by other measures whose accuracy has

been validated by the respective examples and we conclude that our method can be successfully
used in pattern recognition instead of some specific methods in this area.
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1. Introduction

Intuitionistic fuzzy sets (IFSs) have been proposed by Atanassov ([3], [4], [5]) as
a generalization of the traditional fuzzy sets introduced by Zadeh in 1965 ([42]).
The main advantage of IFSs is the property to incorporate the uncertainty of the
information. The IFSs offer a new possibility to represent imperfect knowledge and,
therefore, to describe many real problems in a more adequate way. Such problems
appear when we face with human opinions involving two or more answers of the type:
Yes, No, I do not know, I’m not sure, etc.

Pattern recognition under intuitionistic fuzzy sets environment had been applied
to many areas as data analysis, artificial intelligence, and decision making problems.
Distance and similarity measures between intuitionistic fuzzy sets play an important
role in pattern recognition problems ([9], [24],[25],[26],[41]).

Another important application of IFSs is multiple attribute decision making (MADM).
Chen and Tan ([8]) introduced a score function and utilised it and the minimum and
maximum operations to develop a technique for handling MADM problem based on
IFSs. Another technique for handling MADM problems under complete weight infor-
mation were developed by Hong and Choi ([13]).

Atanassov et al. ([6]) provided a tool to solve the multi-person multi-attribute
decision making problems in which the attribute weights are given as exact numerical
values and the alternative score is expressed in intuitionistic fuzzy numbers. Xu and
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Yager ([36]) developed some geometric aggregation operators and gave an application
of these operators to MADM based on IFSs.

All the above approaches based on the intuitionistic fuzzy information only consider
the situations where the information about attribute weights is completely known.
However, in some cases, this information may be completely unknown ([35]). This
problem is solved by Xu and Hu ([37]) by development of some entropy-based proce-
dures.

In order to solve MADM problems various types of fuzzy sets can be used: interval
intuitionistic fuzzy sets ([23]), interval type-2 fuzzy sets ([12]) , interval intuitionistic
trapezoidal fuzzy numbers ([15]) , hesitant fuzzy sets ([40]).

In this paper we change and adapt the technique used by Xu and Hu ([37]) in
order to be used in pattern recognition for both IFSs and intuitionistic fuzzy multisets
(IFMSs). In this way we show that the MADM technique is of a general nature and
can substitute other methods commonly used in applications other than decisions
making. The considered numerical examples will demonstrate the superiority of our
proposed technique compared to that of Xu and Hu ([37]) if it is used in pattern
recognition.

Further, this paper is organized as follows. In the second section we present the ba-
sic concepts of intuitionistic fuzzy sets and intuitionistic fuzzy multisets, an intuition-
istic fuzzy similarity measure and an entropy based procedure for decision making; all
these notions are used in the next sections. In Section 3 we modify the procedure for
decision making in order to be used, successfully, in pattern recognition, both IFSs
as well as IFMSs. The Section 4 is devoted to numerical experiments; we compare
the results given by our procedure with those obtained by standard procedures. The
conclusions are discussed in the last section.

2. Preliminary results

2.1. Intuitionistic fuzzy sets. The notion of intuitionistic fuzzy set is defined ([3])
as follows:

Definition 2.1. An IFS A in X is defined as A = {(x, µA(x), νA(x))/x ∈ X} where
µA, νA : X → [0, 1] satisfy the condition

0 ≤ µA(x) + νA(x) ≤ 1 ∀x ∈ X.

The numbers µA(x) and νA(x) denote the degree of membership and non-membership
of x to A, respectively. Obviously, a fuzzy set A corresponds to the following IFS
A = {(x, µA(x), 1− µA(x))/x ∈ X}. For each IFS A in X,

πA(x) = 1− µA(x)− νA(x)

is called the intuitionistic fuzzy index of x in A; it is a hesitancy degree of x to A
([3],[4],[5]) and satisfies the inequality

0 ≤ πA(x) ≤ 1 ∀x ∈ X.

Therefore, if we want to describe an intuitionistic fuzzy set we must use any two
functions from the triplet: (membership function, non-membership function, intu-
itionistic fuzzy index).
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Definition 2.2. A function T : [0, 1]2 → [0, 1] is a t-norm iff it is commutative,
associative, non-decreasing and T (x, 1) = x ∀x ∈ [0, 1].

Definition 2.3. A function S : [0, 1]2 → [0, 1] is a t-conorm iff it is commutative,
associative, non-decreasing and S(x, 0) = x ∀x ∈ [0, 1].

Definition 2.4. A function N : [0, 1]→ [0, 1] is a strong negation iff it is an involutive
and continuous decreasing function from [0, 1] to itself.

The relation between the t-norms, t-conorms and negations is given in the next
theorem.

Theorem 2.1. ([2]) If T is a t-norm and N is a strong negation then S(x, y) =
N(T (N(x), N(y))) is a t-conorm and reciprocally, T (x, y) = N(S(N(x), N(y))); namely
T and S are N -dual.

T-operators are used in order to define the generalized operations on intuitionistic
fuzzy sets ([11]):

Definition 2.5. For two intuitionistic fuzzy sets A and B in X, the generalized
intersection and union are defined as:

A ∩T,S B = {(x, T (µA(x), µB(x)), S(νA(x), νB(x)))/x ∈ X}

A ∪T,S B = {(x, S(µA(x), µB(x)), T (νA(x), νB(x)))/x ∈ X}
where T denotes a t-norm and S a t-conorm.

For a pair (T, S) of t-operators N -dual with respect to N(x) = 1−x, the generalized
intersection and union are intuitionistic fuzzy sets ([11]).

2.2. Intuitionistic fuzzy multisets. Consider a finite universal set X = {x1, x2,
..., xn}. A crisp multiset M of X is an expression such as any element of X can appear
more than once in M . For instance, M = {a, a, b, c, c, c} is a crisp multiset; anoter
notation is M = {2/a, 1/b, 3/c}.

Definition 2.6. ([38]) Let X be a nonempty set. A fuzzy multiset (FMS) A in X is
characterized by the count membership function MCA : X → Q, where Q is the set
of all crisp multisets in [0, 1]. Hence, for any x ∈ X, MCA(x) is a crisp multiset from
[0, 1]. A FMS A is given by

A = {(x, (µ1
A(x), ...., µn

A(x)))/x ∈ X}

where the membership sequence

(µ1
A(x), µ2

A(x), ...., µn
A(x))

satisfies the inequality

µ1
A(x) ≥ µ2

A(x) ≥ .... ≥ µn
A(x).

Definition 2.7. ([28]) An intuitionistic fuzzy multiset A in X is characterized by
two functions namely count membership function CMA and count non-membership
function CNA such that CMA, CNA : X → Q, where Q is the set of all crisp multisets
in [0, 1]. For any x ∈ X, the membership sequence denoted by

(µ1
A(x), µ2

A(x), ...., µn
A(x))
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is defined as a decreasingly ordered sequence of elements in CMA(x)

µ1
A(x) ≥ µ2

A(x) ≥ .... ≥ µn
A(x)

and the corresponding non-membership sequence of elements in CNA(x) is defined as

(ν1A(x), ν2A(x), ...., νnA(x))

such that 0 ≤ µi
A(x) + νiA(x) ≤ 1 for every x ∈ X and i ∈ {1, 2, ..., n}.

The membership sequence is arranged in decreasing order, but the corresponding
non-membership sequence may not be ordered.

Definition 2.8. Length of an element x in an IFMS A, denoted by L(x : A), is
defined as the cardinality of CMA(x) or CNA(x) for which 0 ≤ µi

A(x) + νiA(x) ≤ 1
that is L(x : A) = |CMA(x)| = |CNA(x)|.

We can make L(x : A) = L(x : B) by appending sufficient number of 0’s and 1’s
with the membership and non-membership values respectively.

2.3. Intuitionistic fuzzy similarity measures. An intuitionistic fuzzy similarity
measure S(A,B) serves to match the two IFSs A and B.

Definition 2.9. S(A,B) is said a similarity measure between IFSs if it satisfies the
following properties, for every IFSs A,B,C:

(P1) 0 ≤ S(A,B) ≤ 1
(P2) S(A,B) = 1 if and only if A = B
(P3) S(A,B) = S(B,A)
(P4) S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C) if A ⊆ B ⊆ C.

Various types of similarity measures can be find in the papers ([7],[9],[19],[24],[25],
[26],[41]). We will work with the similarity measure defined in [9].

Let x1 and x2 be two intuitionistic fuzzy values whose intervals are defined as
[µ(x1), 1−ν(x1)] and [µ(x2), 1−ν(x2)], respectively. The similarity measure M(x1, x2)
between x1 and x2 is defined as follows ([9])

M(x1, x2) = ur(x1, x2) ∗ms(x1, x2) + (1− ur(x1, x2)) ∗ hs(x1, x2)

where

ur(x1, x2) =
min(π(x1), π(x2)) + 1

max(π(x1), π(x2)) + 1
,

hs(x1, x2) = 1−max(|µ(x1)− µ(x2)|, |ν(x1)− ν(x2)|),

ms(x1, x2) = 1− |µ(x1)− µ(x2) + ν(x2)− ν(x1)|
2

.

Let

A = {(xi, µA(xi), νA(xi))/xi ∈ X, 1 ≤ i ≤ n}
and

B = {(xi, µB(xi), νB(xi))/xi ∈ X, 1 ≤ i ≤ n}
be two intuitionistic fuzzy sets in the universe X = {x1, x2, ..., xn}; the intuitionis-
tic fuzzy value of the element xi in the intuitionistic fuzzy set A is represented as
[µA(xi), 1− νA(xi)] and in the intuitionistic fuzzy set B is represented as [µB(xi), 1−
νB(xi)], where 1 ≤ i ≤ n.
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The similarity measure SCR(A,B) between the intuitionistic fuzzy sets A and B
is defined as ([9])

SCR(A,B) = (1−
(SM (A,B)− SM (A,B)

n )2

n
)
SM (A,B)

n
with

SM (A,B) =

n∑
i=1

M([µA(xi), 1− νA(xi)], [µB(xi), 1− νB(xi)]).

2.4. An entropy based procedure for decision making. Given an IFS A =
{(xi, µA(xi), νA(xi))} we denote ai = (µA(xi), νA(xi)); then s(ai) = µA(xi)−νA(xi) ∈
[0, 1] is called ([8]) the score of ai. We consider a decision making problem charac-
terized by: a finite set of alternatives A = {A1, A2, ...., An}, a finite set of attributes
G = {G1, G2, ...., Gm} and a weight vector

w = (w1, w2, ..., wm)T , wi ≥ 0,

m∑
i=1

wi = 1

of the attributes. Let R = (rij)m×n be an intuitionistic decision matrix, where
rij = (µij , νij), µij indicates the degree that the alternative Aj satisfies the attribute
Gi and νij indicates the degree that the alternative Aj does not satisfy the attribute
Gi. For the matrix R = (rij)m×n we consider its score matrix S = (sij)m×n, where
sij = s(rij), i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}.

Xu and Hu ([37]) presented an entropy-based procedure for multiple attribute
decision making in intuitionistic fuzzy environment; this procedure (called, later on,
MADM) involves the following steps.

Step1. The score matrix S = (sij)m×n is transformed into the normalized score

matrix S = (sij)m×n with

sij =
sij −min{sij/j ∈ {1, 2, ..., n}}

max{sij/j ∈ {1, 2, ..., n}} −min{sij/j ∈ {1, 2, ..., n}}

Step2. Normalize each line of S and get the normalized matrix Ŝ = (ŝij)m×n
where

ŝij =
sij∑n
j=1 sij

, i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}

Step3. Calculate the entropy associated with the attribute Gi

Ei = − 1

ln(n)

n∑
j=1

ŝij ln(ŝij), i ∈ {1, 2, ...,m}

Step4. The entropy weight with respect to the attribute Gi is computed as

wi =
1− Ei∑m
i=1Ei

, i ∈ {1, 2, ...,m}

Step5. The additive weighted averaging (AWA) operator ([18]) is used to fuse the
normalized scores sij into overall scores sj of the alternatives Aj

sj =

m∑
i=1

wisij , j ∈ {1, 2, ..., n}.
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The scores {sj} are used to order the alternatives Aj , j ∈ {1, 2, ..., n}.

3. Pattern recognition based on decision-making techniques

Firstly we adapt the previous procedure to be used in pattern recognition. We consider
a set of patterns A = {A1, A2, ..., An} representing intuitionistic fuzzy sets in X =
{x1, x2, ..., xm}; the sets A and X will be interpreted as the set of alternatives and
the set of attributes, respectively, from multiple attribute decision making methods.

Assume that a sample

B = {(x1, µB(x1), νB(x1)), ..., (xm, µB(xm), νB(xm))}

is given and we want to determine the pattern Ai, defined as

{(x1, µAi
(x1), νAi

(x1)), ..., (xm, µAi
(xm), νAi

(xm))},

which is similar to B. Generally, this problem is solved using distance or similarity
measures between two IFSs. Let R = (rij)m×n be the matrix defined by rij =
(µAj (xi), νAj (xi)). In the following we propose two possibility to use the MADM
procedure:

a) using the score matrix.
Each column from the matrix R is intersected with the sample that must be recog-
nized, obtaining a new matrix R′; then the matrix score S associated with the matrix
R′ is calculated. Further we use the steps 1 to 5 from MADM procedure and name
RSc-MADM this version (Recognition based on Score and MADM procedure).

b) using a similarity measure.
We note bi = (µB(xi), νB(xi)) and then the matrix score from MADM procedure is
computed as

sij = SM(rij , bi), 1 ≤ i ≤ m, 1 ≤ j ≤ n
where SM is a similarity measure; in our case the similarity measure is computed
between two IFSs rij and bi with cardinality 1 (named singleton intuitionistic fuzzy
sets). Further we use the steps 1 to 5 from MADM procedure and name RSm-MADM
this version (Recognition based on Similarity measure and MADM procedure).

In order to extend the RSc-MADM and RSm-MADM procedures for working with
intuitionistic fuzzy multi sets we need the following notions. For an intuitionistic fuzzy
set A = {(xi, µA(xi), νA(xi))/xi ∈ X} on the finite universe X = {x1, x2, ..., xn} we
denote Aj = (µj , νj), j ∈ {1, 2, ..., n} where µj = µA(xj) and νj = νA(xj). The set
of these singleton intuitionistic fuzzy sets is denoted by F . According to [8] and [13]
the score function s is s(Aj) = µj − νj and an accuracy function δ is defined by
δ(Aj) = µj + νj . Let A and B be two singleton intuitionistic fuzzy sets. According
to their scores and accuracies, the ranking order of A and B is stipulated as follows
([22]):

(1) if s(A) > s(B) then A is greater than B, denoted by A > B
(2) if s(A) < s(B) then A is smaller than B, denoted by A < B
(3) if s(A) = s(B) then

(3a) if δ(A) = δ(B) then A is equal to B, denoted by A = B
(3b) if δ(A) < δ(B) then A is smaller than B, denoted by A < B
(3c) if δ(A) > δ(B) then A is greater than B, denoted by A > B.
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Definition 3.1. ([22]) Let Aj = (µj , νj), j ∈ {1, 2, ..., n}, be singleton intuitionistic
fuzzy sets. A mapping fOw : Fn → F is called an intuitionistic fuzzy OWA operator
if it satisfies

fOw (A1, A2, ..., An) =

n∑
i=1

wiBi

where w = (w1, w2, ..., wn)T is a weight vector associated with the mapping fOw which
satisfies the normalized conditions:

wi ∈ [0, 1] and

n∑
i=1

wi = 1;

Bi = (µi, νi) is the i-th largest of the n intuitionistic fuzzy sets Aj , j ∈ {1, 2, ..., n}
which is determined through using some ranking method such as the above scoring
function ranking method.

Theorem 3.1. ([22]) Assumed that Aj = (µj , νj), with j ∈ {1, 2, ..., n} are singleton
intuitionistic fuzzy sets. Then, the aggregation result through using the intuitionistic
fuzzy OWA operator fOw is an intuitionistic fuzzy set and

fOw (A1, A2, ..., An) = (1−
n∏

i=1

(1− µi)
wi ,

n∏
i=1

νwi
i )

when Bi = (µi, νi) is the i-th largest of the n intuitionistic fuzzy sets Aj , j ∈ {1, 2, ..., n}
which is determined through using some method of intuitionistic fuzzy sets.

4. Numerical examples

In this section, using the similarity measure presented in the previous section, we apply
the two procedures RSc-MADM and RSm-MADM for a set of examples used in various
papers to test the correctness of some new similarity measures. For intersection we
use the relations from Definition 5 with T (x, y) = xy and S(x, y) = x+y−xy. In the
next tables we denote by Sc the score calculated in Step5 from the MADM procedure.

4.1. Numerical examples for intuitionistic fuzzy sets. To highlight the supe-
riority of our method we will test it on some examples that use other techniques.
Example 1 ([24]). Assume that there are three patterns denoted with IFSs in X =
{x1, x2, x3}. The three patterns are denoted as follows:

A1 = {(x1, 0.3, 0.3), (x2, 0.2, 0.2), (x3, 0.1, 0.1)},

A2 = {(x1, 0.2, 0.2), (x2, 0.2, 0.2), (x3, 0.2, 0.2)},
A3 = {(x1, 0.4, 0.4), (x2, 0.4, 0.4), (x3, 0.4, 0.4)}.

Assume that a sample

B = {(x1, 0.3, 0.3), (x2, 0.2, 0.2), (x3, 0.1, 0.1)}

is given. To interpret the notions of these patterns, we borrow the idea from [34].
Given three kinds of mineral fields, each is featured by the content of three minerals
and contains one kind of typical hybrid minerals. The three kinds of typical hybrid
minerals are represented by IFSs A1, A2, A3 in X, respectively.
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Given another kind of hybrid mineral B, to which field does this kind of mineral
B most probably belong to? From this data, it is evident that B = A1. The RSm-
MADM procedure recognizes that B and A1 are identical (the score is 1) while the
RSc-MADM procedure gives an incorrect result (see Table 1).

Table 1. Results for Example 1.

Sc(A1) Sc(A2) Sc(A3)
RSm-MADM 1.000 0.551 0.000
RSc-MADM 0.821 0.890 0.000

Example 2 ([24]). Assume that there are three patterns denoted with IFSs in X =
{x1, x2, x3}. The three patterns are denoted as follows:

A1 = {(x1, 0.1, 0.1), (x2, 0.5, 0.1), (x3, 0.1, 0.9)},

A2 = {(x1, 0.5, 0.5), (x2, 0.7, 0.3), (x3, 0.0, 0.8)},
A3 = {(x1, 0.7, 0.2), (x2, 0.1, 0.8), (x3, 0.4, 0.4)}.

Assume that the following sample is given

B = {(x1, 0.4, 0.4), (x2, 0.6, 0.2), (x3, 0.0, 0.8)}.
The RSm-MADM procedure gives the same result as in other works that have analyzed
this example ([16], [17], [24], [25]): B = A2 but the RSc-MADM procedure provides
an incorrect recognition (see Table 2).

Table 2. Results for Example 2.

Sc(A1) Sc(A2) Sc(A3)
RSm-MADM 0.865 0.999 0.000
RSc-MADM 0.358 0.321 0.747

Example 3 ([9], [21], [39]). Assume that there are three patterns denoted with IFSs
in X = {x1, x2, x3}. Three alternatives are denoted as follows:

A1 = {(x1, 1, 0.0), (x2, 0.8, 0.0), (x3, 0.7, 0.1)},

A2 = {(x1, 0.8, 0.1), (x2, 1, 0.0), (x3, 0.9, 0.0)},
A3 = {(x1, 0.6, 0.2), (x2, 0.8, 0.0), (x3, 1, 0.0)}.

Assume that a reference

B = {(x1, 0.5, 0.3), (x2, 0.6, 0.2), (x3, 0.8, 0.1)}
is given.

According to Table 3, the RSm-MADM procedure gives a valid result: B = A3,
that is the same as in the cited papers [9], [21], [39] while the RSc-MADM procedure
gives the greatest score for A2.

Table 3. Results for Example 3.

Sc(A1) Sc(A2) Sc(A3)
RSm-MADM 0.651 0.365 0.657
RSc-MADM 0.234 0.832 0.210
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Example 4 ([20], [25]). We consider the patterns P1, P2, P3 and the sample Q from
Refs. 20 and 25, where the membership and non-membership functions are given in
graphical form ([25]) or as mathematical expressions defined on interval [1, 3] ([20]).
Using these expressions we consider the patterns and the sample denoted with IFSs
in X = {x1, x2, x3, x4, x5, x6} with

x1 = 1.3, x2 = 1.6, x3 = 1.9, x4 = 2.2, x5 = 2.5, x6 = 2.8

The three patterns are denoted as

A1 = {(x1, 0.94, 0.0), (x2, 0.88, 0.0), (x3, 0.82, 0.0),

(x4, 0.78, 0.02), (x5, 0.75, 0.05), (x6, 0.72, 0.08)},
A2 = {(x1, 0.86, 0.07), (x2, 0.92, 0.04), (x3, 0.98, 0.01),

(x4, 0.98, 0.0), (x5, 0.95, 0.0), (x6, 0.92, 0.0)},
A3 = {(x1, 0.66, 0.14), (x2, 0.72, 0.08), (x3, 0.78, 0.02),

(x4, 0.84, 0.0), (x5, 0.9, 0.0), (x6, 0.96, 0.0)},
and the sample is represented as the IFS

B = {(x1, 0.53, 0.27), (x2, 0.56, 0.24), (x3, 0.59, 0.21),
(x4, 0.64, 0.18), (x5, 0.7, 0.15), (x6, 0.76, 0.12)}.

As it results from Table 4, the RSm-MADM procedure gives the same results as
in Julian et al. ([20]): the sample Q is similar with the pattern P3.

Table 4. Results for Example 4.

Sc(A1) Sc(A2) Sc(A3)
RSm-MADM 0.596 0.079 0.623
RSc-MADM 0.372 0.915 0.344

Example 5 - Medical recognition. In this example we applied our procedures
for cancer pattern recognition. We analyze this problem in the context of colorectal
cancer diagnosis as used in other papers ([27], [41], [43]). The patient, who is in the
follow-up program, may fall into any of the following states: metastasis, recurrence,
bad and well. If the state of a particular patient can be correctly decided, then the
state information can be utilized to choose an appropriate treatment. A physician
can subjectively judge the belongingness of each patient in the output classes.

Let A be an attributes set of a patient and the main 5 characters (the change
of habit and character of stool, bellyache, ictus sileus, chronic sileus, anemia) used
to quantify the attribute, respectively denoted x1, x2, x3, x4, x5. These characters
usually are language variables with values defined as IFSs.

Let a colorectal cancer patient whose 5 characters quantify as

B = {(x1, 0.3, 0.5), (x2, 0.4, 0.4), (x3, 0.6, 0.2), (x4, 0.5, 0.1), (x5, 0.9, 0.0)},
and A1, A2, A3 and A4 are the character sets of the samples denoted metastasis,
recurrence, bad (metastasis and recurrence simultaneously) and well:

A1 = {(x1, 0.4, 0.4), (x2, 0.3, 0.3), (x3, 0.5, 0.1), (x4, 0.5, 0.2), (x5, 0.6, 0.2)},

A2 = {(x1, 0.2, 0.6), (x2, 0.3, 0.5), (x3, 0.2, 0.3), (x4, 0.7, 0.1), (x5, 0.8, 0.0)},
A3 = {(x1, 0.1, 0.9), (x2, 0.0, 1.0), (x3, 0.2, 0.7), (x4, 0.1, 0.8), (x5, 0.2, 0.8)},
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A4 = {(x1, 0.8, 0.2), (x2, 0.9, 0.0), (x3, 1, 0.0), (x4, 0.7, 0.2), (x5, 0.6, 0.4)}.
From the Table 5 we see that the RSm-MADM procedure gives the same result as

those obtained in Refs. 41 and 43: the stage of disease is metastasis. The procedure
RSc-MADM indicates ”well” which is an incorrect result.

Table 5. Results for Example 5.

Sc(A1) Sc(A2) Sc(A3) Sc(A4)
RSm-MADM 0.953 0.805 0.064 0.337
RSc-MADM 0.656 0.580 0.000 0.905

Example 6 - Medical diagnosis. IFSs have used by many researchers in order to
perform medical disgnosis. To test our method, we consider the data consisting of:
([10], [26], [30], [31], [33]) a set of patients P = {Bob, Joe, Ted}, a set of diagnoses
D = {V iral fever, Malaria, Typhoid, Stomach problem, Chest problem} and a set
of symptoms S = {Temperature, Headache, Stomach pain, Cough, Chest pain}.

The Tables 6 and 7 contain the symptoms characteristics for the diagnoses consid-
ered and the symptoms for each patient, respectively. Each element of this tables is
given as a pair (membership degree µ, non-membership degree ν).

Table 6. Symptoms characteristics for the diagnoses considered.

Viral fever Malaria Typhoid Stomach Chest
problem problem

Temperature (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8)
Headache (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4) (0.0, 0.8)
Stomach pain (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.8, 0.0) (0.2, 0.8)
Cough (0.4, 0.3) (0.7, 0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8)
Chest pain (0.1, 0.7) (0.1, 0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1)

Table 7. Symptoms characteristics for the patients considered.

Temperature Headache Stomach pain Cough Chest pain
Bob (0.0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7) (0.1, 0.8)
Joe (0.8, 0.1) (0.8, 0.1) (0.0, 0.6) (0.2, 0.7) (0.0, 0.5)
Ted (0.6, 0.1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.2) (0.3, 0.4)

As it results from the Tables 8 and 9, the RSm-MADM procedure gives, for all
patients, the same results as in Refs. [10], [26], [30], [31], [33] while the RSc-MADM
procedure gives incorrect results.

Table 8. Results for Example 6 given by RSm-MADM procedure.

Viral fever Malaria Typhoid Stomach problem Chest problem
Bob 0.495 0.257 0.579 0.945 0.483
Joe 0.695 0.617 0.761 0.439 0.299
Ted 0.870 0.684 0.530 0.372 0.138
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Table 9. Results for Example 6 given by RSc-MADM procedure.

Viral fever Malaria Typhoid Stomach problem Chest problem
Bob 0.436 0.437 0.382 0.392 0.303
Joe 0.440 0.474 0.319 0.391 0.248
Ted 0.411 0.457 0.306 0.369 0.290

4.2. Numerical examples for intuitionistic fuzzy multiset sets. Using the in-
tuitionistic fuzzy OWA operator, before to apply our proposed procedures, we trans-
form an IFMS

A = {(x, (µ1
A(x), µ2

A(x), ..., µn
A(x)), (ν1A(x), ν2A(x), ..., νnA(x)))/x ∈ X}

into an IFS A′ = {(x, µA(x), νA(x))/x ∈ X}; for this we use the weight vector w =
(0.5, 0.3, 0.2)T .
Example 7 ([28]) - Medical diagnosis. Most of human reasoning, such as medical
diagnosis, involves the use of linguistic variables. But the description of a linguistic
variable in terms of membership function only is not adequate; there is chance of
existing of a non-null complement. IFS can be used in this context for representing
both membership and non-membership of an element to a set. But there are situations
that each element has different membership values and in such situations IFMS is more
adequate to be used.

The our aim in this example is to establish the diagnostic for a set of patients
considering a set of symptoms. Let P = {P1, P2, P3, P4} be the set of patients,
S = {Temperature, Cough, Throat pain, Headache, Body pain} be the set of
symptoms, D = {V iral fever, Tuberculosis, Typhoid, Throat disease} be the set
of diseases.

Only by taking one time inspection it is possible we do not arrive a conclusion that
a particular person has a disease or not. Sometimes, a patient may show symptoms
of different diseases also.

One solution to establish the disease is to examine the patient at different time
intervals. We consider 3 different times in a day: 7 AM, 1 PM and 7 PM. Tables
10 and 11 give the Symptoms characteristics for the diagnoses considered and the
Symptoms characteristics for the patients considered. In the Table 11 an IFMS

A = {(µ1
A(x), µ2

A(x), µ3
A(x)), (ν1A(x), ν2A(x), ν3A(x))}

is represented as

((µ1
A(x), ν1A(x)), (µ2

A(x), ν2A(x)), (µ3
A(x), ν3A(x)))T .

The IFMS representation from Table 11 is transformed into the IFS representation,
given in Table 12.

Table 10. Symptoms characteristics for the diagnoses considered.

Viral fever Tuberculosis Typhoid Throat disease
Temperature (0.8, 0.1) (0.2, 0.7) (0.5, 0.3) (0.1, 0.7)
Cough (0.2, 0.7) (0.9, 0.0) (0.3, 0.5) (0.3, 0.6)
Throat pain (0.3, 0.5) (0.7, 0.2) (0.2, 0.7) (0.8, 0.1)
Headache (0.5, 0.3) (0.6, 0.3) (0.2, 0.6) (0.1, 0.8)
Body pain (0.5, 0.4) (0.7, 0.2) (0.4, 0.4) (0.1, 0.8)
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Table 11. Symptoms characteristics for the patients considered - IFMS
representation.

Temperature Cough Throat pain Headache Body pain
P1 (0.6, 0.2) (0.4, 0.3) (0.1, 0.7) (0.5, 0.4) (0.2, 0.6)

(0.7, 0.1) (0.3, 0.6) (0.2, 0.7) (0.6, 0.3) (0.3, 0.4)
(0.5, 0.4) (0.4, 0.4) (0.0, 0.8) (0.7, 0.2) (0.4, 0.4)

P2 (0.4, 0.5) (0.7, 0.2) (0.6, 0.3) (0.3, 0.7) (0.8, 0.1)
(0.3, 0.4) (0.6, 0.2) (0.5, 0.3) (0.6, 0.3) (0.7, 0.2)
(0.5, 0.4) (0.8, 0.1) (0.4, 0.4) (0.2, 0.7) (0.5, 0.3)

P3 (0.1, 0.7) (0.3, 0.6) (0.8, 0.0) (0.3, 0.6) (0.4, 0.4)
(0.2, 0.6) (0.2, 0.0) (0.7, 0.1) (0.2, 0.7) (0.3, 0.7)
(0.1, 0.9) (0.1, 0.7) (0.8, 0.1) (0.2, 0.6) (0.2, 0.7)

P4 (0.5, 0.4) (0.4, 0.5) (0.2, 0.7) (0.5, 0.4) (0.4, 0.6)
(0.4, 0.4) (0.3, 0.3) (0.1, 0.6) (0.6, 0.3) (0.5, 0.4)
(0.5, 0.3) (0.4, 0.5) (0.0, 0.7) (0.3, 0.6) (0.4, 0.3)

Table 12. Symptoms characteristics for the patients considered - IFS representation.

Temperature Cough Throat pain Headache Body pain
P1 (0.638, 0.162) (0.381, 0.376) (0.133, 0.719) (0.638, 0.259) (0.334, 0.434)
P2 (0.435, 0.428) (0.741, 0.141) (0.536, 0.318) (0.457, 0.458) (0.729, 0.153)
P3 (0.151, 0.681) (0.213, 0.000) (0.783, 0.000) (0.252, 0.619) (0.334, 0.529)
P4 (0.481, 0.346) (0.352, 0.387) (0.133, 0.668) (0.522, 0.376) (0.452, 0.398)

According to Tables 13 and 14, the RSm-MADM procedure gives the same result
as in Ref. [28] for the patients P1, P2 and P4 while for P3 it indicates another disease;
for all patients, RSc-MADM procedure indicates an incorrect result.

Table 13. Results for Example 7 given by RSm-MADM procedure.

Viral fever Tuberculosis Typhoid Throat disease
P1 0.810 0.220 0.873 0.118
P2 0.384 0.802 0.548 0.195
P3 0.213 0.333 0.722 0.666
P4 0.668 0.303 0.890 0.126

Table 14. Results for Example 7 given by RSc-MADM procedure.

Viral fever Tuberculosis Typhoid Throat disease
P1 0.545 0.736 0.354 0.212
P2 0.538 0.737 0.347 0.215
P3 0.551 0.722 0.368 0.214
P4 0.547 0.735 0.354 0.210

Example 8 ([1], [29]) - Multi robot system. The multi robot system ([1]) consid-
ered consists of a central controller and four patrolling robots in a large area. Each
robot is equipped with ultrasonic sensor, accelerometer sensor, cliff sensor, bump
sensor and temperature sensor and is wirelessly controlled by the controller. The con-
troller makes decisions depending upon the sensor readings. For example, if the cliff
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sensor value in Robot1 indicates the presence of a cliff, the controller can change the
commands that are sent to the Robot1; that is, the controller can direct the Robot1
towards the right, left or backward directions. Similar is the case with every other
sensor reading.

Let R = {R1, R2, R3, R4} be a set of four robots, C = {Fire, Obstacle, Bump,
Cliff, Shock/V ibration} be a set of situations and S = {Temperature sensor,
Ultrasonic sensor, Bump sensor, Cliff sensor, Accelerometer sensor} be a set of
sensors deployed on each Robot. A single robot can be assigned different membership
and non-membership values for the five different sensor readings. Whether from a
single reading can we conclude what are the situations faced by the robots? The
sensor readings from the robots have to be monitored for a particular time, say for
three minutes. If for example, the ultrasonic sensor in Robot1 indicates an obstacle, it
sends a message to the controller so that the corrective measure could be taken. The
controller has to make sure whether the Robot1 is really faced with an obstacle or
not. For that purpose, the controller monitors the ultrasonic sensor reading for three
minutes. Depending upon the consistency of the readings, the controller identifies the
situation.

In Table 15 each sensor reading is described by two numbers: membership µ, non
- membership ν. The objective is to make a proper decision for each Robot. Hence
the readings are monitored for a particular interval time (3 minutes). Tables 16 and
17 show the sensor readings monitored for 3 minutes, one reading per minute, using
IFMS representation and FMS representation, respectively.

Table 15. Description of each sensor reading.

Fire Obstacle Bump Cliff Shock/
Vibration

Temperature sensor (0.8, 0.1) (0.2, 0.7) (0.1, 0.7) (0.2, 0.5) (0.5, 0.2)
Ultrasonic sensor (0.2, 0.7) (0.8, 0.1) (0.6, 0.3) (0.2, 0.7) (0.1, 0.7)
Bump sensor (0.1, 0.7) (0.1, 0.7) (0.9, 0.1) (0.1, 0.7) (0.2, 0.5)
Cliff sensor (0.2, 0.5) (0.1, 0.7) (0.1, 0.7) (0.7, 0.1) (0.1, 0.7)
Accelerometer sensor (0.1, 0.7) (0.2, 0.5) (0.1, 0.7) (0.1, 0.7) (0.8, 0.2)

From Table 18 we see that the RSm-MADM procedure gives the same results as
in Ref. [29]: correct situations for the robots R1, R2, R3 and R4 are Obstacle,
Shock/Vibration, Bump and Cliff, respectively. The RSc-MADM procedure gives the
correct result only for robot 2 (see Table 19).

5. Conclusions

The paper proposes a possibility to unify multiple attribute decision making with
pattern recognition. For this, starting from intuitionistic fuzzy decision matrix used
in MADM methods, we construct the ”score” matrix in two ways: based on the score
function and based on a similarity measure.

We apply our procedure to various problems from pattern recognition modeled
with intuitionistic fuzzy sets and intuitionistic fuzzy multisets. Comparing our results
with those obtained by different similarity measures one obtaines: the RSm-MADM
procedure gives correct results in 15 of the 16 cases considered in Section 4 while the
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Table 16. Sensor readings monitored for 3 minutes - IFMS representation.

Temperature Ultrasonic Bump sensor Cliff sensor Acceleromet
sensor sensor sensor

R1 (0.8, 0.1) (0.8, 0.1) (0.1, 0.9) (0.2, 0.8) (0.3, 0.6)
(0.7, 0.2) (0.8, 0.1) (0.2, 0.7) (0.1, 0.6) (0.3, 0.4)
(0.9, 0.0) (0.9, 0.1) (0.0, 0.8) (0.0, 0.7) (0.4, 0.4)

R2 (0.4, 0.5) (0.3, 0.7) (0.1, 0.7) (0.2, 0.6) (0.8, 0.1)
(0.3, 0.4) (0.2, 0.6) (0.2, 0.6) (0.5, 0.4) (0.7, 0.2)
(0.6, 0.3) (0.3, 0.1) (0.4, 0.4) (0.2, 0.7) (0.6, 0.3)

R3 (0.1, 0.8) (0.6, 0.4) (0.8, 0.1) (0.1, 0.9) (0.2, 0.7)
(0.2, 0.6) (0.2, 0.0) (0.7, 0.1) (0.2, 0.7) (0.3, 0.7)
(0.1, 0.9) (0.1, 0.7) (0.8, 0.1) (0.2, 0.6) (0.2, 0.7)

R4 (0.1, 0.7) (0.3, 0.6) (0.2, 0.7) (0.8, 0.2) (0.1, 0.7)
(0.4, 0.4) (0.3, 0.3) (0.1, 0.6) (0.6, 0.3) (0.5, 0.4)
(0.5, 0.3) (0.4, 0.5) (0.0, 0.7) (0.9, 0.0) (0.4, 0.3)

Table 17. Sensor readings monitored for 3 minutes - IFS representation.

Temperature Ultrasonic Bump Cliff Acceleromet
sensor sensor sensor sensor sensor

R1 (0.847, 0.000) (0.859, 0.100) (0.133, 0.775) (0.113, 0.675) (0.352, 0.434)
R2 (0.352, 0.485) (0.271, 0.253) (0.291, 0.505) (0.368, 0.505) (0.741, 0.153)
R3 (0.151, 0.709) (0.421, 0.000) (0.783, 0.100) (0.181, 0.681) (0.252, 0.700)
R4 (0.406, 0.387) (0.332, 0.402) (0.133, 0.668) (0.838, 0.000) (0.406, 0.410)

Table 18. Results for Example 8, given by RSm-MADM procedure.

Fire Obstacle Bump Cliff Shock/ Vibration
R1 0.585 0.746 0.418 0.276 0.398
R2 0.263 0.334 0.282 0.250 0.777
R3 0.179 0.510 1.000 0.196 0.229
R4 0.284 0.421 0.142 0.724 0.269

Table 19. Results for Example 8, given by RSc-MADM procedure.

Fire Obstacle Bump Cliff Shock/Vibration
R1 0.199 0.222 0.352 0.281 0.387
R2 0.185 0.231 0.354 0.275 0.382
R3 0.189 0.227 0.356 0.276 0.380
R4 0.188 0.228 0.349 0.282 0.389

RSc-MADM procedure gives correct results only in two cases. Therefore, we conclude
that the RSm-MADM procedure (based on similarity measures) can be successfully
used both in decision making and in pattern recognition.

The method can be improved to be an efficient tool for medical diagnosis and
the physician’s decision by adding a communication interface in natural language
([14]). In a future paper we intend to compare our method with other computational
intelligence algorithms often successfully used for decision making in medicine ([32]).
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