
Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 30(2), 2003, Pages 90–99
ISSN: 1223-6934

A frictionless contact problem with adhesion between two
elastic bodies

Nacerdine Hemici and Andaluzia Matei

Abstract. We consider a mathematical model which describes the bilateral, frictionless, ad-
hesive contact between two elastic bodies. The adhesion process on the common contact
surface is modelled by a surface variable, the bonding field, the tangential shear due to the
bonding field being included. We obtain an existence and uniqueness result by construction
of an appropriate mapping which is shown to be a contraction on a Hilbert space.
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1. Introduction

In this paper we study a mathematical model which describes the adhesive contact
between two elastic bodies, when the frictional tangential traction is negligible in
comparison with the traction due to adhesion. As in [2, 3] we use the bonding field
as an additional variable, defined on the common part of the boundary. We derive
a variational formulation of the model then we prove its unique solvability, which
provides the existence of a unique weak solution to the adhesive contact problem.

This work is a companion of the result in [8] where the frictionless contact between
an elastic body and a rigid foundation was investigated when the contact is described
by normal compliance with adhesion. The novelty here consist in the fact that we
study the contact between two deformable bodies and we assume that on the common
part of the boundary there is no separation between the bodies during the process,
that is the contact is bilateral.

The paper is structured as follows. In Section 2 we present some notations and
preliminary material. In Section 3 we describe the model and present its variational
formulation. Finally, in Section 4 we state and prove our main existence and unique-
ness result, Theorem 4.1. The proof is based on results of differential equations in
Banach spaces and a fixed point argument.

2. Notations and preliminaries

We denote by S3 the space of second order symmetric tensors on IR3; “ · ” and
| · | represent the inner product and the Euclidean norm on IR3 and S3, respectively.
Thus, for every u,v ∈ IR3, u · v = uivi, |v| = (v · v)1/2, and for every σ, τ ∈ S3,
σ ·τ = σijτij , |τ | = (τ ·τ )1/2. Here and below, the indices i and j run between 1 and
3 and the summation convention over repeated indices is adopted.
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Let Ω1 and Ω2 be two bounded domains in IR3. Everywhere in this paper, we use
a superscript k to indicate that a quantity is related to the domain Ωk, k = 1, 2.
For each domain Ωk, we assume that its boundary Γk is Lipschitz continuous and is
partitioned into three disjoint measurable parts Γk

1 , Γk
2 and Γk

3 , with measΓk
1 > 0.

The unit outward normal to Γk is denoted by νk = (νk
i ).

We also use the notation

Hk = {u = (ui) | ui ∈ L2(Ωk)},
Hk

1 = {u = (ui) | ui ∈ H1(Ωk)},
Hk = {σ = (σij) | σij = σji ∈ L2(Ωk)},
V k = {v ∈ Hk

1 | v = 0 on Γk
1}.

The spaces Hk, Hk
1 and Hk are real Hilbert spaces with the canonical inner product

denoted (·, ·)Hk , (·, ·)Hk
1

and (·, ·)H, respectively. On the space V k we use the inner
product

(uk, vk)V k = (ε(uk), ε(vk))Hk ∀uk, vk ∈ V k

and the associated norm ‖ · ‖V k . Here, ε denotes the deformation operator for both
function in V 1 and V 2, that is ε(u) is the symmetric part of the gradient of u :
ε(u) = 1

2 (∇u + ∇T u). Since measΓk
1 > 0, it follows from Korn’s inequality (see e.g.

[5]) that (V k, (·, ·)V k) is a real Hilbert space.
Since the boundary Γk is Lipschitz continuous, the unit outward normal vector

νk on the boundary Γk is defined a.e. For every vector field vk ∈ Hk
1 we use the

notation vk for the trace of vk on Γk and we denote by vk
ν and vk

τ the normal and
the tangential components of vk on the boundary, given by

vk
ν = vk · νk, vk

τ = vk − vk
ννk.

For a regular (say C1) stress field σk, the application of its trace on the boundary to
νk is the Cauchy stress vector σkνk. We define, similarly, the normal and tangential
components of the stress on the boundary by the formulas

σk
ν = (σkνk) · νk, σk

τ = σkνk − σk
ννk

and we recall that the following Green’s formula holds:

(σk, ε(vk))Hk + (Divσk,vk)Hk =
∫

Γk

σkνk · vk da ∀vk ∈ Hk
1 . (1)

Here and below we denote by Div the divergence operator for tensor valued functions
defined on Ω1 or Ω2.

We recall that, by the Sobolev trace theorem, there exists ck
0 , depending only on

Ωk, Γk
1 and Γk

3 , such that

‖vk‖L2(Γk
3 )3 ≤ ck

0‖vk‖V k ∀vk ∈ V k, (2)

and we denote by c0 the constant given by

c0 = max {c1
0, c2

0}. (3)

Moreover, we need the following functional spaces:

V = {v = (v1,v2) ∈ V 1 × V 2 | v1
ν + v2

ν = 0 on Γ3},
H = H1 ×H2.

The spaces V and H are real Hilbert spaces endowed with the canonical inner products
(·, ·)V and (·, ·)H, respectively, and the associated norms ‖·‖V and ‖·‖H, respectively.



92 N. HEMICI AND A. MATEI

Finally, for every real Banach space X and T > 0 we use the classical notation for
the spaces Lp(0, T ;X) and W k,p(0, T ;X), 1 ≤ p ≤ +∞, k = 1, 2, . . . , and we use the
dot above to indicate the derivative with respect to the time variable.

3. The model and its variational formulation

The physical setting is as follows. We consider two elastic bodies that occupy the
domains Ω1 and Ω2. The two bodies are in bilateral, frictionless, adhesive contact
along the common part Γ1

3 = Γ2
3, which will be denoted in what follows Γ3. Let T > 0

and let [0, T ] be the time interval of interest. We assume that the bodies are clamped
on Γk

1 × (0, T ), body forces of density fk
0 act on Ωk × (0, T ), and surface tractions of

density fk
2 act on Γk

2 × (0, T ).
We denote by uk the displacement vectors, by σk the stress tensors and by εk =

ε(uk) the linearized strain tensors. We model the materials with nonlinear elastic
constitutive laws

σk = Ekε(uk)
where Ek are given nonlinear constitutive functions which will be described below.
We denote σ = (σ1,σ2) and, for simplicity, we shall also use the notation

ε(v) = (ε(v1), ε(v2)) ∈ H1 ×H2, ∀v = (v1,v2) ∈ V,

Eε(v) = (E1ε(v1), E2ε(v2)), ∀v = (v1,v2) ∈ V.

We describe now the conditions on the contact surface Γ3. We assume that the
contact is bilateral, i.e., there is no separation between the bodies during the process.
Therefore,

u1
ν + u2

ν = 0 on Γ3 × (0, T ).
Moreover, ν1 = −ν2 on Γ3 and σ1 ν1 = −σ2 ν2 on Γ3 × (0, T ). Consequently,

σ1
ν = σ2

ν and σ1
τ = −σ2

τ on Γ3 × (0, T ).

Following [2, 3], we introduce a surface state variable β, the bonding field, which is a
measure of the fractional intensity of adhesion between the surface and the foundation.
This variable is restricted to values 0 ≤ β ≤ 1; when β = 0 all the bonds are severed
and there are no active bonds; when β = 1 all the bonds are active; when 0 < β < 1
it measures the fraction of active bonds, and partial adhesion takes place.

We assume that the resistance to tangential motion is generated by the glue, in
comparison to which the frictional traction can be neglected. Moreover, the tangential
traction depends only on the bonding field and on the relative tangential displacement,
that is

−σ1
τ = σ2

τ = pτ (β,u1
τ − u2

τ ) on Γ3 × (0, T ).
We assume that the evolution of the bonding field is governed by the differential

equation,
β̇ = Had(β,R(|u1

τ − u2
τ |)) on Γ3 × (0, T ).

Here, Had is a general function discussed below, which vanishes when its first argument
vanishes. The function R : IR+ → IR+ is a truncation and is defined as

R(s) =
{

s if 0 ≤ s ≤ L
L if s > L,

(4)

where L > 0 is a characteristic length of the bonds (see, e.g., [6]). We use it in Had

since usually, when the glue is streched beyond the limit L it does not contribute
more to the bond strength.
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Let β0 the initial bonding field. We assume that the process is quasistatic and
therefore we neglect the inertial term in the equation of motion. Then, the classical
formulation of the mechanical problem may be stated as follows.

Problem P. For k = 1, 2, find a displacement field uk = (uk
i ) : Ωk × [0, T ] → IR3, a

stress field σk = (σk
ij) : Ωk × [0, T ] → S3 and an bonding field β : Γ3 × [0, T ] → [0, 1]

which satisfy

σk = Ekε(uk)) in Ωk × (0, T ), (5)

Div σk + fk
0 = 0 in Ωk × (0, T ), (6)

uk = 0 on Γk
1 × (0, T ), (7)

σkνk = fk
2 on Γk

2 × (0, T ), (8)
σ1

ν = σ2
ν , u1

ν + u2
ν = 0 on Γ3 × (0, T ), (9)

−σ1
τ = σ2

τ = pτ (β,u1
τ − u2

τ ) on Γ3 × (0, T ), (10)

β̇ = Had(β,R(|u1
τ − u2

τ |)) on Γ3 × (0, T ), (11)
β(0) = β0 on Γ3. (12)

To obtain a variational formulation of the problem P we assume that the elastic
operators Ek, the tangential contact function pτ and the adhesive rate function Had

satisfy:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Ek : Ωk × S3 → S3;

(b) There exists Lk
E > 0 such that

|Ek(x, ε1) − Ek(x, ε2)| ≤ Lk
E |ε1 − ε2|

∀ε1, ε2 ∈ S3, a.e. x ∈ Ω;

(c) There exists mk
E > 0 such that

(Ek(x, ε1) − Ek(x, ε2)) · (ε1 − ε2) ≥ mk
E |ε1 − ε2|2

∀ ε1, ε2 ∈ S3, a.e. x ∈ Ωk;

(d) The map x 	→ Ek(x, ε) is Lebesgue measurable on Ωk

for any ε ∈ S3;

(e) The map x 	→ Ek(x,0) ∈ Hk.

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) pτ : Γ3 × IR × IR3 → IR3;

(b) There exists Lτ > 0 such that
|pτ (x, β1, r1) − pτ (x, β2, r2)| ≤ Lτ (|β1 − β2| + |r1 − r2|)
∀β1, β2 ∈ IR, r1, r2 ∈ IR3, a.e. x ∈ Γ3;

(c) The map x 	→ pτ (x, β, r) is Lebesgue measurable
on Γ3 ∀β ∈ IR, r ∈ IR3;

(d) The map x 	→ pτ (x, 0, 0) ∈ L∞(Γ3)3;

(e) pτ (x, β, r) · ν(x) = 0 ∀r ∈ IR3 such that r · ν(x) = 0,
a.e. x ∈ Γ3.

(14)



94 N. HEMICI AND A. MATEI

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Had : Γ3 × IR × IR+ → IR;

(b) There exists LHad
> 0 such that

|Had(x, b1, r1) − Had(x, b2, r2)|
≤ LHad

(|b1 − b2| + |r1 − r2|)
∀ b1, b2 ∈ IR, ∀r1, r2 ∈ [0, L], a.e. x ∈ Γ3;

(c) The map x 	→ Had(x, b, r) is Lebesgue measurable
on Γ3, ∀ b ∈ IR, r ∈ [0, L];

(d) The map (b, r) 	→ Had(x, b, r) is continuous on
IR × [0, L], a.e. x ∈ Γ3;

(e) Had(x, 0, r) = 0 ∀ r ∈ [0, L], a.e. x ∈ Γ3;

(f) Had(x, b, r) ≥ 0 ∀ b ≤ 0, r ∈ [0, L], a.e. x ∈ Γ3 and
Had(x, b, r) ≤ 0 ∀ b ≥ 1, r ∈ [0, L], a.e. x ∈ Γ3.

(15)

Examples of functions Ek, pτ and Had which satisfy conditions (13), (14) and (15)
can be found in [1, 4, 8]. We conclude that all the results below are valid for the
corresponding contact problems.

We also suppose that the body forces and surface tractions satisfy

fk
0 ∈ L∞(0, T ;Hk), fk

2 ∈ L∞(0, T ;L2(Γk
2)3) (16)

and, finally, the initial data satisfies

β ∈ L∞(Γ3), 0 ≤ β0 ≤ 1 a.e. in Γ3. (17)

Using (1) and (6), we deduce that for k = 1, 2 we have

(σk(t), ε(vk))Hk = (fk
0(t), vk)Hk +

∫
Γk

2

fk
2(t) · vk da + (18)

+
∫

Γ3

(σk
ν (t) vk

ν + σk
τ (t) · vk

τ )da ∀vk ∈ V k, a.e. t ∈ (0, T ).

We define the map f : [0, T ] → V by the equality

(f(t),v)V =
2∑

k=1

(
(fk

0(t),vk)Hk +
∫

Γk
2

fk
2(t) · vk da

)
(19)

∀v = (v1, v2) ∈ V, a.e. t ∈ (0, T ). We note that, using (16) we obtain the following
regularity

f ∈ L∞(0, T ;V ). (20)
From (18) and (19) we deduce

(σ(t), ε(v))H = (f(t),v)V +
2∑

k=1

∫
Γ3

σk
ν (t) vk

ν da + (21)

+
2∑

k=1

∫
Γ3

σk
τ (t) · vk

τda ∀v = (v1, v2) ∈ V, a.e. t ∈ (0, T ).

Keeping in mind (9) and (10) we deduce
2∑

k=1

∫
Γ3

(σk
ν vk

ν + σk
τ · vk

τ )da = −
∫

Γ3

pτ (β,u1
τ − u2

τ ) · (v1
τ − v2

τ )da. (22)
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Let define the functional j : L∞(Γ3) × V × V → IR by

j(β,u,v) =
∫

Γ3

pτ (β,u1
τ − u2

τ ) · (v1
τ − v2

τ )da (23)

∀β ∈ L∞(Γ3), ∀u = (u1,u2),v = (v1,v2) ∈ V . Taking into account (21)-(23) we can
write

(σ(t), ε(v))H + j(β(t),u(t),v) = (f(t),v)V ∀v ∈ V, a.e. t ∈ (0, T ).

Then, the variational formulation of the Problem P may be stated as follows.

Problem PV . Find a displacement field u = (u1,u2) : [0, T ] → V , a stress field
σ = (σ1,σ2) : [0, T ] → H, and a bonding field β : [0, T ] → L∞(Γ3) such that

σ(t) = Eε(u(t)), (24)

β̇(t) = Had(β(t), R(|u1
τ (t) − u2

τ (t)|)), 0 ≤ β(t) ≤ 1, (25)
(σ(t), ε(v))H + j(β(t),u(t),v) = (f(t),v)V ∀v ∈ V, (26)

a.e. t ∈ (0, T ), and
β(0) = β0. (27)

The unique solvability of problem PV will be proved in the next section.

4. An existence and uniqueness result

Our main existence and uniqueness result is the following.

Theorem 4.1. Assume that (13)–(17) hold and, assume moreover that

c2
0 Lτ

mE
<

1
2
√

2e
. (28)

Then there exists a unique solution {u, σ, β} of problem PV . Moreover, the solution
satisfies

u ∈ L∞(0, T ;V ), (29)

σ ∈ L∞(0, T ;H), (30)

β ∈ W 1,∞(0, T ;L∞(Γ3)), (31)

0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3. (32)

Theorem 4.1 states the well posedness of the variational problem PV . By this theo-
rem we conclude that, under the assumptions (13)–(17) and (28), then the mechanical
problem P has a unique weak solution with regularity (29)–(31).

The proof of Theorem 4.1 is carried out in several steps that we present in what
follows. Everywhere below we assume that (13)–(17) hold. We use Riesz’s represen-
tation theorem to define the operator E : V → V by

(Eu,v)V = (Eε(u), ε(v))H ∀u, v ∈ V. (33)

It follows from (13) that E is a strongly monotone Lipschitz continuous operator.
More exactly, it satisfies

‖Eu − Ev‖V ≤ LE‖u − v‖V

and
(Eu − Ev,u − v)V ≥ mE‖u − v‖2

V
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for all u, v ∈ V , where LE = L1
E +L2

E and mE = min {m1
E , m2

E}. Therefore, it follows
that E is invertible and its inverse, denoted E−1 : V → V , satisfies

‖E−1(w1) − E−1(w2)‖V ≤ 1
mE

‖w1 − w2‖V ∀w1, w2 ∈ V. (34)

Let η be an arbitrary element of the space L∞(0, T ;V ) and denote

uη(t) = E−1(f(t) − η(t)) a.e. t ∈ (0, T ). (35)

It follows from (20) that
uη ∈ L∞(0, T ;V ) (36)

and, moreover, (33) and (35) imply that a.e. t ∈ (0, T )

(E ε(uη(t)), ε(v))H + (η(t),v)V = (f(t),v)V ∀v ∈ V. (37)

Let consider now the following evolutionary problem.

Problem P η
V . Find a bonding field βη : [0, T ] → L∞(Γ3) such that

β̇η(t) = Had(βη(t), R(|u1η
τ (t) − u2η

τ (t)|)) a.e. t ∈ (0, T ), (38)

βη(0) = β0. (39)

We have the following result.

Lemma 4.1. There exists a unique solution βη of problem P η
V and it satisfies (31).

Moreover,
0 ≤ βη(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3. (40)

Proof. For the sake of simplicity we suppress the dependence of various functions on
x ∈ Γ3. Notice that the equalities and inequalities below are valid a.e. x ∈ Γ3. We
consider the map F : (0, T ) × L∞(Γ3) → L∞(Γ3) defined by

F (t, β) = Had(β,R(|u1η
τ (t) − u2η

τ (t)|)) a.e. t ∈ (0, T ), ∀β ∈ L∞(Γ3).

It is easy to check that F is Lipschitz continuous with respect to the second vari-
able, uniformly in time; moreover, for all β ∈ L∞(Γ3), t 	→ F (t, β) belongs to
L∞(0, T ;L∞(Γ3)). Thus, the existence of a unique function βη which satisfies (38)–
(39), follows from a version of the Cauchy-Lipschitz theorem.

Finally, the proof of (40) is a consequence of the assumptions (15) and (17), see [8]
for details. �

We now study the dependence of the solution of problem P η
V with respect to η.

Lemma 4.2. Let ηi ∈ L∞(0, T ;V ) and let βi denote the solution of problem P ηi

V , i =
1, 2. Then:

‖βη1(t) − βη2(t)‖2
L2(Γ3)

≤ 2 L2
Had

c2
0

m2
E

T e2 T LHad

∫ t

0

‖η1(s) − η2(s)‖2
V ds

∀t ∈ [0, T ].
(41)
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Proof. Let t ∈ [0, T ]. The equalities and inequalities below are valid a.e. on Γ3. Using
(38) and (39) we can write

βi(t) = β0 +
∫ t

0

Had(βi(s), R(|u1i
τ (s) − u2i

τ (s)|) ds, i = 1, 2

where uηi = ui = (u1i,u2i). Using now (15) and (4), we obtain

|β1(t) − β2(t)| ≤ LHad

( ∫ t

0

|β1(s) − β2(s)| ds +
∫ t

0

|(u11
τ (s) − u21

τ (s)) − (u12
τ (s) − u22

τ (s))| ds
)
.

Next, we apply Gronwall’s inequality to deduce

|β1(t) − β2(t)| ≤ LHad
eT LHad

∫ t

0

|(u11
τ (s) − u21

τ (s)) − (u12
τ (s) − u22

τ (s))|ds,

which implies

|β1(t) − β2(t)|2 ≤ 2L2
Had

T e2 T LHad

∫ t

0

(|u11(s) − u12(s)|2 + |u21(s) − u22(s)|2) ds.

Integrating the last inequality over Γ3 and keeping in mind (2) we find

‖β1(t) − β2(t)‖2
L2(Γ3)

≤ 2L2
Had

T e2 T LHad

∫ t

0

(
(c1

0)
2‖u11(s) − u12(s)‖2

V 1 +

+(c2
0)

2‖u21(s) − u22(s)‖2
V 2

)
ds.

Taking into account (3) we deduce

‖β1(t) − β2(t)‖2
L2(Γ3)

≤ 2 (c0)2 L2
Had

T e2 T LHad

∫ t

0

‖u1(s) − u2(s)‖2
V ds,

and using (35), we obtain (41). �

We consider now the operator Λ : L∞(0, T ;V ) → L∞(0, T ;V ) given by

(Λη(t),v)V = j(βη(t), uη(t), v) ∀v ∈ V, a.e. t ∈ (0, T ), (42)

where βη denotes the solution of problem P η
V , uη is given by (35) and j is the functional

(23).

We have the following result.

Lemma 4.3. Under the smallness assumption (28), there exists a unique element
η∗ ∈ L∞(0, T ;V ) such that Λ η∗ = η∗.

Proof. Let ηi ∈ L∞(0, T ;V ), uηi = ui = (u1i, u2i) and let βi denote the solution
of problem P ηi

V , i = 1, 2. The equalities and inequalities below are valid for all v ∈
V, a.e. t ∈ (0, T ). Using (42), (23) and the properties of the function pτ , after some
computation we obtain

|(Λη1(t) − Λη2(t),v)V | ≤ Lτ

(
‖u11(t) − u12(t)‖L2(Γ3)3+

‖u21(t) − u22(t)‖L2(Γ3)3 + ‖β1(t) − β2(t)‖L2(Γ3)

)
(‖v1‖L2(Γ3)3 + ‖v2‖L2(Γ3)3).
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Moreover, keeping in mind (2) and (3) we can write

|(Λη1(t) − Λη2(t),v)V | ≤ Lτ c0

(
‖β1(t) − β2(t)‖L2(Γ3) + c0(‖u11(t) − u12(t)‖V 1 +

+‖u21(t) − u22(t)‖V 2)
)

(‖v1‖V 1 + ‖v2‖V 2),

and from this inequality we find

‖Λη1(t) − Λη2(t)‖V ≤
√

2c0 Lτ

(
‖β1(t) − β2(t)‖L2(Γ3) + (43)

+
√

2 c0 ‖u1(t) − u2(t)‖V

)
.

Using now (43), (41), (34) and (35) we deduce that

‖Λη1(t) − Λη2(t)‖2
V ≤ k ‖η1(t) − η2(t)‖2

V + M

∫ t

0

‖η1(s) − η2(s)‖2
V ds (44)

where

k =
8 c 4

0 L 2
τ

m2
E

, M =
8L2

Had
c 4
0 L 2

τ T e2 T LHad

m2
E

. (45)

Taking into account (44) we can use now a fixed point argument already used in [7].
To this end we denote

I0(t) = ‖η1(t) − η2(t)‖2
V , (46)

I1(t) =
∫ t

0

‖η1(s) − η2(s)‖2
V ds, (47)

Ij(t) =
∫ t

0

∫ sj−1

0

...

∫ s1

0

‖η1(r) − η2(r)‖2
V dr ds1...dsj−1, ∀j ∈ N, j ≥ 2. (48)

Notice that

Ij(t) ≤ tj

j !
‖η1 − η2‖2

L∞(0,T ;V ), ∀ j ∈ IN. (49)

Reiterating the inequality (44) and using (46)–(49), we deduce that

‖Λpη1(t) − Λpη2(t)‖2
V ≤

( p∑
j=0

Cj
p kp−j M j T j

j !

)
‖η1 − η2‖2

L∞(0,T ;V ). (50)

It is easy to check that
p∑

j=0

Cj
p kp−j M j T j

j !
≤ (k p + M T )p

p !

and therefore, (50) implies

‖Λpη1 − Λpη2‖2
L∞(0,T ;V ) ≤

(k p + M T )p

p !
‖η1 − η2‖2

L∞(0,T ;V ).

Assume now that (28) hold. It follows that 0 < k < 1
e and, therefore, the series

∞∑
p=1

(k p + M T )p

p !
is convergent. Consequently,

lim
p→∞

(k p + M T )p

p !
= 0.

We conclude that for a sufficiently large p, the mapping Λp is a contraction in the
Banach space L∞(0, T ;V ). Therefore, there exists a unique η∗ ∈ L∞(0, T, V ) such
that Λp η∗ = η∗ and, moreover, η∗ is the unique fixed point of Λ. �
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We have now all the ingredients to prove Theorem 4.1.

Proof of Theorem 4.1
Existence. Let η∗ ∈ L∞(0, T ;V ) be the fixed point of the operator Λ and let u, β
be defined by (35), (38)–(39) for η = η∗, i.e. u = uη∗

, β = βη∗ . We denote by σ the
function given by (24). Clearly, (24), (25) and (27) hold. Since Λη∗ = η∗, we deduce
that

(Λ η∗(t),v)V = (η∗(t),v)V ∀v ∈ V, a.e. t ∈ (0, T )
and, keeping in mind (42) and (37) we deduce that (26) hold too. The regularity
(29) follows from (20) while the regularity (31) and property (32) are consequences
of Lemma 4.1. Moreover, since u ∈ L∞(0, T ;V ), it follows from (24) that σ ∈
L∞(0, T ;H). We conclude that the triplet {u, σ, β} is a solution of problem PV and
it satisfies (29)-(32).

Uniqueness. The uniqueness part follows the uniqueness of the fixed point of the
operator Λ (see [8] for details). �
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