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Analysis of fractional Fokker-Planck equation with Caputo
and Caputo-Fabrizio derivatives
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Abstract. This research focus on the determination of the numerical solution for the math-
ematical model of Fokker-Planck equations utilizing a new method, in which Sumudu trans-

formation and homotopy analysis method (SHAM) are used together. By SHAM analytical

series solution of any mathematical model including fractional derivative can be obtained. By
this method, we constructed the solution of fractional Fokker-Planck equations in Caputo and

Caputo-Fabrizio senses. The results show that this method is advantageous and applicable to

form the series resolution of the fractional mathematical models.
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1. Introduction

The importance of mathematical models including fractional derivatives increases ef-
fectively recently since these mathematical models reflects behaviour of real world
phenomena better because of non-local behaviour of fractional derivatives. Using
fractional derivatives in models, the memory and hereditary properties of phenomena
are included which helps to analyze the complex behaviour of the any system much
more better. Various fractional derivatives are defined and used to model real world
phenomena since each of them has interesting properties which contributes to under-
stand the behaviour of the system [6], [2], [9], [3], [21], [22]. For instance, fractional
derivative in Caputo-Fabrizio sense has the property of characterizing heterogeneities
and configurations [17]. Moreover this fractional derivative does not have any sin-
gularity. Hence its definition does not include a singular kernel which allows us to
determine the effect of the memory without any diffculty. By making use of SHAM the
fractional partial differential equation turn into a simpler form including a recursive
relation which allows to obtain the solution as an analytical series. In this research,
we utilize the SHAM to find analytical approximated solution for fractional Fokker-
Planck equations. The utilized method consists of two methods [16]. Some writers
have projected various systems for physical processes with two fractional operators.
In [5], Dehghan practised the HAM to solve fractional models with Liouville-Caputo.
In [23], is studied a fractional differential equation with a changeble coefficient. Ja-
fari in [10] utilized the HAM to solve the higher order fractional models analized by
Diethelmand Ford [7]. In [8], an analysis of an example with the Caputo-Fabrizio frac-
tional derivative is studied, where analytical and advanced calculation are included.
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Morales-Delgado et al. [17] presented Laplace HAM to determine a new solution.
In this study, SHAM is utilized to solve time fractional models including fractional
derivative in Caputo and Caputo-Fabrizio senses to construct the series form of the so-
lutions. The significant advantage of this method compare to the other semi analytic
methods is that it does not entail any supplementary data other than boundary and
initial conditions. This method allows us to transform the original problem into one
for which the convergence and accuracy of the solution is very high especially for the
Caputo fractional derivative [19]. The goal of this work is to establish approximate
resolutions of the fractional model of Fokker-Planck equations (FPEs) as follows [20]:

Dα
t f (x, t) = Dβ

xΦ (x, t, f) +D2β
x Ω (x, t, f) , x ∈ R, t > 0, 0 < α, β ≤ 1 (1)

with the initial state f (x, 0) = h(x). Φ (x, t, f) and Ω (x, t, f) denote drift and dif-
fusion functions, α and β denote the orders of fractional derivatives, respectively.
Notice that this equation is a classical FPE for α = 1, β = 1 . These equations are
used in the pattern of divergent diffusion techniques. In [20], q-homotopy analysis
transform method is utilized to obtain analytical solutions for Eqs. (1), stochastic
expression and computer model of fractional FPE representing divergent diffusion is
analysed in [15] and in [14], [13], approximated solutions are obtained by using Monte
Carlo technique, exact solutions for fractional FPE has been determined by utilizing
various methods, for example Laplace transform method [24], Homotopy perturba-
tion method (HPM) [25], Homotopy perturbation transform method (HPTM) [11],
Adomian decomposition method (ADM) [18], In the section 2 of this article, some
basic definitions related to in case of every two fractional operators. In section 3 and
4, SHAM is applied to construct the solution of the fractional FPEs and some tables
and graphical outcomes are contained to show the reliability and simplicity of the
technique. Finally, in section 5, consequences are presented.

2. Preliminaries

Definition 2.1. A real function f(t, )t > 0, belongs to the space Cµ, µ ∈ R if the
condition f (t) = tpg(t) is satisfied for some real number p (> µ) where g (t) ∈ C[0,∞),
and it is said to be in the space Cmµ iff fm ∈ Cµ,m ∈ N.

Definition 2.2. For a function f (t) ∈ Cµ, µ ≥ −1 the following integral

Jαf (t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ) d, τα > 0, t > 0, J0f (t) = f(t). (2)

is called The Riemann Liouville Fractional integral operator of order α ≥ 0 [6]. The
Riemann Liouville fractional integral of ty is computed as follows:

Jαty =
Γ(y + 1)

Γ(α+ y + 1)
tα+y. (3)

Definition 2.3. The Caputo fractional derivative of f(t) is defined in the following
form [6]

C
0 D

α

t f (t) = Jm−αDmf (t) =
1

Γ (m− α)

∫ t

0

(t− z)m−α−1 dm

dtm
f(z)dz,

m− 1 < α ≤ m,m ∈ N, t > 0. (4)
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Definition 2.4. The transformation

f̄ (w) = S [f(t)] =

∫ ∞
0

f (wt) e−tdt, w ∈ (−τ1, τ2) , (5)

is called Sumudu transformation defined on the following set [4]

A =

{
f(t)| ∃M, τ1, τ2 > 0, |f (t)| < Me

|t|
τj , if t ∈ (−1)

j × [0,∞)

}
.

Definition 2.5. For f (t) = tα, the Sumudu transform is defined as [4]

S [tα] =

∫ ∞
0

e−ttαdt = Γ (α+ 1)wα, Re (α) > 0. (6)

Definition 2.6. The Sumudu transformation S [f(t)] of the Riemann-Liouville frac-
tional integral is defined as [4]

S [Jαf (t)] = wαF (w). (7)

Definition 2.7. The Sumudu transformation S [f(t)] of the Caputo fractional deriv-
ative is defined as [4]

S
[
C
0 D

α

t f (x, t)
]

(w) = w−αS [f (x, t)]−
n−1∑
k=0

[
w−α+k ∂

kf (x, 0)

∂tk

]
, n−1 < α ≤ n, n ∈ N.

(8)

In the following, we provide some basic concepts and definitions in connection
with the new Caputo-Fabrizio derivative. Caputo and Fabrizio defined derivative
of the fractional order for a function f belongs to the Sobolev space H1 (a, b) ={
f (x) , a < x < b,

∫ b
a
f2 (x) <∞,

∫ b
a

(f ′)2
(x) <∞

}
.

Definition 2.8. For a function f ∈ H1 (a, b), the Caputo-Fabrizio derivative of frac-
tional order α ∈ [0, 1] is defined as

CF
0 D

α

t (f(t)) =

(
M(α)

1− α

)∫ t

a

f ′ (x) exp

[
−α t− x

1− α

]
dx, (9)

where M(α) is a normalization function under the conditions M (0) = M (1) = 1 [12].
But, if a certain function does not satisfy in the restriction f ∈ H1 (a, b), then its
fractional derivative is redefined as

CF
0 D

α

t (f(t)) =

(
αM(α)

1− α

)∫ t

a

(f (t)− f(x)) exp

[
−α t− x

1− α

]
dx. (10)

Clearly, as mentioned in [12], if one chooses σ = 1−α
α ∈ [0,∞] and α = 1

1+σ ∈ [0, 1],
then the Caputo-Fabrizio definition becomes

CF
0 D

α

t (f(t)) =

(
N(σ)

σ

)∫ t

a

f ′(x) exp

[
− t− x

σ

]
dx,N (0) = N (∞) = 1, (11)

where

lim
σ→0

exp

[
− t− x

σ

]
= δ(x− t). (12)

For n ≥ 1 and α ∈ [0, 1], the fractional derivative of order (n+ α) is defined by

D
(α+n)
t (f(t)) = D

(α)
t

(
D

(n)
t (f(t))

)
. (13)
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Definition 2.9. The fractional arbitrary order integral of a function f ∈ H1 (a, b) is
defined as follows

Iαt (f(t)) =
2 (1− α)

(2− α)M (α)
f (t) +

2α

(2− α)M(α)

∫ t

0

f(s)ds, t ≥ 0. (14)

In view of the above definition, it is clear that the αth Caputo-Fabrizio derivative
is average between f and its one order integral. Therefore,

2 (1− α)

(2− α)M (α)
+

2α

(2− α)M(α)
= 1. (15)

So, we arrived to prove that

M (α) =
2

2− α
, 0 ≤ α ≤ 1.

By virtue of this formula, Losada and Nieto [12] remarked that Caputo-Fabrizio frac-
tional derivative can redefined as

CF
0 D

α

t (f(t)) =

(
1

1− α

)∫ t

a

f ′ (x) exp

[
−α t− x

1− α

]
dx, (16)

Applying the Laplace transform to (2.15), one has

L
[
CF
0 D

α

t (f(x, t))
]

=
wL [f(t)]− f(x, 0)

w + α(1− w)
, (17)

So

L
[
CF
0 D

α+1

t (f(x, t))
]

=
wL [f(t)]− wf (x, 0)− ∂f(x,0)

∂t

w + α(1− w)
, (18)

In a general form

L
[
CF
0 D

α+1

t (f(x, t))
]

=
wn+1L [f(x, t)]− wnf (x, 0)− wn−1 ∂f(x,0)

∂t − . . .− ∂nf(x,0)
∂tn (0)

w + α(1− w)
.

(19)
Sumudu transform is an integral transform which is defined by the following formula

F (w) = S [f (t) ;w] =
1

w

∫ ∞
0

e−( tw )f(t)dt.

Atangana [1] proved that for the Caputo-Fabrizio derivative of fractional order for
f(t), the Sumudu transform is obtained as

S
[
CF
0 D

α

t (f(x, t))
]

= M(α)
S [f(x, t)]− f(0)

1− α+ αw
, (20)

and in a general form

S
[
CF
0 D

α

t (f(x, t))
]

=
M (α)

1− α+ αw

[
S [f(x, t)]

wn
−

n∑
k=0

1

wn−k
∂kf (x, 0)

∂tk

]
. (21)
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3. Approximate solution of Caputo time-fractional differential equation
via SHAM

C
0 D

α

t f (x, t) + ϑ (x)
∂f (x, t)

∂x
+ γ (x)

∂2f (x, t)

∂x2
+ ϕ (x) f (x, t) = σ(x, t), (22)

where (x, t) ∈ [0, 1]× [0, T̆ ], n− 1 < α ≤ n

∂if (x, 0)

∂ti
= fi(x), i = 0, 1, . . . , n− 1, (23)

and

f (0, t) = ε0(t), f (1, t) = ε1(t), t ≥ 0. (24)

Ignoring all boundary and initial conditions make the computation simplier. Now,
the methodology involves using the Sumudu transformation on both sides of the Eq.
(22) to obtain

S [f (x, t)]−
n−1∑
k=0

[
wk

∂kf (x, 0)

∂tk

]
+ wα

[
ϑ (x)

∂

∂x
+ γ (x)

∂2

∂x2
+ ϕ (x)

]
S [f (x, t)]

− wαS [σ (x, t)] = 0 (25)

The nonlinear operator becomes

N [φ (x, t; p)] =S [φ (x, t; p)]−
n−1∑
k=0

[
wk

∂kφ (x, 0; p)

∂tk

]
+ wα

[
ϑ (x)

∂

∂x
+ γ (x)

∂2

∂x2
+ ϕ (x)

]
S [φ (x, t; p)]− wαS [σ (x, t)]

=0 (26)

where φ (x, t; p) is a real function of x, t and embedding parameter p ∈ [0, 1]. By
homotopy, we have

(1− p)S [φ (x, t; p)− f0 (x, t)] = phH(x, t)N [φ (x, t; p)] ; (27)

where φ (x, t; p) is an unknown function, H (x, t) 6= 0, h 6= 0 is a auxiliary parameter
and an auxiliary function f0(x, t) is an initial guess of f(x, t). Auxiliary parameter
can be choosen arbitrarily in SHAM. Clearly, If p = 0, φ (x, t; 0) = f0(x, t) and if
p = 1, φ (x, t; 1) = f(x, t). Thus, the solution converges to the solution f(x, t) from
first prediction f0(x, t) as p varies from 0 to 1. Now, writing φ (x, t; p) in the form of
Taylor′s series with respect to p leads to

φ (x, t; p) = f0 (x, t) +

∞∑
m=1

pmfm(x, t) (28)

where

fm(x, t) =
1

Γ(m+ 1)

∂mφ (x, t; p)

∂pm

∣∣∣∣
p=0

(29)

The parameter h controls the convergence of numerical solution (28). The series
(28) converges at p = 1 if we make the correct choices of necessary parameter and



ANALYSIS OF FRACTIONAL FOKKER-PLANCK EQUATION 339

predictions. From here,

f (x, t) = f0 (x, t) +

∞∑
m=1

fm(x, t) (30)

which leads to one of the solutions of Eq. (26) is obtained. It is seen from the
above expression that exact solution f(x, t) and the first prediction f0(x, t) have a
relationship in terms of fm(x, t)(m = 1, 2, 3, . . .). Differentiating Eq. (27) m times
with respect to p, plugging p = 0, and multiplying by 1

Γ(m+1) leads to:

S [fm (x, t)− χmfm−1 (x, t)] = hH (x, t)Rm(~fm−1, x, t). (31)

where

~f = {f0 (x, t) , f1 (x, t) , f2 (x, t) , . . . , fm(x, t)} . (32)

Applying inverse Sumudu transform to both sides of Eq. (31), then the expression
below is obtained:

fm (x, t) = χmfm−1 (x, t) + S−1
[
hH (x, t)Rm(~fm−1, x, t)

]
(33)

where

Rm(~fm−1, x, t) =
1

Γ(m)

∂m−1φ (x, t; p)

∂pm−1

∣∣∣∣
p=0

(34)

and

χm =

{
0, m ≤ 1
1,m > 1

(35)

In our case

Rm

(
~fm−1, x, t

)
= C

0 D
α

t fm−1 (x, t) + ϑ (x)
∂fm−1(x, t)

∂x
+ γ (x)

∂2fm−1 (x, t)

∂x2

+ ϕ (x) fm−1 (x, t)− (1− χm)σ(x, t) (36)

fm (x, t) for m ≥ 1, at M th order can be obtained easily from (33) which leads to
accurate approximation of the Eq. (22)

f(x, t) =

M∑
m=0

fm(x, t) (37)

as M →∞.

Theorem 3.1. If the approximation (37) converges as M →∞. The exact solution
(22) is obtained.

Proof. Assume that the approximation (37) is a convergent series then

∞∑
m=0

fm(x, t) = f0 (x, t) +

∞∑
m=1

fm(x, t) = K(x, t).
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Now we have limM→∞ fm(x, t) = 0. Taking definition of Eq. (31) into account leads
to

lim
M→∞

[
hH (x, t)

M∑
m=1

Rm

(
~fm−1, x, t

)]
= lim
M→∞

(
M∑
m=1

S [fm (x, t)− χmfm−1 (x, t)]

)

= S

[
lim
M→∞

M∑
m=1

[fm (x, t)− χmfm−1 (x, t)]

]
= S

[
lim
M→∞

fm(x, t)
]

= 0.

Since h 6= 0, H (x, t) 6= 0, therefore,
∑∞
m=1Rm

(
~fm−1, x, t

)
= 0. From (36)

∞∑
m=1

Rm

(
~fm−1, x, t

)
=

∞∑
m=1

C
0 D

α

t fm−1 (x, t)

+

∞∑
m=1

[
ϑ (x)

∂fm−1(x, t)

∂x
+ γ (x)

∂2fm−1 (x, t)

∂x2
+ ϕ (x) fm−1 (x, t)

]
−
∞∑
m=1

(1− χm)σ(x, t).

∞∑
m=1

Rm

(
~fm−1, x, t

)
=C

0 D
α

t

∞∑
m=0

fm (x, t) + ϑ (x)

∞∑
m=0

∂fm(x, t)

∂x

+ γ (x)

∞∑
m=0

∂2fm(x, t)

∂x2
+ ϕ (x)

∞∑
m=0

fm (x, t)− σ(x, t).

C
0 D

α

t K (x, t) + ϑ (x)
∂K (x, t)

∂x
+ γ (x)

∂2K (x, t)

∂x2
+ ϕ (x)K (x, t)− σ (x, t) = 0. (38)

Above equation (38) shows that, K (x, t) satisfies the original problem (22). �

Example 3.1.

C
0 D

α

t f (x, t) = −∂ (xf (x, t))

∂x
+
∂2
(
x2f(x,t)

2

)
∂x2

, x, t > 0, 0 < α ≤ 1 (39)

By the initial condition

f (x, 0) = x, (40)

f (x, t) = xet (41)

is the solution for α = 1. Utilizing the Sumudu transformation to Eq. (39) and using
the definition (8) leads to

S [f (x, t)] + wαS

∂(xf (x, t))

∂x
−
∂2
(
x2f(x,t)

2

)
∂x2

 = 0, t > 0 (42)

The operator which is nonlinear becomes

N [φ (x, t; p)] = S [φ (x, t; p)]+wαS

∂ (xφ (x, t; p))

∂x
−
∂2
(
x2φ(x,t;p)

2

)
∂x2

 = 0, t > 0, 0 ≤ p ≤ 1

(43)
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Table 1. Comparison between approximate solution fSHAM and
exact solution fexact for problem (39)-(40) in case of the Caputo at
t = 0.01. (First 10 term)

|fSHAM − fexact|
x α = 0.5 α = 0.75 α = 1
0.25 0.028398296778751 0.006280575846505 5.551115123125783×10−17

0.5 0.056796593557503 0.012561151693010 1.110223024625157×10−16

0.75 0.085194890336254 0.018841727539515 0
1 0.113593187115006 0.025122303386020 2.220446049250313×10−16

and thus

Rm

(
~fm−1, x, t

)
= S [fm−1 (x, t)]+wαS

∂ (xfm−1 (x, t))

∂x
−
∂2
(
x2fm−1(x,t)

2

)
∂x2

 = 0, t > 0,

(44)
Utilizing the inverse Sumudu transformation to Eq. (31), we get

fm (x, t) = χmfm−1 (x, t) + S−1
[
hH(x, t)Rm

(
~fm−1, x, t

)]
(45)

Taking H (x, t) = 1 above and solving for m = 1, 2, . . . leads to

f1 (x, t) = S−1

h
wαS

∂ (xf0 (x, t))

∂x
−
∂2
(
x2f0(x,t)

2

)
∂x2

 = −xh tα

Γ(α+ 1)
.

f2 (x, t) = −xh tα

Γ (α+ 1)
− xh2 tα

Γ (α+ 1)
+ xh2 t2α

Γ(2α+ 1)
.

f3 (x, t) = −xh tα

Γ (α+ 1)
− 2xh2 tα

Γ (α+ 1)
+ 2xh2 t2α

Γ (2α+ 1)
− xh3 tα

Γ (α+ 1)

+2xh3 t2α

Γ (2α+ 1)
− xh3 t3α

Γ(3α+ 1)

Computing the first 10 terms allow us to construct a formula for the solution of Eq.
(39) as

f(x, t) = f0 (x, t) +

∞∑
m=1

fm(x, t). (46)

Taking h = −1 leads to the following approximate solution:

f (x, t) = x+x
tα

Γ (α+ 1)
+x

t2α

Γ (2α+ 1)
+x

t3α

Γ (3α+ 1)
+ . . . = x

∞∑
n=0

tnα

Γ(nα+ 1)
. (47)

For α = 1,

f (x, t) = xet.

This solution is the same as exact solution for Eq. (39).
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Figure 1. Figures of approximate solution and exact solution for
α = 0.5, α = 0.75 and α = 1 at t = 0.01

4. Approximate solution of Caputo-Fabrizio time-fractional differential equa-
tion via SHAM

CF
0 D

α

t f (x, t) + ϑ (x)
∂f (x, t)

∂x
+ γ (x)

∂2f (x, t)

∂x2
+ ϕ (x) f (x, t) = σ(x, t), (48)

where (x, t) ∈ [0, 1]× [0, T̆ ],m− 1 < α+ n ≤ m, the initial positions are

∂if (x, 0)

∂ti
= fi(x), i = 0, 1, . . . , n− 1, (49)

and

f (0, t) = ε0(t), f (1, t) = ε1(t), t ≥ 0, (50)

Ignoring all boundary and initial conditions make the computation simplier. Now,
the methodology involves using the Sumudu transformation on each side of the Eq.
(48) to obtain

S [f (x, t)]−
n−1∑
k=0

[
1

w−k
∂kf (x, 0)

∂tk

]
+

(1− α+ αw)wn

M (α)

[
ϑ (x)

∂

∂x
+ γ (x)

∂2

∂x2
+ ϕ (x)

]
× S [f (x, t)]− (1− α+ αw)wn

M (α)
S [σ (x, t)] = 0. (51)
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The operator which is not linear becomes

N [φ (x, t; p)] = S [φ (x, t; p)]−
n−1∑
k=0

[
1

w−k
∂kφ (x, 0; p)

∂tk

]
+

(1− α+ αw)wn

M (α)

[
ϑ (x)

∂

∂x
+ γ (x)

∂2

∂x2
+ ϕ (x)

]
S [φ (x, t; p)]

− (1− α+ αw)wn

M (α)
S [σ (x, t)] = 0 (52)

where φ (x, t; p) is a real valued function and p ∈ [0, 1] is an embedding parameter.
By homotopy, we have

(1− p)S [φ (x, t; p)− f0 (x, t)] = phH(x, t)N [φ (x, t; p)] ; (53)

where φ (x, t; p) is an unknown function, H (x, t) 6= 0, h 6= 0 is a auxiliary parameter
and an auxiliary function f0(x, t) is an first prediction of f(x, t). Auxiliary parameter
can be choosen arbitrarily in SHAM. Clearly, If p = 0, φ (x, t; 0) = f0(x, t) and if
p = 1, φ (x, t; 1) = f(x, t). Thus, the solution converges to the solution f(x, t) from
first prediction f0(x, t) as p varies from 0 to 1. Now, writing φ (x, t; p) in the form of
Taylor′s series with respect to p leads to

φ (x, t; p) = f0 (x, t) +

∞∑
m=1

pmfm(x, t) (54)

where

fm(x, t) =
1

Γ(m+ 1)

∂mφ (x, t; p)

∂pm

∣∣∣∣
p=0

(55)

The parameter h controls the convergence of numerical solution (54). The series (54)
converges at p = 1 if we make the right choices of necessary parameter and guesses..
From here,

f (x, t) = f0 (x, t) +

∞∑
m=1

fm(x, t) (56)

which leads to one of the solutions of Eq. (52) is obtained. It is seen from the above
expression that exact solution f(x, t) and the initial guess f0(x, t) have a relationship
in terms of fm(x, t), (m = 1, 2, 3, . . .). Differentiating Eq. (53) m times with respect
to p, plugging p = 0, and multiplying by 1

Γ(m+1) leads to:

S [fm (x, t)− χmfm−1 (x, t)] = hH (x, t)Rm(~fm−1, x, t). (57)

where

S [fm (x, t)− χmfm−1 (x, t)] = hH (x, t)Rm(~fm−1, x, t).

If both sides of Eq. (57) is operated the inverse Sumudu transform, then the expression
below is obtained:

fm (x, t) = χmfm−1 (x, t) + S−1
[
hH (x, t)Rm(~fm−1, x, t)

]
(58)

where

Rm(~fm−1, x, t) =
1

Γ(m)

∂m−1φ (x, t; p)

∂pm−1

∣∣∣∣
p=0

(59)
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and

χm =

{
0, m ≤ 1
1,m > 1

(60)

In our case

Rm

(
~fm−1, x, t

)
= CF

0 D
α

t fm−1 (x, t) + ϑ (x)
∂fm−1(x, t)

∂x
+ γ (x)

∂2fm−1 (x, t)

∂x2

+ ϕ (x) fm−1 (x, t)− (1− χm)σ(x, t) (61)

fm (x, t) for m ≥ 1, at M th order can be obtained easily from (58) which leads to
accurate approximation of the Eq. (48)

f(x, t) =

M∑
m=0

fm(x, t) (62)

as M →∞.

Example 4.1.

CF
0 D

α

t f (x, t) = −∂ (xf (x, t))

∂x
+
∂2
(
x2f(x,t)

2

)
∂x2

, x, t > 0, 0 < α ≤ 1 (63)

By the initial condition

f (x, 0) = x, (64)

f (x, t) = xet is the solution for α = 1. Utilizing the Sumudu transformation to Eq.
(63) and using the definition (8) leads to

S [f (x, t)]− f (x, 0) +
(1− α+ αw)w

M(α)
S

∂ (xf (x, t))

∂x
−
∂2
(
x2f(x,t)

2

)
∂x2

 = 0, t > 0.

(65)
The operator which is nonlinear becomes

N [φ (x, t; p)] = S [φ (x, t; p)] +

(
w − αw + αw2

)
M(α)

S

∂ (xφ (x, t; p))

∂x
−
∂2
(
x2φ(x,t;p)

2

)
∂x2

 = 0,

t > 0, 0 ≤ p ≤ 1 (66)

and thus

Rm

(
~fm−1, x, t

)
= S [fm−1 (x, t)] +

(
w − αw + αw2

)
M(α)

S

∂ (xfm−1 (x, t))

∂x
−
∂2
(
x2fm−1(x,t)

2

)
∂x2


= 0, t > 0, (67)

Utilizing the inverse Sumudu transformation to Eq. (57), we get

S [fm (x, t)− χmfm−1(x, t)] = hH(x, t)Rm

(
~fm−1, x, t

)
.

Applying the inverse Sumudu transform, we have

fm (x, t) = χmfm−1 (x, t) + S−1
[
hH(x, t)Rm

(
~fm−1, x, t

)]
(68)
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Table 2. Comparison between approximate solution fSHAM and
exact solution fexact for problem (63)-(64) in case of the Caputo-
Fabrizio at x = 0.05. (First 10 term)

α = 1

t fSHAM fexact |fSHAM − fexact|
0.01 0.050002500020833 0.050502508354208 5.000083333749905×10−4

0.05 0.050062513021918 0.052563554818801 2.501041796883×10−3

0.1 0.050250208402790 0.055258545903782 5.008337500992×10−4

0.15 0.050563555478834 0.058091712136414 7.528156657581×10−3

0.2 0.051003337780954 0.061070137908009 1.0066800127055×10−2

Taking H (x, t) = 1 above and solving for m = 1, 2, . . . leads to

f1 (x, t) = S−1

[
h

[(
w − αw + αw2

)
M(α)

S [−x]

]]

=
1

M(α)

[
−hx

t

Γ (1 + 1)
+ hxα

t

Γ (1 + 1)
− hxα

t2

Γ(2 + 1)

]
.

f2 (x, t) =
xh

M(α)

[
−

t

Γ (2)
+ α

t

Γ (2)
− α

t2

Γ(3)

]
+

xh2

M(α)

[
−

t

Γ (2)
+ α

t

Γ (2)
− α

t2

Γ(3)

]
+

h2x

M2(α)

[(
t2

Γ(3)
− α

t2

Γ(3)
+ α

t3

Γ(4)

)
+

(
−α

t2

Γ(3)
+ α2 t2

Γ(3)
− α2 t3

Γ(4)

)
+

(
α

t3

Γ(4)
− α2 t3

Γ(4)
+ α2 t4

Γ(5)

)]
.

f3 (x, t) =
xh

M(α)

[
−

t

Γ (2)
+ α

t

Γ (2)
− α

t2

Γ(3)

]
+

xh2

M(α)

[
−

t

Γ (2)
+ α

t

Γ (2)
− α

t2

Γ(3)

]
+

h2x

M2(α)

[(
t2

Γ(3)
− α

t2

Γ(3)
+ α

t3

Γ(4)

)
+

(
−α

t2

Γ(3)
+ α2 t2

Γ(3)
− α2 t3

Γ(4)

)
+

(
α

t3

Γ(4)
− α2 t3

Γ(4)
+ α2 t4

Γ(5)

)]
+

xh2

M (α)

[
−

t

Γ (2)
+ α

t

Γ (2)
− α

t2

Γ (3)

]
+

xh3

M (α)

[
−

t

Γ (2)
+ α

t

Γ (2)
− α

t2

Γ (3)

]
+

h3x

M2 (α)

[(
t2

Γ (3)
− α

t2

Γ (3)
+ α

t3

Γ (4)

)
+

(
−α

t2

Γ (3)
+ α2 t2

Γ (3)
− α2 t3

Γ (4)

)
+

(
α

t3

Γ (4)
− α2 t3

Γ (4)
+ α2 t4

Γ (5)

)]
+

xh2

M2(α)

[(
1− 2α+ α2

) t2

Γ(3)
+
(
α− α2

) t3

Γ(4)

]
+

xh3

M2(α)

[(
1− 2α+ α2

) t2

Γ(3)
+
(
α− α2

) t3

Γ(4)

]
+

xh3

M3(α)

[(
−1 + 3α− 3α2 + α3

) t3

Γ(4)
+
(
−3α+ 6α2 − 3α3

) t4

Γ(5)
+
(
−3α2 + 3α3

) t5

Γ(6)
− α3 t6

Γ(7)

]
.

Computing the first 10 terms allow us to construct a formula for the solution of Eq. (63) as

f(x, t) = f0 (x, t) +
∞∑
m=1

fm(x, t). (69)

Taking h = −1 leads to the following approximate solution:

f (x, t) = x+
x

M(α)

[
t

Γ (2)
− α

t

Γ (2)
+ α

t2

Γ(3)

]
+

x

M2(α)

[(
t2

Γ(3)
− α

t2

Γ(3)
+ α

t3

Γ(4)

)
+

(
−α

t2

Γ(3)
+ α2 t2

Γ(3)
− α2 t3

Γ(4)

)
+

(
α

t3

Γ(4)
− α2 t3

Γ(4)
+ α2 t4

Γ(5)

)]
−

x

M3(α)

[(
−1 + 3α− 3α2 + α3

) t3

Γ(4)
+
(
−3α+ 6α2 − 3α3

) t4

Γ(5)
+
(
−3α2 + 3α3

) t5

Γ(6)
− α3 t6

Γ(7)

]
.

For α→ 1 and n→∞

f (x, t) = x+ x
t2

Γ (3)
+ x

t4

Γ(5)
+ x

t6

Γ(7)
+ . . . = x

∞∑
n=0

t2n

(2n)!
= x cosh(t). (70)
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Figure 2. Graphs of approximate solution and exact solution

5. Conclusion

In this study the SHAM has been utilized in order to construct numerical solution of
Caputo and Caputo-Fabrizio time-fractional Fokker-Planck equations. We have com-
pared the approximate solutions received in the sight of SHAM with those outcomes
received from the exact analytical solutions. This operation indicates an accurate
understanding between the SHAM and exact outcomes. It is clear that the SHAM
gives accurate and convergent series solutions applying only a few iterations in every
two fractional derivative. Since the Sumudu transform permits one to get over the
deficiency chiefly produced by unsatisfied boundary or initial conditions, the SHAM
is a stronger method that requires inferior calculation time and this method is much
more useful than the HPM. It is clear from the tables and solution graphics of the
examples that the approximate solution of Caputo fractional Fokker-Planck equation
get closer to the exact solution. However the approximate solution of Caputo-Fabrizio
Fokker-Planck equation with time fractional derivative does not converge to the exact
solution. As a result Fokker-Planck equation with Caputo time fractional derivative
models the time evolution of the probability density function much more better than
Fokker-Planck equation with Caputo-Fabrizio time fractional derivative.
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