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Characterizations of some fractional-order operators in
complex domains and their extensive implications to certain
analytic functions
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Abstract. The main target of this research note is firstly to introduce certain fundamental

information in relation to various operators of fractional-order calculus in the complex plane,

then create some comprehensive results associating with certain analytic functions as impli-
cations of those operators, and also present numerous conclusions and recommendations for

the related researchers.
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1. Information on definitions, notations and motivation

As it is known from literature, specially, in mathematical sciences, the written ma-
terials present us a large number of scientific works associating with various oper-
ators constituted by fractional-order calculus (that is fractional-order integral and
fractional-order derivative). By making simple literature review, one can easily be
well up on detailing documents consisting of those operators and their properties and
applications. For some of them, one can refer to some main works presented by the
references in [3], [7], [18] and [19]-[22], and see also, as certain examples, [1], [2],
[8]-[10]. Since this research will be related to some of the mentioned operators of
fractional-order calculus (that is fractional-order derivative(s)) and a variety of their
applications to certain functions (with complex variable), in special, there is in need
of introducing certain basic information therewith. Accordingly, first of them, let

ζ := ζ(z) : Uρ(z) :=
{
z ∈ C : |z| ≤ ρ < 1

}
→ C

be an analytic function, which is also normalized by the MacLaurin series expansion
in the forms given by

ζ(z) = z + ηn+1z
n+1 + ηn+2z

n+2 + · · ·
(
ηn+1 6= 0

)
, (1.1)

where ηn+1 ∈ C for all n+1 ∈ N = {1, 2, 3, · · · }. As a matter of course, the mentioned
notations N and C are the sets of natural numbers and complex numbers, respectively.

Additionally, we then begin to introduce (or re-evoke) those fractional-order op-
erators, which are well-known as the fractional-order derivative(s) operator and the
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Tremblay operator. Indeed, for a function ς := ς(z) given by (1.1), the fractional
derivative(s) of order µ̃ is then denoted by

Dµ̃
z [ς] ≡ Dµ̃

z

[
ς(z)

] (
0 ≤ µ̃ < 1

)
and also defined by

Dµ̃
z [ς]=


1

Γ(1−µ̃)
d
dz

(∫ z
0

ς(t)
(z−t)µ̃ dt

)
when µ̃ ∈ [0, 1)

ds

dzs

(
Dµ̃−s
z [ς]

)
when s ∈ N & µ̃ ∈ [s, s+ 1)

, (1.2)

where ς is an analytic function in any simply-connected region of the complex plane
comprising the origin, and the multiplicity of (z−t)µ̃ is removed by requiring log(z−t)
to be real when z − t > 0.

In addition, through the instrument of the fractional derivative(s) operator of order
µ̃, for a function ς := ς(z) like the form given in (1.1), the Tremblay operator is also
defined by

Tτ̃ ,µ̃[ς] ≡ Tτ̃ ,µ̃[ς(z)]

=
Γ(µ̃)

Γ(τ̃)
z1−µ̃ Dτ̃−µ̃

z

[
zτ̃−1ς(z)

] (
z ∈ U

)
, (1.3)

where

τ̃ ∈ (0, 1] , µ̃ ∈ (0, 1] and τ̃ − µ̃ ∈ [0, 1) . (1.4)

Here and also in the definition in (1.2), we specially note that the apparent operator

Dτ̃−µ̃
z [ · ] represents a form of the Srivastava-Owa operator of fractional derivative of

order τ̃ − µ̃ (τ̃ − µ̃ ∈ [0, 1)), which is presented by (1.2). For it and some of its
applications, it can be looked over the references in [20] and [22].

As two basic applications of the fractional-order operators, under the admissible
values of the related parameters restricted by the conditions given by (1.4), by ap-
plying the fractional-order operators presented in (1.2) and (1.3) to a simple analytic
function Ξ(z) being of the form like

Ξ := Ξ(z) = zM,

one can easily determine that

Dµ̃
z

[
Ξ
]

=
Γ(M+ 1)

Γ(M− µ̃+ 1)
zM−µ̃ (1.5)

and

Tτ̃ ,µ̃
[
Ξ
]

=
Γ(µ̃)Γ(M+ τ̃)

Γ(τ̃)Γ(M+ µ̃)
zM

(
M∈ N

)
. (1.6)

Since fractional-order calculations are tools that have very important roles in sci-
ence and technology, the extensive resources of this research have also been enriched.
Hence, for both certain instances and the extensive information thereunto appertain-
ing the operators of fractional-order derivative(s), advertised by (1.2) and (1.3), and
some of their implications, one may center on the earlier works cited in [5], [8], [12],
[15], and, for example, also check certain earlier results presented by the papers in
[1], [10], [11], [13], [14], [17] and [18].
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In consideration of the comprehensive information given by both previous sections
and the mentioned references of this investigation, by the help of the Tremblay Oper-
ator along with using certain (elementary) operators of fractional-order calculus (that
is derivative(s)), and also under the conditions contained in

λ ∈ [0, 1] , β ∈ (0, 1] , α ∈ (0, 1] and α− β ∈ [0, 1) , (1.7)

for an analytic function ζ := ζ(z) like the forms given by (1.1), we then present the
extensive operator of fractional-order derivative(s), which is denoted by

Tλα,β [ζ] := Tλα,β [ζ(z)] ,

and also defined by

Tλα,β [ζ] := λTα,β [ζ(z)] + (1− λ)z
d

dz

(
Tα,β [ζ(z)]

)
≡ λTα,β [ζ] + (1− λ)z

(
Tα,β [ζ]

)′
, (1.8)

where z ∈ Uρ(z) and, of course, for any functions being of the complex-series forms
like (1.1.), Tα,β [·] is the well-known operator like the forms given by (1.3), and, most
especially, the operator Tλα,β [·] has been recently defined in the reference in [14] (and

then considered as its certain application in [11]) and it can be also seen the related
results there, as certain examples.

As the last words of this section, it would be appropriate to provide some remark-
able information for both the purpose and the details of this scientific research. Under
certain suitable values of all parameters determined by the conditions presented in
(1.7), when considering the main definitions in (1.2), (1.3) and (1.8) together with
using their applications in (1.5) and (1.6), it can be easily seen that there are both
several relationships between those operators and various extensive effects on certain
analytic functions like (1.1). Further, some special results of those relate analytic
and geometric properties of both operators and their implications. For those special
properties, it can be focused on the related topics given by the works in [4], [6] and
(also see) [12]-[15]. Specially, a few extra-special implications in relation with those
will be given (or pointed out) in the second section.

Let us now start to introduce the necessary information for stating and then proving
of our main results which will be also created with the help of a different method.

2. Identification of related lemmas and main results

In this section, two auxiliary theorems and our main results proved by them will be
given. For the details of the related auxiliary theorems which are Lemmas 2.1 and 2.2,
the references cited in [23] and [17] can be then reviewed, respectively. Moreover, it
can be also focused on the earlier researches in [11]-[15] as certain their applications.
Let us now present those theorems.

Lemma 2.1. Let x+ iy ∈ C− {0} and u+ iv ∈ C. Then,

(x+ iy)u+iv =
(
x2 + y2

)u+iv
2 ei(u+iv)Arg(x+iy),

or, equivalently,

(x+ iy)u+iv =
(
x2 + y2

)u
2 e−vArg(x+iy)ei[uArg(x+iy)+ v

2 log(x2+y2)]. (1.9)
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Lemma 2.2. Let ϕ(z) be an analytic function in Uρ(z) with ϕ(0) = 1. If there exists
a point z0 ∈ Uρ(z) such that

<e
(
ϕ(z)

)
> 0

(
|z| < |z0| < ρ < 1

)
(1.10)

and

ϕ(z0) 6= 0 and <e
(
ϕ(z0)

)
= 0 , (1.11)

then
zϕ′(z0)

ϕ(z0)
= iλ , (1.12)

where λ ∈ I := (−∞,−1] ∪ [1,∞).

In order to establish the main results and some of their implications and also
since some extensive collections (concerning our main results) will consist of vari-
ous rational-type functions with complex variable, for convenience, here and also in
parallel with this section, we will take into account the equivalent forms given by

z
(
Tλα,β [ζ]

)′
Tλα,β [ζ]

≡
z d
dz

(
β
α Tλα,β [ζ(z)]

)
β
α Tλα,β [ζ(z)]

≡
z d
dz

(
Tλα,β [ζ(z)]

)
Tλα,β [ζ(z)]

(1.13)

and
Tλα,β [ζ]

z
≡

Tλα,β [ζ(z)]

z
(1.14)

for all z ∈ Uρ(z) and for some values of the parameters identified by the conditions in
(1.7). Indeed, when having regard to all analytic functions like ζ := ζ(z) being of the
forms in (1.1), it can be easily seen that the rational type-complex functions, presented
by both (1.13) and (1.14), have a removable-singular point at z := 0. Because of this
important reason, there is no problem for stating (and also proving) our main results
associating with those complex-type functions (designated by the definitions in (1.13)
and (1.14)) and also their (more) special forms.

By taking into account the extensive information between (1.8)-(1.12), we now
begin by setting and then proving our main results associating with various com-
prehensive relationships between those rational-type functions as constituted in the
definitions given in (1.13) and (1.14), which are the following theorems (just below).

Theorem 2.3. Let

κ ∈ N , Ω ∈ C− {0} , ∇ ∈ I , z ∈ Uρ(z) and
π

4
≤
∣∣Θ̃∣∣ < π

2
. (1.15)

Then, under the conditions determined with (1.7) and also the definitions stated in
(1.2), (1.3), (1.8), (1.13) and (1.14), for all functions like ζ := ζ(z) having the series
form in (1.1), the following proposition is true:

arg


 z

(
Tλα,β [ζ]

)′
Tλα,β [ζ]


Ω
 6= 2κπ + Θ̃<e

(
Ω
)

+ =m
(
Ω
)
log
√

1 +∇2 (1.16)

=⇒ <e

(
Tλα,β [ζ]

z

)
> 0 . (1.17)
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Proof. In the light of the conditions in relation with the parameters restricted in (1.7)
and by using the operators in (1.2), (1.3) and (1.8) for an analytic function ζ := ζ(z)
having the series forms in (1.1), the following-equivalent results:

Tλα,β [ζ] ≡ λTα,β [ζ] + (1− λ)z
(

Tα,β [ζ]
)′

=
α

β

(
z +

∞∑
m=n+1

ℵm(λ;α, β)zm

)
(1.18)

=
α

β
z

(
1 +

∞∑
m=n+1

ℵm(λ;α, β)zm−1

)
can be easily determined, where

ℵm(λ;α, β) :=
[
λ+m(1− λ)

] Γ(m+ α)Γ(1 + β)

Γ(m+ β)Γ(1 + α)
ηm .

With the help of (1.18), if define a function ϕ(z) in the implicit form given by

Tλα,β [ζ] =
α

β
zϕ(z) , (1.19)

then it is easily seen that ϕ(z) is an analytic function in the domain Uρ(z) and it also
satisfies the condition ϕ(0) = 1 of Lemma 2.2. Therefore, since the implicit function
ϕ(z) defined by (1.19) is a suitable function for making use of Lemma 2.2, of course,
it can be considered for the proof of the theorem above. For this, it then follows from
(1.19) that

z
(
Tλα,β [ζ]

)′
Tλα,β [ζ]

= 1 +
zϕ′(z)

ϕ(z)

(
z ∈ Uρ(z)

)
, (1.20)

and also supposing that there exists a point z0 ∈ Uρ(z) satisfying the condition of
Lemma 2.2, namely, the following condition given by

<e
(
ϕ
(
z0

))
= 0 . (1.21)

Accordingly, from (1.16) (and also (1.20)), ϕ(z0) 6= 0. Then, by applying of (the
assertions of) Lemma 2.2 together with (the related assertion of) Lemma 2.1 to the
rational-type function composed as in (1.20), one can easily arrive at the results
contained in the following-equivalent forms given by z

(
Tλα,β [ζ(z)]

)′
Tλα,β [ζ(z)]

∣∣∣∣∣∣∣
z:=z0


Ω

=

(
1 +

zϕ′(z)

ϕ(z)

∣∣∣∣
z:=z0

)Ω

=
(
1 + iξ

)Ω
=
∣∣1 + iξ

∣∣<e(Ω)
e−Θ =m(Ω)+i∆ (1.22)

=
(√

1 + ξ2
)<e(Ω)

e−Θ =m(Ω)ei∆ ,

where
Θ := Arg(1 + iξ)

(
ξ ∈ I) , (1.23)

∆ := Θ<e
(
Ω
)

+ =m
(
Ω
)
log
√

1 + ξ2 (1.24)
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and

Θ ∈

{[
π
4 ,

π
2

)
when ξ ≥ 1(

− π
2 ,−

π
4

]
when ξ ≤ −1

. (1.25)

Now, for desired proof, since the operation taking a look at the results in (1.22) is
the argument of a complex expression, in the light of the information between (1.23)-
(1.25), by taking the argument of the both sides of (1.22), it can easily determined
that

arg


 z

(
Tλα,β [ζ(z0)]

)′
Tλα,β [ζ(z0)]


Ω


= arg

{(
1 +

zϕ′(z0)

ϕ(z0)

)Ω
}

= arg
{(

1 + iξ
)Ω}

= arg

{(√
1 + ξ2

)<e(Ω)

e−Θ =m(Ω)ei∆
}

= arg

{(√
1 + ξ2

)<e(Ω)

e−Θ =m(Ω)

}
+ arg

{
ei∆
}

= 2kπ + ∆
(
k ∈ N

)
,

which also is a contradiction with the hypothesis of Theorem 2.3, namely, the men-
tioned inequality given by (1.16) when setting

k := κ , ξ := ∇ and Θ̃ := Θ ,

where ∆ is given by (1.24). This is to say us that there is no a point z0 ∈ Uρ(z)
satisfying the condition in (1.21) (or, in (1.11) of Lemma 2.2). Therefore, it gives us
the inequality, which also is one of the hypotheses of Lemma 2.2, given by

<e
(
ϕ(z)

)
> 0

for all z ∈ Uρ(z). At this stage, the expression in (1.19) immediately yields that the
provision of Theorem 2.3, which is also given by (1.17). Thus and so the desired proof
is finished. �

Another one of our main-comprehensive results is also given as Theorem 2.4, which
is below and has several special results of the relationships between the rational-type
functions given by (1.13) and (1.14). Its proof is so similar to the proof of Theorem 2.3.
For it, it will be enough to use the definition of the analytic function ϕ(z) constituted
in (1.19) and then follow the same steps taken into account in the proof of Theorem
2.3. We think anyone can easily take care of this problem. For this reason, its detail
is omitted in this research.
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Theorem 2.4. Let the parameters κ, Ω, ∇ and Θ̃ satisfy the conditions given by
(1.15). Then, under the conditions determined in (1.7) and also the definitions con-
stituted by (1.2), (1.3), (1.8), (1.13) and (1.14), for all functions like ζ := ζ(z) being
of the complex-series form in (1.1), the following proposition is satisfied:∣∣∣∣∣∣∣∣

 z
(
Tλα,β [ζ]

)′
Tλα,β [ζ]


Ω
∣∣∣∣∣∣∣∣ 6= e−Θ̃ =m(Ω)

(
1 +∇2

)<e(Ω)
2

=⇒ <e

(
Tλα,β [ζ]

z

)
> 0

(
z ∈ Uρ(z)

)
.

3. Concluding remarks and some implications

As has been presented in the first section and the second section, we have firstly
introduced various information in relation with some operators of fractional-order
derivatives and some special definitions specified by those operators. Afterwards, we
have also constituted and then demonstrated two extensive-main results by the help
of using of those derivative operators (in (1.2), (1.3) and (1.8)) along with the special
functions (in (1.13) and (1.14)). Clearly, as we have emphasized in both sections of
this paper, this scientific note contains important relations and implications in many
ways for the literature. Specially, the indicated relations are various relationships
between the operators of those fractional-order derivatives(s) introduced there. For
those relationships, it may be helpful to consider the earlier-main works (or papers)
cited in [5] and [11]-[15] in the references. The other-indicated results also are possible
special results which will be obtained by considering of the main results. In order to
reveal these special results, it will also be enough to choose the suitable values of the
parameters used in the theorems. For you, let us now present (or reveal) only four
of those implications of them, which include both related relations-results, and leave
others to the relevant researchers. In addition, we leave both the sampling of all the
main results and their specific results to the concerned researchers.

By choosing the value of the parameter Ω as Ω := 1 in Theorem 2.3, we get the first
implication of our main results, which is the following assertion given as Proposition
3.1 (just below).

Proposition 3.1. Let κ ∈ N, 0 ≤ λ ≤ 1, z ∈ Uρ(z) and π/4 ≤
∣∣Θ̃∣∣ < π/2. Then,

under the conditions in (1.7) and also the definitions in (1.2), (1.3), (1.8), (1.13)
and (1.14), for a an analytic function ζ := ζ(z) like the form in (1.1), the following
proposition holds:

arg

 z
(
Tλα,β [ζ]

)′
Tλα,β [ζ]

 6= 2κπ + Θ̃ ⇒ <e

(
Tλα,β [ζ]

z

)
> 0 .

By selecting the values of the parameters α and β as α := 1 and β := 1, in
Proposition 3.1, we then get the equivalent relationships between the special forms
of the operators (of fractional-order calculus) and the function ζ(z) like the form in
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(1.1), which are

Tλ1,1[ζ] ≡ Tλ1,1[ζ(z)]

≡ λζ(z) + (1− λ)zζ ′(z)

≡ λT1,1[ζ(z)] + (1− λ)z
(

T1,1[ζ(z)]
)′
,

are received (see, for extra information (or certain examples), [11] and [14]). At
this time, we also get that the second implication (of our main results), which is the
following Proposition 3.2 (below).

Proposition 3.2. Let κ ∈ N, z ∈ Uρ(z) and π/4 ≤
∣∣Θ̃∣∣ < π/2. For an analytic

function ζ := ζ(z) like the form in (1.1), if the inequality:

arg

(
z[λζ(z) + (1− λ)zζ ′(z)]′

λζ(z) + (1− λ)zζ ′(z)

)
6= 2κπ + Θ̃

or, equivalently,

arg

(
zζ ′(z) + (1− λ)z2ζ ′′(z)

λζ(z) + (1− λ)zζ ′(z)

)
6= 2κπ + Θ̃

is provided, then the inequality:

<e
(
λ
ζ(z)

z
+ (1− λ)ζ ′(z)

)
> 0

is provided.

By taking the values of the parameter λ as λ := 1 and λ := 0 in Proposition
3.2, respectively, we then get the special implications (relating to (Analytic and)
Geometric Function Theory. For their details, one may center on the main books in
[4] and [6])), which are the following assertions which are Propositions 3.3 and 3.4.

Proposition 3.3. Let κ ∈ N, z ∈ Uρ(z) and π/4 ≤
∣∣Θ̃∣∣ < π/2. For an analytic

function ζ := ζ(z) like the form in (1.1), the following proposition is also true:

arg

(
zζ ′(z)

ζ(z)

)
6= 2κπ + Θ̃ ⇒ <e

(
ζ(z)

z

)
> 0 .

Proposition 3.4. Let κ ∈ N, z ∈ Uρ(z) and π/4 ≤
∣∣Θ̃∣∣ < π/2. For an analytic

function ζ := ζ(z) like the form in (1.1), the following proposition is then satisfied:

arg

(
1 +

zζ ′′(z)

ζ ′(z)

)
6= 2κπ + Θ̃ ⇒ <e

(
ζ ′(z)

)
> 0 .

References

[1] M.P. Chen, H. Irmak, and H.M. Srivastava, Some families of multivalently analytic functions

with negative coefficients, J. Math. Anal. Appl. 214 (1997), no. 2, 674–690.

[2] M.P. Chen, H. Irmak, and H.M. Srivastava, A certain subclass of analytic functions involving
operators of fractional calculus, Comput. Math. Appl. 35 (1998), no. 2, 83–91.

[3] L. Debnath, A brief historical introduction to fractional calculus, Internat. J. Math. Ed. Sci.

Tech. 35 (2004), no. 4, 487–501.
[4] P.L. Duren, Grundlehren der Mathematischen Wissenchaffen, Springer-Verlag, New York,

Berlin, Heidelberg, Tokyo, 1983.



FRACTIONAL-ORDER OPERATORS AND SOME OF THEIR IMPLICATIONS 357

[5] Z. Esa, H.M. Srivastava, A. Kılıçman, and R.W. Ibrahim, A novel subclass of analytic functions

specified by a family of fractional derivatives in the complex domain, Filomat 31 (2017), no. 9,

2837–2849.
[6] A.W. Goodman, Univalent Functions, Vol. I, Polygonal Publishin House, Washington, 1983.

[7] S. Grozdev, On the appearance of the fractional calculus, J. Theoret. Appl. Mech. 27 (1997),

no. 3, 11–20.
[8] R.W. Ibrahim and J.M. Jahangiri, Boundary fractional differential equation in a complex do-

main, Boundary Value Prob. 2014 (2014), Article ID 66, 1–114.

[9] R.W. Ibrahim, R.M. Elobaid, and S.J. Obaiys, Symmetric Conformable Fractional Derivative
of Complex Variables, Mathematics 8 (2020), no. 3, 363.

[10] R.W. Ibrahim and D. Baleanu, On a combination of fractional differential and integral operators
associated with a class of normalized functions, AIMS Math. 6 (2021), no. 4, 4211–4226.

[11] H. Irmak, On various characteristic properties of certain fractional type operators and related

implications appertaining to the normalized analytic functions. (Submitted for publication)
[12] H. Irmak and O. Engel, Some results concerning the Tremblay operator and some of its appli-

cations to certain analytic functions, Acta Univ. Sapientiae Math. 11 (2019), no. 2, 296–305.

[13] H. Irmak, Geometric properties of some applications of the Tremblay operator, Gen. Math. 28
(2020), no. 2, 87–96.

[14] H. Irmak, A note on some elementary properties and applications of certain operators to certain

functions analytic in the unit disk, Ann. Univ. Paedagog. Crac. Stud. Math. 19 (2020), 193–201.
[15] H. Irmak, Notes on various operators of fractional calculus and some of their implications for

certain analytic functions, (Accepted for publication)

[16] A.O. Mostafa, M.K. Aouf, H.M. Zayed, and T. Bulboaca, Multivalent functions associated with
Srivastava-Saigo-Owa fractional differintegral operator, Rev. R. Acad. Cienc. Exactas F́ıs. Nat.

Ser. A Mat. 112 (2018), no. 4, 1409–1429.

[17] M. Nunokawa, On properties of non-Caratheodory functions, Proc. Japan Acad. 68 (1992), no.
6, 152–153.

[18] B. Ross, Origins of fractional calculus and some applications, Internat. J. Math. Statist. Sci.,
1 (1992), no. 1, 21–34.

[19] S. Owa, On the distortion theorems I., Kyungpook Math. J. 18 (1978), no. 1, 53–59.

[20] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differ-
ential Equations, North-Holland Mathematical Studies 204, Elsevier (North-Holland) Science

Publishers, Amsterdam, London and New York, 2006.

[21] H.M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus and Their Applications,
John Wiley and Sons Halsted Press, New york, Chieschester, Brisbane, Toronto, 1989.

[22] H.M. Srivastava, Fractional-Order Derivatives and Integrals: Introductory Overview and Recent
Developments, Kyungpook Math. J. 60 (2020), no. 1, 73–116.

[23] E.W. Weisstein, Complex Exponentiation, From MathWorld-A Wolfram Web Resource,
http://mathworld.wolfram.com/ComplexExponentiation.html.
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