
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 49(1), 2022, Pages 52–61, DOI:
ISSN: 1223-6934

A vectorial approach to generalize the remainder theorem

Marcos A. Hidalgo Rosas and Francesco Laudano

Abstract. We propose a new computational proof for the division algorithm that, using
vector algebra, generalizes the remainder theorem to divisions for polynomials of any degree

over a generic integral domain. Then, we extend this result to calculate the pseudo-divisions.

Later, starting from the previous theorems, we obtain some algorithms that calculate the
pseudo-remainder and the pseudo-quotient while avoiding long division. Finally, we provide

examples and comparisons indicating that these algorithms are efficient in divisions by sparse

polynomials and their divisors, as cyclotomic polynomials.

2010 Mathematics Subject Classification. Primary 13B25; Secondary 13F20.

Key words and phrases. polynomial pseudo-division, pseudo-remainder, algorithm, matlab

code.

1. Introduction

Many algorithms that perform the polynomials division give priority to the calculation
of the quotient ([2, Algorithm 4.3 p. 122], [3, Algorithm D, p. 421 and Algorithm R,
p. 425], [5], [1] and reference therein, [7, Algorithm 9.5 p. 261] and [8]). An exception
is the remainder theorem, which allows us determining the remainder for divisors
of the type x − c through an evaluation, with considerable savings in calculations
[Lemma 2.3 p. 123] [6]. In [4, Theorem 2.7 p. 962] the author shows that the
remainder theorem can be extended to divisors whose leading coefficient is a unit.
This circumstance allows us calculating the remainder without going through the
quotient; furthermore, in many cases, we can also calculate the quotient with the
same substitution-evaluation technique.

Let, for example, f = 2x16 + 5x3 + x2 − 4x+ 1 and m = x10 − 2. By substituting
2 for x10 in f(x), we obtain

r = 2 · 2x6 + 5x3 + x2 − 4x+ 1 = 4x6 + 5x3 + x2 − 4x+ 1,

which, as can be easily checked, is the remainder of f on division by m in Z[x].
Moreover, by substituting 3 for x10 in f−r = 2x16−4x6, we obtain the polynomial

q = 2 · 3x6 − 4x6 = 2x6,

which is the quotient we desire.
The first aim of this work is to provide an adequate formalization to the naive

computational approach introduced in [4, Theorem 2.7 p. 962] to calculate the re-
mainder of polynomial divisions, framing it in the context of vector algebra. In this
way, we obtain a new constructive proof for the so-called Euclidean division algorithm
(Theorem 2.2). The second purpose is to applying the above result to calculate the

Received March 10, 2021. Accepted February 26, 2022.

52

A VECTORIAL GENERALIZATION OF REMAINDER THEOREM 53

pseudo-remainder and the pseudo-quotient (Theorem 2.3). Besides, we provide some
optimized algorithms for calculating the remainder and the pseudo-remainder (Algo-
rithm 1, Algorithm 2, Algorithm 3) that seems to be efficient in divisions by sparse
polynomials and their divisors, as cyclotomic polynomials. Finally, we compare the
effectiveness of Algorithm 3 with the classical “deconv” algorithm.

2. Main theorem and algorithms

In the following D denotes an integral domain, Frac(D) the field of fractions of D
and Frac(D)[x] the commutative ring of all polynomials in an indeterminate x with
coefficients in Frac(D). As in the ring of integers, we can define the “modulo-m
congruence” relation in Frac(D)[x], by posing a ≡m b if and only if m divides
a − b in Frac(D)[x] (i.e., there exists q ∈ Frac(D)[x] such that a − b = mq). As is
well known, the modulo-m congruence is an equivalence relation that preserves the
operations of Frac(D)[x].

Let m =
∑h

j=0 ajx
j ∈ D[x]. The basic idea to determine the remainder of divisions

by m, without long division, consist on translate the Pascal divisibility test to the
polynomials of Frac(D)[x]. In other words, we would determine the remainders of
the power of x modulo m.
For this purpose, we will use the following notations:
A := −a−1h

[
ah−1 ah−2 ah−3 . . . a1 a0

]
,

X(0) :=

xh−1

xh−2

.

.

.
x1

x0

, and X(k) :=

A ·X(k−1)

X
(k−1)
1

X
(k−1)
2

.

.

.

X
(k−1)
h−2

X
(k−1)
h−1

for each positive integer k.

Moreover, if B and C are vectors of Frac(D)[x](h) we say B ≡m C if and only if
Bi ≡m Ci, for any i ∈ {1, 2, ..., h}.

At this point, through successive iterations, we can verify that xh+k ≡m A ·X(k)

and deg(A ·X(k)) < h, for each k ∈ N. Then every A ·X(k) is the reminder of xh+k

on division by m.

In other words, the following lemma holds.

Lemma 2.1. Let D be an integral domain and let Frac(D) the field of fractions of

D. Let m =
∑h

j=0 ajx
j ∈ D[x], with h := deg(m) > 0. Then, for each k ∈ N we have

• A ·X(k) ∈ Frac(D)[x] and xh+k ≡m A ·X(k),
• X(k+1) ≡m X(k)x,
• deg(A ·X(k)) < h.

54 M. A. HIDALGO ROSAS AND F. LAUDANO

Proof. We proceed by induction on k. For k = 0 we have A·X(0) = −a−1h

∑h−1
j=0 ajx

j ∈
Frac(D)[x] and deg(A ·X(0)) < h. Moreover xh ≡m A ·X(0), being xh − A ·X(0) =

xh + a−1h

∑h−1
j=0 ajx

j = a−1h m a multiple of m.

Then, X(1) =

A ·X(0)

xh−1

xh−2

.

.

.
x1

≡m

xh

xh−1

xh−2

.

.

.
x1

= X(0)x. In addition, we remark that each

power of x appearing in X(1) has a degree less than h.
At this point we can suppose the thesis holds for any i ∈ N, i ≤ k, to prove that it
holds also for k + 1. From the induction hypothesis we have xh+k+1 = xh+kx ≡m

A ·X(k)x ≡m A ·X(k+1) ∈ Frac(D)[x].

Moreover, X(k+2) =

A ·X(k+1)

X
(k+1)
1

X
(k+1)
2

.

.

.

X
(k+1)
h−1

≡m

xh+k+1

X
(k)
1 x

X
(k)
2 x
.
.
.

X
(k)
h−1x

≡m

A ·X(k)x

X
(k)
1 x

X
(k)
2 x
.
.
.

X
(k)
h−1x

= X(k+1)x.

Finally, we can suppose that the powers of x appearing in X(k) have a degree less
than h. Indeed, being

A ·X(k+1) = −a−1h

[
ah−1 ah−2 ah−3 . . . a1 a0

]
·

A ·X(k)

X
(k)
1

X
(k)
2

.

.

.

X
(k)
h−2

X
(k)
h−1

,

since deg(A ·X(k)) < h, we also have deg(A ·X(k+1)) < h. �

Example 2.1. With m = 2x2 + 3x+ 5 in Z[x] we have:

A =
[
− 3

2 − 5
2

]
, X(0) =

[
x
1

]
, X(1) =

[
A ·X(0)

X
(0)
1

]
=

[
− 3

2x−
5
2

x

]
, X(2) =

[
A ·X(1)

X
(1)
1

]
=[

9
4x+ 15

4 −
5
2x

− 3
2x−

5
2

]
, X(3) = ... Then

x2 ≡m A · X(0) = − 3
2x −

5
2 , x3 ≡m A · X(1) = − 1

4x + 15
4 , x4 ≡m A · X(2) =

33
8 x+ 5

8 , x
5 ≡m A ·X(3) = ...

A VECTORIAL GENERALIZATION OF REMAINDER THEOREM 55

Let f =
∑n

j=0 fjx
j ∈ D[x], with an 6= 0 and n ≥ h. Thus, by the previous

considerations, follows that the reminder of f on division by m is

r =

n−h∑
k=0

fh+k(A ·X(k)) +

h−1∑
j=0

fjx
j ,

and it can be calculated starting from r =
∑h−1

j=0 fjx
j , whit the iteration

r := r + fh+kA ·X(k).

Moreover, we can prove that q is the remainder of f −r on division by m−1, then,
in many cases, it can be calculated applying the previous method to these latter
polynomials.

In other words, keeping the previous notations for A and X(k), we can state the
following Theorem, which provides a formal computational proof for the Euclidean
division algorithm.

Theorem 2.2. Let D be an integral domain and let Frac(D) the field of fractions D.

Let f,m ∈ D[x], with f =
∑n

j=0 fjx
j, m =

∑h
j=0 ajx

j and h := deg(m) > 0. Then,

there exist unique polynomials q, r ∈ D[x] with f = mq + r, where either r = 0 or
deg(r) < h.
Moreover, if deg(f) ≥ deg(m), then

(1) r =
∑n−h

k=0 fh+k(A ·X(k)) +
∑h−1

j=0 fjx
j,

(2) if deg(f) < 2 · deg(m) then q =
∑n−h

k=0 bh+k(Aq ·X(k)) +
∑h−1

j=0 bjx
j,

with Aq = −a−1h

[
ah−1 ah−2 ah−3 ... a1 a0 − 1

]
and f − r =

∑n
j=0 bjx

j.

Proof. We first prove the existence of q and r. We have f = 0m + f ; then, if f = 0
or deg(f) < h, the existence is proved by posing r = f and q = 0.
Let us now analyze the case n := deg(f) ≥ h. Since ah is a unit of R, from the above
Lemma 2.1 for each k ∈ N we have xh+k ≡m A ·X(k), moreover deg(A ·X(k)) < h.

Then the polynomial r =
∑n−h

k=0 ah+k(A ·X(k)) +
∑h−1

j=0 ajx
j is m-congruent to f and

deg(r) < h, i.e there exist a polynomial q ∈ R[x] such that f = mq + r. Moreover, if
there are q′, r′ ∈ R[x] such that f = mq′+r′ with deg(r′) < h, followsm(q−q′) = r′−r.
Then q = q′, otherwise we would have deg(r − r′) = deg(m(q − q′)) ≥ deg(m), which
is false. Thus r and q are unique.
To prove the second item, we just observe that, being f − r = (m − 1)q + q, we
have q ≡m−1 f − r. From the hypotesis deg(f) < 2 · deg(m) we have deg(q) =
deg(f)− deg(m) < 2 · deg(m)− deg(m) = deg(m) = deg(m− 1). �

The previous theorem gives rise to the following algorithm.

2.1. Pseudo-Remainder algorithm. In many cases, we can determine the poly-
nomial remainder up to a multiplicative constant, as happens, for example, in the
calculation of a polynomials greatest common divisor. This possibility allows us to
avoid the use of divisions and, therefore, to obtain more efficient algorithms. In partic-
ular, we can perform a new division for which the remainder and the quotient belong
to D[x]; precisely, the division of an−h+1

h f by m [2, pp. 54-55]. The remainder and

56 M. A. HIDALGO ROSAS AND F. LAUDANO

Algorithm 1 (General Remainder algorithm)

Input: f,m ∈ D[x], with f =
∑n

j=0 fjx
j, m =

∑h
j=0 ajx

j and n ≥ h > 0.

Output: remainder r ∈ Frac(D)[x] of f on division by m.
Do: For k = 0 to (n− h), calculate the remainder A ·X(k) of xh+k mod m,

(X(k) := A ·X(k−1)),

calculate the remainder r of f mod m (r =
∑h−1

j=0 fjx
j, if fh+k 6= 0 then

r := r + fh+kA ·X(k)).

the quotient of this division are obtained by n − h + 1 instances of the substitution
method provided in Algorithm 1, applied using recursively the rule

ahx
h → −

h−1∑
i=0

aix
i.

Thus, using the previous notations for A, Aq, f − r, and X(k), we have the following
result.

Theorem 2.3. Let D be an integral domain; let f,m ∈ D[x], with f =
∑n

j=0 fjx
j,

m =
∑h

j=0 ajx
j and h := deg(m) > 0. Then, there exist unique polynomials q, r ∈

D[x] with an−h+1
h f = mq + r, where either r = 0 or deg(r) < h.

Moreover, if deg(f) ≥ deg(m), then

(1) r = an−h+1
h

(∑n−h
k=0 fh+k(A ·X(k)) +

∑h−1
j=0 fjx

j
)
,

(2) if deg(f) < 2 · deg(m) then q = an−h+1
h

(∑n−h
k=0 bh+k(Aq ·X(k)) +

∑h−1
j=0 bjx

j
)
.

As is well known, the above polynomials q and r are called the pseudo-quotient
and the pseudo-remainder of f on pseudo-division by m. In the following they are
denoted by prem(f,m) and pquot(f,m).

The following algorithm can be used to calculate the pseudo-remainder.

Algorithm 2 (Pseudo-Remainder algorithm)

Input: f,m ∈ D[x], with f =
∑n

j=0 fjx
j, m =

∑h
j=0 ajx

j and n ≥ h > 0.

Output: Pseudo-remainder r ∈ D[x] of f on division by m.

Do: For k = 0 to (n− h), calculate the remainder (A ·X(k)) of ak+1
h xh+k mod m,

(X(k) := A ·X(k−1)),

calculate the pseudo-remainder pr of f mod m (pr =
∑h−1

j=0 fjx
j, if fh+k 6= 0 then

pr := pr + an−h−kh fh+kX
(k)).

2.2. Remainder to divisor of csx
s − c0. As a particular case of Algorithm 1, we

can determine the remainder in divisions for divisors of polynomials of type csx
s− c0.

In the following, to simplify, we will consider only primitive polynomials.

Let m =
∑h

j=0 ajx
j be such a divisor, then csx

s − c0 = qm for some q ∈ D[x],

i.e. xs ≡m
c0
cs

in Frac(D)[x]. Consequently, posing c0
cs

:= c, the remainders of the
divisions of the powers of x by csx

s − c0 will develop as follows:

1, x, . . . xs−1, c, cx, . . . cxs−1, c2, c2x . . .

A VECTORIAL GENERALIZATION OF REMAINDER THEOREM 57

Therefore, posing f =
∑n

j=0 fjx
j ∈ D[x] with n := deg(f) ≥ h > 0, n = ks + t with

0 < t < s and fsk+u = 0 for any integer u with t < u < s, we can write

f = fsk+(s−1)x
sk+(s−1)+...+fskx

sk+fs(k−1)+(s−1)x
s(k−1)+(s−1)+...+f2x

2+f1x+f0,

and from (xs)j ≡m cj , we have xsj+t ≡m cjxt. Substituting c for xs in f , and
grouping the coefficients of terms having an equal degree, we obtain

r0 =

(k∑
j=0

fsj+(s−1)c
j

)
xs−1+

(k∑
j=0

fsj+(s−2)c
j

)
xs−2+...+

(k∑
j=0

fsj+1c
j

)
x+

(k∑
j=0

fsjc
j

)

=

s−1∑
i=0

(k∑
j=0

fsj+ic
j

)
xi.

Thus, since deg(r0) < h, follows that r0 is the remainder of f modulo csx
s − c0. At

this point, if r is the remainder of f modulo m, we have r ≡m f ≡m r0. Then, we can
calculate the polynomial r applying Algorithm 1 to r0. Moreover, if n ≥ s > n/2 > 0,
from Theorem 2.2, we can also calculate the quotient using the same algorithm on
the polynomials r − r0 and m− 1 .

Algorithm 3 (Remainder algorithm for divisor of csx
s − c0)

Input: f,m ∈ D[x], with m =
∑h

j=0 ajx
j is a divisor of csx

s − c0, f =
∑n

j=0 fjx
j

and n = sk + t ≥ h > 0 with 0 ≤ t < s.
Output: Remainder r ∈ Frac(D)[x] of f on division by m.

Do: Calculate r0 (r0 =
∑s−1

i=0 fix
i, For j = 1 to k, r0 = r0 +

∑s−1
i=0 fsj+ix

i),
if s < h then calculate the remainder of r0 modulo m using Algorithm 1.

3. Implementation, examples and efficiency

In this section, we provide some Matlab implementations of the previous algorithms.
We also provide examples and compare the effectiveness of Algorithm 3 with the
classical algorithm deconv.

Matlab Code for General Remainder algorithm

1 function [r] = GRA(f,m)
2 n = size(f,2)−1;
3 h = size(m,2)−1;
4 AX=zeros(n−h+1,h);
5 for i=1:h
6 AX(1,i)=−m(i+1)/m(1);
7 end
8 if n>h
9 for k=2:n−h+1

10 for i=1:h−1
11 AX(k,i)=AX(k−1,1)*AX(1,i)+AX(k−1,i+1);
12 end
13 AX(k,h)=AX(k−1,1)*AX(1,h);

58 M. A. HIDALGO ROSAS AND F. LAUDANO

14 end
15 end
16 r=zeros(1,h);
17 for k=1:n−h+1
18 if f(k)6= 0
19 r(1,:)=f(k)*AX(n−h+2−k,:)+r(1,:);
20 end
21 end
22 for i=0:h−1
23 r(1,h−i)=f(n−i+1)+r(1,h−i);
24 end
25 end

Example 3.1. Using the previous code we can check that the remainder of

f = 6x4 + 2x3 − 3x2 + 5x+ 2 modulo m = 2x3 − x+ 2 in R[x] is r = 0.

Matlab Code for pseudo-remainder algorithm

1 function [r] = GPseudoRemainder(f,m)
2 n = size(f,2)−1;
3 h = size(m,2)−1;
4 AX=zeros(n−h+1,h);
5 for i=1:h
6 AX(1,i)=−m(i+1)/m(1);
7 end
8 if n>h
9 for k=2:n−h+1

10 for i=1:h−1
11 AX(k,i)=AX(k−1,1)*AX(1,i)+AX(k−1,i+1);
12 end
13 AX(k,h)=AX(k−1,1)*AX(1,h);
14 end
15 end
16 r=zeros(1,h);
17 for k=1:n−h+1
18 if f(k)6= 0
19 r(1,:)=f(k)*AX(n−h+2−k,:)+r(1,:);
20 end
21 end
22 for i=0:h−1
23 r(1,h−i)=f(n−i+1)+r(1,h−i);
24 end
25 r(1,:) = r(1,:)*(m(1,1)ˆ(n−h+1));
26 end

Example 3.2. Using the previous code we can check that the pseudo-remainder of

f = 6x4 + 2x3 − 3x2 + 5x+ 2 modulo m = 2x3 + x− 2 in R[x].

is Pr = −24x2 + 40x+ 16.

Matlab Code for divisors of csx
s − c0

A VECTORIAL GENERALIZATION OF REMAINDER THEOREM 59

1 function [r] = Rem Binomial Divisors(f,m,p)
2 n = size(f,2)−1;
3 s = size(p,2)−1;
4 h = size(m,2)−1;
5 k = fix(n/s);
6 t=rem(n,s);
7

8 c=−p(s+1)/p(1);
9 r=zeros(1,s);

10 for i= 1:(n+1)
11 g(i)=f(i);
12 endfor
13 for i= 1:(s−t)
14 f(i)=0;
15 endfor
16 for i= (s−t+1):(n+s−t+1)
17 f(i)=g(i−s+t);
18 endfor
19

20 for i=0:s−1
21 for j=0:k
22 if f(s*j+s−i+1)6= 0
23 r(s−i)=r(s−i)+f(s*j+s−i+1)*cˆ(k−j);
24 end
25 end
26 end
27

28 if h<s
29 r=GRA(r,m)
30 end
31 end

Example 3.3. Using the previous code we can check that the remainder of

f = 2x13 − 3x11 + 4x8 − 2x4 + x+ 1 modulo m = x7 + 2 in Z[x]

is r =
∑6

l=0(al + a7+l(−2))xl = −4x6 + 4x4 − 7x+ 1.

Example 3.4. Using the previous code we can check that the remainder of

f = 2x13 − 3x11 + 4x8 − 2x4 + x+ 1 modulo m = φ6 = x2 − x+ 1,

the 6th cyclotomic polynomial ∈ Z[x], is r = 12x− 6.

The results show that the execution times of Algorithm 3 remain low (due to the
linear trend) and do not change even when increasing the degree of the divisor. On
the contrary, the deconv algorithm presents a polynomial trend, its execution times
are greater and increase considerably as the degree of the divisor increases (FIGURE
1).

60 M. A. HIDALGO ROSAS AND F. LAUDANO

Figure 1. Execution time between Algorithm 3 and the classic
deconv algorithm, for computation of the remainder of sparse poly-
nomials divisions for polynomials of the type csx

s−c0. The computer
used was equipped with an AMD EPYC 7742 64 Core Processor ,
256 cores, and 1.08 TB ram.

4. Conclusion

In this work, using vector algebra, we provided, concurrently, a new computational
proof for the Euclidean algorithm and a generalization for the remainder theorem
(Theorem 2.2). Then, we proved a theorem that allows calculating the pseudo-
remainder and pseudo-quotient in the divisions of polynomials over a generic integral
domain (Theorem 2.3). Starting from this theorem, we coded an algorithm that cal-
culates the pseudo-remainder and the pseudo-quotient while avoiding long division
(Algorithm 2.1). Finally, we provided examples and comparisons showing that Algo-
rithm 3 seems to be efficient in divisions by polynomials which are divisors of xh− a,
such as cyclotomic polynomials.

The results obtained seem to indicate that the framework of vector algebra used
in this work could allow us to extend this computational approach to the pseudo-
divisions of multivariate polynomials with coefficients on generic rings, possibly even
non-commutative ones.

Disclosure Statement

No potential conflict of interest was reported by the authors.

A VECTORIAL GENERALIZATION OF REMAINDER THEOREM 61

References

[1] D. Bini and V. Pain, Polynomial Division and Its Computational Complexity, Journal of Com-

plexity 2 (1986), 179–203.
[2] K.O. Geddes, S.R. Czapor, and G. Labahn, Algorithms for Computer Algebra (3rd ed), Klewer

Academic Publisher, 1992.

[3] D.E. Knuth, The Art of Computer Programming Vol 2 Seminumerical algorithm (3rd ed),
Addison-Wesley, 1998.

[4] F. Laudano, A generalization of the remainder theorem and factor theorem, Int J Math Educ

Sci Technol. 50 (2019), no. 6, 960–967. DOI: 10.1080/0020739X.2018.1522676
[5] F. Richman, A division algorithm, Journal of Algebra and Its Applications 4 (2005), no. 4,

441–449. DOI: 10.1142/S0219498805001289

[6] J.J. Rotman, Advanced Modern Algebra, Prentice-Hall, 2003.
[7] J. von zur Gathen and J. Gerhard, Modern Computer Algebra (Third edition), Cambridge

University Press, 2013.

[8] https://it.mathworks.com/help/matlab/ref/deconv.html#bvjpzjj-1

(Marcos A. Hidalgo Rosas) Faculty of Life Sciences, Universidad Regional Amazónica

Ikiam, Tena, 150102, Ecuador
E-mail address: marcos.hidalgo@est.ikiam.edu.ec, m.arco.s@outlook.com

(Francesco Laudano) Department of Agricoltura, Università degli Studi del Molise, Via
F. De Santis, Campobasso, 86100, Italy. ORCID ID 0000-0003-4489-095X

E-mail address: francesco.laudano@unimol.it, frlaud.fl@gmail.com

https://10.1080/0020739X.2018.1522676
https://doi.org/10.1142/S0219498805001289
https://it.mathworks.com/help/matlab/ref/deconv.html#bvjpzjj-1

	1. Introduction
	2. Main theorem and algorithms
	2.1. Pseudo-Remainder algorithm
	2.2. Remainder to divisor of csxs-c0

	3. Implementation, examples and efficiency
	4. Conclusion
	Disclosure Statement
	References

