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A representation of an uncertain body of evidence

Ion Iancu

Abstract. In this paper we present a kind of pairs (t-norm, t-conorm) dual with respect to a
strong negation with n-threshold a1, ..., a n ∈ (0, 1), a1 < a2 < ... < an. In this way we obtain
an extension of operators with 1− and 2−threshold from some of our papers. The new pair is

obtained from given one.
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1. Introduction

Probability Theory, Shafer’s belief theory and Zadeh’s possibility theory are the
main methods for study the uncertainty. Considering an event, we may to evaluate its
probability, its feasibility, its possibility of occurence or how much it seems credible.
All those evaluations are based on some sets of numbers, generally normalized in some
sense, which have to combined in accordance with the characteristic axioms of those
theories.

In 1972 Sugeno [19] introduced the concept of fuzzy measure in order to depart
from the too rigid framework of probability theory.

Definition 1.1. Given the universe X (supposed to be finite, for sake of simplicity)
a fuzzy measure is a set function g from an algebra A (e.g., the set P(X) of subsets
of X) defined on X to the interval [0, 1] , such that

i) g (∅) = 0, ii) g (X) = 1
iii) ∀A,B ∈ A, if A ⊂ B then g (A) ≤ g (B) .

The following inequalities hold
∀A,B ∈ A, g (A ∩ B) ≤ min (g (A) , g (B))
∀A,B ∈ A, g (A ∪ B) ≥ max (g (A) , g (B)) .

The axioms from Definition 1.1 are very general and it is necessary to be particu-
larised in order to obtain various classes of fuzzy measures. Thus, if

∀A,B ∈ A, g (A ∩ B) = min (g (A) , g (B))
we obtain a necessity measure and for

∀A,B ∈ A, g (A ∪ B) = max (g (A) , g (B))
we have a possibility measure.

In order to combine the uncertainties, the following axiom seems natural:

∀A,B ∈ A, if A ∩ B = ∅ then g (A ∪ B) = g (A) ∗ g (B) (1)
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where ∗ is some operator under which [0, 1] is closed. The algebraic structure of A
induces the choosing ∗ among the triunghiular conorms.

If g is a fuzzy measure, the set function g′ defined by
∀A ∈ A, g′(A) = 1 − g(Ā)

is also a fuzzy measure; this last relation expresses the duality between g and g′. If g
is a conorm-based set function satisfying (1), then the characteristic property of dual
measure g′ is

∀A,B ∈ A, if A ∪ B = X then g (A ∩ B) = g (A)⊥g (B) (2)

where ⊥ denotes the triangular norm dual of ∗ defined by
a⊥b = 1 − (1 − a) ∗ (1 − b) .

Well-known t-norms are
TM (x, y) = min(x, y), TP (x, y) = xy, TL(x, y) = max(0, x + y − 1)

and well-known t-conorms are
SM (x, y) = max(x, y), SP (x, y) = x + y − xy, SL(x, y) = min(1, x + y).

The relations (1) and (2) prove the importance of t-norms and t-conorms in rep-
resentation of composed information from a body of evidence. For this reason, the
construction of new t-norms and t-conorms seems to be an important tool not only for
the theory but also for the applications. The construction of the new operators from
given ones is a technique used in various paper [17], [18], [16], [4], [15], [5], [6], [7],
[8], [9], [10], [12], [21], [11], [13]. From this kind we recall the operators of Pacholczyk
type, named with threshold. They were introduced in order to improve the calculus
of uncertainty in an expert system.

Given a pair (t-norm, t-conorm) denoted as (T, S) and the parameter a ∈ (0, 1) ,
the first result of this type were presented under the form [1], [16]

t − norm :

Ta(x, y) =

{
a

1 − aT
(

1 − a
a x, 1 − a

a y
)

if x ≤ a and y ≤ a

min(x, y) if x > a or y > a

corresponding to t-norm T (x, y);
t − conorm :

Sa(x, y) =
{

S(x, y) if x ≥ a and y ≥ a
max(x, y) if x < a or y < a

corresponding to t-conorm S(x, y).
Ta and Sa are dual operators with respect to the negation with threshold

Ca(x) =

⎧⎨
⎩

1 − 1 − a
a x if x ≤ a

a
1 − a (1 − x) if x ≥ a.

Such operators were used, with very satisfactory results, to construct the sys-
tem SEQUI [1]- an expert system for processing the uncertain questions. In [5] we
presented two kinds of operators with threshold: the first is a generalization of Pa-
cholczyk’s result [16] and the second is a new one.

In [6] we introduced the notion of operators with double threshold (in the Pachol-
czyk’s meaning) and we presented two types of such operators; another types are
given in [7] and [9]. In this paper we present a generalization of our results from [9].
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2. Preliminaries

In the begining, we mention some definitions which will be used in the next section.

Definition 2.1. A t-norm T is an increasing, associative and commutative function
from [0, 1]2 into [0, 1] that satisfies the boundary condition: T (x, 1) = x ∀x ∈ [0, 1].
A continuous t-norm T is called Archimedean if T (x, x) < x ∀x ∈ (0, 1) .

Any t-norm T satisfies the relation T (x, y) ≤ TM (x, y) = min(x, y).

Definition 2.2. A t-conorm S is an increasing, associative and commutative function
from [0, 1]2 into [0, 1] that satisfies the boundary condition: S (x, 0) = x ∀x ∈ [0, 1].
A continuous t-conorm S is called Archimedean if S(x, x) > x ∀x ∈ (0, 1).

Any t-conorm S satisfies the relation S(x, y) ≥ SM (x, y) = max(x, y).

Definition 2.3. A strong negation is an involutive decreasing function from [0, 1]
into itself.

Theorem 2.1. [2] If T is a t-norm and C is a strong negation then
S(x, y) = C(T (C(x), C(y)))

is a t-conorm and reciprocally,
T (x, y) = C(S(C(x), C(y)));

namely, T and S are C−dual.

In order to obtain t-norms and negations one can used the following two theorems.

Theorem 2.2. [5] Let f : [0, 1] → I ⊆ [0,∞) be a continuous strictly decreasing
function and ∆ : I × I → I with the following properties:

(2.1.1) ∆(x, y) = ∆(y, x),
(2.1.2) ∆(x,∆(y, z)) = ∆(∆(x, y), z),
(2.1.3) ∆(x, y) ≤ ∆(x, z) if y ≤ z with equality iff y = z,
(2.1.4) ∆ is continuous
(2.1.5) ∆(x, f(1)) = x for all x, y, z ∈ I . Then

T (x, y) = f (−1)(∆(f(x), f(y))) ∀x, y ∈ [0, 1]

is a t-norm, where f (−1) is the pseudo-inverse of f , extended to the case f(1) > 0 :

f (−1)(x) =

⎧⎨
⎩

1 if x ∈ [0, f(1)]
f−1(x) if x ∈ [f(1), f(0)]
0 if x ∈ [f(0),∞)

Remark 2.1. For ∆ = + and f(1) = 0 we obtain the Ling′s result [14] for continuous
Archimedean t-norms.

Example 2.1. For I = [0,∞), ∆(x, y) = x + y + xy and f(x) = 1 − x in Theorem
2.2 we obtain the t-norm T (x, y) = max(0, 2x + 2y − xy − 2).

Theorem 2.3. [5]Let I ⊆ R and ∆ : I × I → I be an application satisfying the
following conditions, for all x, y, z ∈ I :

(2.2.1) - (2.2.4) identical to (2.1.1)-(2.1.4)
(2.2.5) there is e ∈ I such that ∆(x, e) = x ∀x ∈ I
(2.2.6) ∀x ∈ I there is x′ ∈ I such that ∆(x, x′) = e and ϕ : I → I, ϕ(x) = x′ is

a continuous strictly decreasing function
(2.2.7) let J = [0,∞) ⊆ I and t : [0, 1] → J be a continuous strictly increasing

function with t(0) = e and t(1) is a finite number.
Then C(x) = t−1(∆(t(1), ϕ(t(x)))) is a strong negation for every x ∈ [0, 1].
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Remark 2.2. For ∆ = + and t(x) = x we obtain the Trillas’s result [20].

Example 2.2. For I = R, ∆(x, y) = x + y − 1, e = 1, J = [1,∞), t(x) = 2x + 1
x + 1 and

ϕ(x) = 2 − x we obtain, from Theorem 2.3, C(x) = 1 − x
1 + 3x.

Remark 2.3. Simultaneously using of functions ∆ and f (respectively t) in previous
lemmas allows obtaining of t-norms (respectively negations) on a easier way than in
the case ∆ = +. For instance, if ∆(x, y) = x + y we don’t work with functions of the
type f(x) = ax + b in order to obtain the t-norm from Example 2.1, being necessary
more complicated forms.

3. Operators with n−threshold

We remain in the conditions of Theorem 2.3 and we use the operation ⊕ : I×I → I
instead of ∆; therefore we write x ⊕ y = ∆(x, y). We take ⊗ : I × I → I with the
following properties:

(i) x ⊗ y < x ⊗ z iff y < z ∀x, y, z ∈ I and x > e,
(ii) (I,⊕,⊗) is a field.
We note �x and 1

x the inverse element of x corresponding to ⊕ and ⊗, respectively.
For the simplification of writing we note x ⊗ 1

y = x
y and x ⊗ x = x2.

Theorem 3.1. If the operations ⊕ and ⊗ and the function t have the previous mean-
ing and n ∈ N, n ≥ 1, 0 < a1 < a2 < ... < an < 1 ,

δ(i) =
t(an−i) � t(an−i+1)

t(ai+1) � t(ai)
and θ(i) =

t(ai+1) ⊗ t(an−i+1) � t(ai) ⊗ t(an−i)
t(ai+1) � t(ai)

then

Ca1,...,an
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t−1

(
t (a1) ⊗ t (an) ⊗ t (1)

t (a1) ⊗ t (an) ⊕ (t (1) � t (an)) ⊗ t (x)

)
if x ≤ a1

t−1(t(x) ⊗ δ(i) ⊕ θ(i)) if ai ≤ x ≤ ai+1 and 1 ≤ i < n

t−1

(
t (a1) ⊗ t (an) ⊗ (t (1) � t (x))

(t (1) � t (an)) ⊗ t (x)

)
if x ≥ an

is strong negation having t−1

⎛
⎝ t

(
a[n

2 ]+1

)
⊕ t

(
a[n+1

2 ]
)

2

⎞
⎠ as fixed point, where [x] is

the greatest integer which is smaller than or equal to x.

Proof. It is easy to verify the demands from definition of negation. For instance, for
involution property one proves first that

(i): x ≤ a1 ⇔ Ca1,...,an
(x) ≥ an

(ii): x ≥ an ⇔ Ca1,...,an
(x) ≤ a1

(iii): x ∈ [ai, ai+1] ⇔ Ca1,...,an
(x) ∈ [an−i, an−i+1], ∀i ∈ {1, 2, ..., n − 1}.

After, these relations are used to verify (by a simple calculus) the demands from

Definition 2.3. The fixed point becomes t−1

(
t (ak) ⊕ t (ak+1)

2

)
for n = 2k and ak+1

for n = 2k + 1 . �
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Remark 3.1. The relation (ii) says that if the confidence in a proposition p is greater
than or equal to the threshold an, then the confidence in non p is smaller than or
equal to the threshold a1.

Example 3.1. For ⊕ = +, ⊗ = ×, n = 2 and t(x) = 2x
x + 1 we obtain

Ca1,a2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1a2(1 + x)
a1a2 + x(1 + a1 − a2)

if x ≤ a1

(a1a2 − 1)x + a1 + a2 + 2a1a2

x(a1 + a2 + 2) + 1 − a1a2
if a1 ≤ x ≤ a2

(1 − x)a1a2

x(1 + a1 − a2) − a1a2
if x ≥ a2

Theorem 3.2. Let S be a t-conorm and S′ one from the t-conorms SM or S. For
0 < a1 < ... < an < 1

Sa1,...,an;S′(x, y) =

⎧⎨
⎩

max(x, y) if x < a1 or y < a1

S(x, y) if x ≥ an and y ≥ an

S′(x, y) otherwise

is a t-conorm.

Proof. For S′ ≡ S we obtain

Sa1,...,an;S(x, y) =
{

max(x, y) if x < a1 or y < a1

S(x, y) if x ≥ a1 and y ≥ a1

that is the Pacholczyk’s t-conorm Sa1 [16].
For S′ ≡ SM we obtain

Sa1,...,an;SM
(x, y) =

{
max(x, y) if x < an or y < an

S(x, y) if x ≥ an and y ≥ an

that is the Pacholczyk’s t-conorm San
[16]. �

Remark 3.2. We cannot choose S′ as an arbitrary t-conorm because the associativity
property is not always verified. For instance, for n = 2 and a1 < x < a2 < y < z we
have

Sa1,a2;S′(Sa1,a2;S′(x, y), z) = Sa1,a2;S′(x, Sa1,a2;S′(y, z))

which is equivalent with

S(S′(x, y), z) = S′(x, S(y, z)).

But for S(x, y) = max(x, y) and S′(x, y) = xy the last equality becomes

max(xy, z) = x × max(y, z) ⇔ z = xz

which is false because from 0 < x < a2 < z < 1 we obtain x < 1 and z > 0.

Theorem 3.3. Let (T, S) be a pair (t-norm, t-conorm) dual with respect to C(x) =
t−1(t(1) � t(x)), S′ ∈ {SM , S} and T ′ is the dual t-norm of S′ with respect to the
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same negation (i. e. T ′ ∈ {TM , T}). For 0 < a1 < a2 < ... < an < 1, we define

Ta1,...an;T ′(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t−1

(
k ⊗ t (T (α (x) , α (y)))

t (1) � t (T (α (x) , α (y)))

)
if x ≤ a1 and y ≤ a1

t−1

(
k ⊗ t (T ′ (α (x) , β (y, i)))

t (1) � t (T ′ (α (x) , β (y, i)))

)
if x ≤ a1 and y ∈ (ai, ai+1], 1 ≤ i ≤ n − 1

t−1

(
k ⊗ t (T ′ (β (x, i) , α (y)))

t (1) � t (T ′ (β (x, i) , α (y)))

)
if y ≤ a1 and x ∈ (ai, ai+1], 1 ≤ i ≤ n − 1

t−1 ((t(1) � t(T ′(β(x, i), β(y, j)))) ⊗ δ(k) ⊕ θ(k))
if x ∈ (ai, ai+1], y ∈ (aj , aj+1], l = max(i, j) and

there is an integer k ∈ [n − l, n − 1] such that
T ′(β(x, i), β(y, j)) ∈ [C(ak+1), C(ak))

t−1

(
k ⊗ t (T ′ (β (x, i) , β (y, j)))

t (1) � t (T ′ (β (x, i) , β (y, j)))

)
if x ∈ (ai, ai+1], y ∈ (aj , aj+1], T ′(β(x, i), β(y, j)) < C(an)

min(x, y) if x > an or y > an.

where

k = t (a1) ⊗ t (an)
t (1) � t (an) , α (z) = t−1

(
(t (1) � t (an)) ⊗ t (z) ⊗ t (1)

t (a1) ⊗ t (an) ⊕ (t (1) � t (an)) ⊗ t (z)

)
and

β (z, i) = t−1 (t (1) � t (z) ⊗ δ (i) � θ (i)) , δ (i) and θ (i) having the significance from
Theorem 3.1.

Then Ta1,...an;T ′ is a t-norm Ca1,...,an
- dual with t-conorm Sa1,...an;S′ .

Proof. Because Sa1,...an;S′ is a t-conorm, in order to prove the theorem it is sufficient
to verify, in accordance with Theorem 2.1, the equality

Ta1,...an;T ′(x, y) = Ca1,...,an
(Sa1,...an;S′(Ca1,...,an

(x), Ca1,...,an
(y))).

The same theorem yields

S(x, y) = C(T (C(x), C(y))) = t−1(t(1) � t(T (C(x), C(y)))). (3)

In order to simplify the writing we denote

η(z, i) = t−1 (t(x) ⊗ δ (i) ⊕ θ (i))

and we analyze the following cases:
i1): For x, y ≤ a1 we have

Ca1,...,an
(x) ≥ an, Ca1,...,an

(y) ≥ an and
Sa1,...an;S′(Ca1,...,an

(x), Ca1,...,an
(y)) = S(Ca1,...,an

(x), Ca1,...,an
(y))

≥ max(Ca1,...,an
(x), Ca1,...,an

(y)) ≥ an.
Using the last relations and the identity (3) we have

Ca1,...,an
(Sa1,...an;S′(Ca1,...,an

(x), Ca1,...,an
(y))) =

t−1

(
t(a1) ⊗ t(an)
t(1) � t(an)

⊗ t(1) � t (S (Ca1,...,an
(x) , Ca1,...,an

(y)))
t (S (Ca1,...,an

(x) , Ca1,...,an
(y)))

)
=

= t−1

(
k ⊗ t (T (C (Ca1,...,an

(x)) , C (Ca1,...,an
(y))))

t (1) � t (T (C (Ca1,...,an
(x)) , C (Ca1,...,an

(y))))

)
=
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= t−1

(
k ⊗ t(T (α(x), α(y)))

t (1) � t(T (α(x), α(y)))

)
.

i2): For x ≤ a1 and y ∈ (ai, ai+1], 1 ≤ i ≤ n − 1, we have
Ca1,...,an

(x) ≥ an, Ca1,...,an
(y) ∈ [an−i, an−i+1) and

Sa1,...an;S′(Ca1,...,an
(x), Ca1,...,an

(y)) = S′(Ca1,...,an
(x), Ca1,...,an

(y)) ≥

≥ max(Ca1,...,an
(x), Ca1,...,an

(y)) ≥ an.

Using the same reasoning as in the previous case, we have

Ca1,...,an
(Sa1,...an;S′(Ca1,...,an

(x), Ca1,...,an
(y))) =

= Ca1,...,an
(S′(Ca1,...,an

(x), Ca1,...,an
(y))) =

= t−1

(
k ⊗ t (1) � t(S′(Ca1,...,an

(x), Ca1,...,an
(y)))

t(S′(Ca1,...,an
(x), Ca1,...,an

(y)))

)
=

= t−1

(
k ⊗ t(T ′(C (Ca1,...,an

(x)) , C (Ca1,...,an
(y))))

t (1) � t(T ′(C (Ca1,...,an
(x)) , C (Ca1,...,an

(y))))

)
=

= t−1

(
k ⊗ t(T ′(α(x), β(y, i)))

t (1) � t(T ′(α(x), β(y, i)))

)
.

i3): The case x ∈ (ai, ai+1] and y ≤ a1 is similar to i2).
i4): For x ∈ (ai, ai+1] and y ∈ (aj , aj+1], 1 ≤ i, j ≤ n − 1 we have

Ca1,...,an
(x) ∈ [an−i, an−i+1), Ca1,...,an

(y) ∈ [an−j , an−j+1)

and

Sa1,...an;S′(Ca1,...,an
(x), Ca1,...,an

(y)) =

= S′(Ca1,...,an
(x), Ca1,...,an

(y)) ≥ min(an−i, an−j) ≥ an−l.

where l = max(i, j). Further on we have two possibilities
i4a): If there is an integer k ∈ [n − l, n − 1] such that
C(ak) > T ′(β(x, i), β(y, j)) ≥ C(ak+1) then , using the relation (3), we have

S′(Ca1,...,an
(x), Ca1,...,an

(y)) =

= S′(t−1(t(x) ⊗ δ(i) ⊕ θ(i)), t−1(t(y) ⊗ δ(j) ⊕ θ(j))) =

= t−1(t(1) � t(T ′(β(x, i), β(y, j))) ∈ (ak, ak+1].

Because a1 ≤ ak and ak+1 ≤ an we have

Ca1,...,an
(Sa1,...an;S′(Ca1,...,an

(x), Ca1,...,an
(y))) =

= Ca1,...,an
(S′(Ca1,...,an

(x), Ca1,...,an
(y))) =

= t−1(t(S′(η(x, i), η(y, j))) ⊗ δ(k) ⊕ θ(k)) =

= t−1((t(1) � t(T ′(β(x, i), β(y, j)))) ⊗ δ(k) ⊕ θ(k)).
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i4b): If T ′(β(x, i), β(y, j)) < C(an) then, using again the relation (3), we have

S′(Ca1,...,an
(x), Ca1,...,an

(y)) =

= S′(t−1(t(x) ⊗ δ(i) ⊕ θ(i)), t−1(t(y) ⊗ δ(j) ⊕ θ(j))) > an

and therefore

Ca1,...,an
(Sa1,...an;S′(Ca1,...,an

(x), Ca1,...,an
(y))) =

= Ca1,...,an
(S′(Ca1,...,an

(x), Ca1,...,an
(y))) =

= t−1

(
k ⊗ t(1) � t(S′(η(x, i), η(y, j)))

t(S′(η(x, i), η(y, j)))

)
=

= t−1

(
k ⊗ t(T ′(β(x, i), β(y, j)))

t (1) � t(T ′(β(x, i), β(y, j)))

)
.

i5): If x > an or y > an then Ca1,...,an
(x) < a1 or Ca1,...,an

(y) < a1 and therefore

Ca1,...,an
(Sa1,...,an;S′ (Ca1,...,an

(x) , Ca1,...,an
(y))) =

= Ca1,...,an
(max (Ca1,...,an

(x) , Ca1,...,an
(y))) = min (x, y) .

�

Example 3.2. For n = 1 the last theorem gives the results from [8] and for n = 2
we obtain the results from [9].

Example 3.3. Taking n = 2, a = a1, b = a2 ( evidently 0 < a < b < 1) ,⊕ = +,⊗ =
×, t (x) = x and T ′ = TM in the Theorem 3.3 we obtain a new extension of t-norms
with 1-threshold, namely parametrized t-norms

Ta/b(x, y) =
{

kT (α (x) , α (y)) if x ≤ a and y ≤ a
min (x, y) otherwise

where k = ab
1 − b

and α (z) = (1 − b) z
(1 − b) z + ab

, which are t-norms with 1-threshold a

and parameter b.

Remark 3.3. It is easy to observe the difference between these t-norms with threshold
and those obtained as ordinal sum.

4. Conclusions

This paper present a method to construct t-norms with n-threshold from standard
t-norms. In the beginning, a kind of negations with n-threshold, Ca1,...,an

is intro-
duced and after it is used to obtain a family of t-norms and t-conorms Ca1,...,an

−dual,
starting from a pair (t-norm, t-conorm) dual with respect to an arbitrary negation
C (x) .
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