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Abstract. In this paper, by considering the notion of effect algebra and by using of a new

ideal in an effect algebra E, we construct a topology τ on E, and we show that (E, τ) is

a topological effect algebra. Then we obtain some conditions under which that (E, τ) is a
Hausdorff space. Also, we obtain some results about connected components of this topological

space, and we construct a quotient topological effect algebra.
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1. Introduction

In 1994, Foulis and Bennett [12] introduced the concept of effect algebras with a
partially addition “ + ” in order to axiomatize some quantum measurements. They
are additive counterparts to D-posets introduced by Kôpka and Chovanec (1994),
where the subtraction of comparable elements is a primary notion. They met interest
of mathematicians physicists while they give a common base for algebraic as well as
fuzzy set properties of the system ε(H) of all effects of a Hilbert space H, i.e., of all
Hermitian operators A on H such that O ≤ A ≤ I, where O and I are the null and
the identity operators on H. In many cases, effect algebras are intervals in unital
po-groups, e.g., ε(H) is the interval in the po-group β(H) of all Hermitian operators
on H; this group is of great importance for physics.

Effect algebras generalize many examples of quantum structures, like Boolean al-
gebras, orthomodular lattices or posets, orthoalgebras, MV -algebras and etc. Since
the field of effect algebras is bigger than the most of algebraic structures, stating and
opening of any subject in this field can be useful.
In the study of effect algebras (or more general, quantum structures) as carriers of
states and probability measures, an important tool is the study of topologies on them.
In fact, algebra and topology, the two fundamental domains of mathematics, play
complementary roles. Topology studies continuity and convergence, and it provides a
general framework to study the concept of a limit. Algebra studies all kinds of opera-
tions and provides a basis for algorithms and calculations. Because of this difference
in nature, algebra and topology to have a strong tendency to develop independently,
not in direct contact with each other. However, in applications, in higher level do-
mains of mathematics, such as functional analysis, dynamical systems, representation
theory and others, topology and algebra come in contact most naturally. Recently,
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many mathematicians have studied properties of some algebraic structures endowed
with a topology (see [13, 17]).

In this paper, we introduce a new family of ideals in an effect algebra E, and we
construct a topology τ on E. Then we obtain some conditions under which that
(E, τ) is a Hausdorff space. Also, we show that C(0), the connected component

of 0, is a closed ideal of E and if the natural map π : E −→ E

C(0)
is open, then

C(
x

C(0)
) =

x

C(0)
, for every x ∈ E and so the quotient topological space

E

C(0)
is

totally disconnected topological effect algebra.

2. Preliminaries

In this section, we review the material that we will use in the following sections.
Recall that a set A with a family U = {Uα}α∈I of its subsets is called a topological

space, denoted by (A,U), if A, ∅ ∈ U , then the intersection of any finite numbers of
members of U is in U and the arbitrary union of members of U is in U . The members
of U are called open sets of A and the complement of U ∈ U , that is A \U , is said to
be a closed set. If B is a subset of A, the smallest closed set containing B is called
the closure of B and denoted by B̄. If there is no closed subset of A containing C
except itself, then C is called dence in A, where C ⊆ A. A subset P of A is said
to be a neighborhood of x ∈ A if there exists an open set U such that x ∈ U ⊆ P .
A subfamily {Uα}α∈I of U is said to be a base of U if for each x ∈ U there is an
α ∈ I such that x ∈ Uα ⊆ U , or equivalently, each U in U is the union of members
of {Uα}α∈I . Let U and U ′ be two topologies on the set A. If U ′ ⊆ U , then we say
that U ′ is finer than U . Let (X,U) and (Y,U ′) be two topological spaces. A map
f : X −→ Y is called continuous if the inverse image of each open subset of Y is open
in X. A homomorphism of topological spaces is a continuous function, which is one
to one, onto and has a continuous inverse.

Consider the topological space (A,U). We have the following separation axioms:
T0: For each x, y ∈ A, there is an open set that includes one of them and does not
include the other, where x 6= y.
T1: For each x, y ∈ A, there is an open set U containing x such that y /∈ U , where
x 6= y.
T2: For each x, y ∈ A, there are two disjoint open sets U, V ∈ U such that x ∈ U and
y ∈ V , where x 6= y.
A topological space satisfying Ti is called Ti-space, for any i = 0, 1, 2. A T2-space is
also known as a Hausdorff space.

Definition 2.1. [8] An effect algebra is a partial algebra E = (E,⊕, 0, 1) with a
partially defined operation “⊕ ” and two constant elements 0 and 1 such that, for all
a, b, c ∈ E, we have:
(E1) Commutative Law: a ⊕ b is defined in E if and only if b ⊕ a is defined, and in
such the case a⊕ b = b⊕ a;
(E2) Associative Law: a⊕ b and (a⊕ b)⊕ c are defined in E if and only if b⊕ c and
a⊕ (b⊕ c) are defined, and in such the case (a⊕ b)⊕ c = a⊕ (b⊕ c);
(E3) Orthocomplementation Law: For any a ∈ E, there exists a unique element
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a′ ∈ E such that a⊕ a′ = 1;
(E4) Zero-Unit Law: If a⊕ 1 is defined in E, then a = 0.

Let E be an effect algebra. If we define a ≤ b if and only if there exists an element
c ∈ E such that a ⊕ c = b, then ≤ is a partial ordering, and we write c := b 	 a.
A nonempty subset I of E is said to be an ideal of E if the following conditions are
satisfied: (I1) If x ∈ I and y ≤ x, then y ∈ I, (I2) if x 	 y ∈ I and y ∈ I, then
x ∈ I, for any x, y ∈ E. The ideal I of E is called a maximal ideal of E if for every
ideal J of E that I ⊆ J , we have I = J . A set Q ⊆ E is called a sub-effect algebra
of E if the following conditions are satisfied: (1) 1 ∈ Q, (2) if two of the elements
a, b and c in E with a⊕b = c are in Q, then all three are in Q. Let F be another effect
algebra. A mapping h : E −→ F is said to be a homomorphism of effect algebras (or
E-homomorphism) if h(1) = 1 and h(a⊕ b) = h(a)⊕ h(b), for any a, b ∈ E whenever
a⊕ b is defined in E.

Proposition 2.1. [14] A nonempty subset I of effect algebra E = (E,⊕, 0, 1) is an
ideal of E if and only if x⊕ y ∈ I if and only if x, y ∈ I where x⊕ y is defined in E.

Proposition 2.2. [12] Consider E is an effect algebra. Then the following properties
hold, for every a, b ∈ E:
(i) a′′ = a,
(ii) 1′ = 0 and 0′ = 1,
(iii) 0 ≤ a ≤ 1,
(iv) a⊕ 0 = a,
(v) If a⊕ b = 0, then a = b = 0,
(vi) a ≤ a⊕ b,
(vii) If a ≤ b, then b′ ≤ a′,
(viii) b	 a = (a⊕ b′)′,
(ix) a⊕ b′ = (b	 a)′,
(x) a = a	 0,
(xi) a	 a = 0,
(xii) a′ = 1	 a and a = 1	 a′.
Theorem 2.3. [15] Every finite point set in a Hausdorff space X is closed.

Let (A, ∗) be an algebra of type 2 and U be a topology on A. Then (A, ∗,U) is
called a left (right) topological algebra, if for all a ∈ A the map ∗ : A −→ A is defined
by x −→ a ∗ x (x −→ x ∗ a) is continuous, or equivalently, for any x ∈ A and any
open subset V containing a ∗ x (x ∗ a) there exists an open subset W containing x
such that a ∗W ⊆ V (W ∗ a ⊆ V ). A right and left topological algebra (A, ∗,U)
is called a semi-topological algebra. Moreover, if for any x, y ∈ A and any open
subset V containing x ∗ y, there exists two open subset V1 and V2 containing x and
y respectively, such that V1 × V2 ⊆ V , then (A, ∗,U) is called a topological algebra.
Clearly, if (A, ∗) is a topological algebra, then ∗ : A × A −→ A is continuous, hence
for each a ∈ A, the maps a ∗ (−) : A −→ A and (−) ∗ a : A −→ A, sending x to a ∗ x
and x∗a, respectively, are continuous. Therefore, (A, ∗) is a semi-topological algebra,
but the converse is not true (see [4, 3]).

Now, let U be a topology on effect algebra E. Then (E,⊕,U) is called a semi-
topological effect algebra if ⊕ : E × E −→ E is a continuous map. By commutative
law, in an effect algebra, right and left topological effect algebra are the same. There-
fore, we use the notion ”topological effect algebra” instead of ”semi-topological effect
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algebra”.

Note. From now on, in this paper we let E = (E,⊕, 0, 1) be an effect algebra.

3. Constructing a topology on effect algebras by using ultra ideals

In this section, we present definition of ultra ideal in an effect algebra, and we define a
binary relation on E that it is congruence on E. Then we find a method to construct
a Hausdorff topological effect algebra by using ultra ideals. Also, we will obtain some
results about connected components of a topological effect algebra that they hold for
the topology induced by ultra ideals.

Definition 3.1. Let I be an ideal of E. Then I is called an ultra ideal of E if for
every x ∈ E,

x ∈ I ⇐⇒ x′ /∈ I

Example 3.1. (i) Let E = {0, 1, 2, 3} and the operation “ ⊕ ” be defined on E as
follows:

⊕ 0 1 2 3
0 0 1 2 3
1 1 1 3 −
2 2 3 2 −
3 3 − − −

Then (E;⊕, 0, 3) is an effect algebra such that I = {0, 1} and J = {0, 2} are two ultra
ideals of E and K = {0} is not an ultra ideal of E.
(ii) Let E = {0, 1, 2, 3, 4, 5} and the operation “⊕ ” be defined on E as follows:

⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 4 3 5 − −
2 2 3 − − 5 −
3 3 5 − − − −
4 4 − 5 − − −
5 5 − − − − −

Then (E;⊕, 0, 5) is an effect algebra such that I = {0, 1, 4} is an ultra ideal of E and
K = {0, 4} is an ideal of E. Since 1′ = 3 and 1, 3 /∈ K, K is not an ultra ideal of E.

Note. Every maximal ideal is not necessarily an ultra ideal.

Example 3.2. Let E = {0, 1, 2} and the operation “⊕ ” be defined on E as follows:

⊕ 0 1 2
0 0 1 2
1 1 2 −
2 2 − −

Then (E;⊕, 0, 2) is an effect algebra. It is easy to see that I = {0} is a maximal ideal
of E, but it is not an ultra ideal of E. Note that neither 1 ∈ I nor 1′ = 1 ∈ I.
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In the following, we present a congruence relation on E, and we will have a quotient

effect algebra. Let I ⊆ E. We set
x

I
= {y ∈ E : (x, y) ∈ θI}, where for any x, y ∈ E,

relation θI is defined on E, as follows:

(x, y) ∈ θI ⇐⇒ (x⊕ y′)′, (y ⊕ x′)′ ∈ I, where x⊕ y′, y ⊕ x′ are defined in E.

Proposition 3.1. Let I be an ultra ideal of E. Then θI is a congruence relation on
E and
E

I
= {x

I
: x ∈ E} forms an effect algebra, where

x

I
⊕ y

I
=
x⊕ y
I

, for every x, y ∈ E.

Proof. The first, we show that θI is an equivalence relation on E. Since 0 = (x⊕x′)′ =
(x′ ⊕ x)′ ∈ I, we have (x, x) ∈ θI and so θI is reflexive. Clearly, θI is a symmetric
relation on E. Now, let (x, y), (y, z) ∈ θI . We prove (x ⊕ z′)′, (x′ ⊕ z)′ ∈ I. If
(x′ ⊕ z)′ /∈ I, then x′ ⊕ z ∈ I and so by Proposition 2.1, x′, z ∈ I. Since (x, y) ∈ θI ,
we have (x′ ⊕ y)′ ∈ I and so x′ ⊕ y /∈ I. Since x′ ∈ I, we have y /∈ I. Thus y′ ∈ I.
Since z, y′ ∈ I and y⊕ z′ is defined and by Proposition 2.1, we have y′⊕ z ∈ I and so
(y′ ⊕ z)′ /∈ I. It means that (y, z) /∈ θI , which is a contradiction. Hence (x′ ⊕ z)′ ∈ I.
Similarly, we can show that (x ⊕ z′)′ ∈ I and so (x, z) ∈ θI . It results that θI is a
transitive relation on E and so θI is an equivalence relation on E. Now, we show that
θI is a congruence relation on E. Let x, y ∈ E such that (x, y) ∈ θI . For every a ∈ E,
we have x′ ⊕ y ≤ x′ ⊕ a⊕ y and so

(x′ ⊕ (a⊕ y))′ ≤ (x′ ⊕ y)′ ∈ I.
Thus (x′ ⊕ (a⊕ y))′ ∈ I. Similarly, we have (x⊕ (a⊕ y)′)′ ∈ I. Then (x, a⊕ y) ∈ θI
and so (a ⊕ y, x) ∈ θI . Similarly, we can prove that (y, a ⊕ x) ∈ θI . Since θI is
an equivalence relation, we have (a ⊕ x, a ⊕ y) ∈ θI . Similarly, we can show that
(x ⊕ a, y ⊕ a) ∈ θI . Also, it is clear that (x, y) ∈ θI if and only if (x′, y′) ∈ θI .

Therefore, θI is a congruence relation on E and so
E

I
= (

E

I
,⊕, 0

I
,

1

I
) is an effect

algebra. �

Definition 3.2. Let τ be a topology on E. Then τ is called a linear topology on E
if there is a base β for τ such that for any element B of β containing 0, B is an ideal
of E.

Example 3.3. Consider E is the effect algebra as Example 3.1(i) and let τ =
{∅ , E, I, J, I ∩ J, I ∪ J}. Clearly, B = {I, J} is a base for τ and so τ is a
linear topology on E.

Definition 3.3. Let Λ be an upward directed set and S = {Ii : i ∈ Λ} be a family of
ultra ideals of E. Then S is called a system of ultra ideals or briefly a system of E if
i ≤ j implies Ij ⊆ Ii, for any i, j ∈ Λ.

Lemma 3.2. Let S = {Ii : i ∈ Λ} be a system of E. Then

(i) the set B = { x
Ii

: x ∈ E, i ∈ Λ} is a base for a topology on E;

(ii) if τ is the topology induced by B, then τ is a linear topology on E.

Proof. (i) For any x ∈ E and i ∈ Λ, we have x ∈ x

Ii
. Then E =

⋃
{ x
Ii

: x ∈ E, i ∈ Λ}.
Now, we prove that for every B1, B2 ∈ B and z ∈ B1 ∩B2, there exists B3 ∈ B such

that z ∈ B3 ⊆ B1 ∩B2, where B1 =
x

Ii
, B2 =

y

Ij
, for some x, y ∈ E and i, j ∈ Λ. Let
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z ∈ x

Ii
∩ y

Ij
. Since Λ is an upward directed set, there exists γ ∈ Λ such that i ≤ γ

and j ≤ γ and so Iγ ⊆ Ii and Iγ ⊆ Ij . We consider B3 =
z

Iγ
and prove

z

Iγ
⊆ x

Ii
∩ y

Ij
.

Clearly, z ∈ z

Iγ
. Let u ∈ z

Iγ
. Then (u ⊕ z′)′, (z ⊕ u′)′ ∈ Iγ . Since Iγ ⊆ Ii, we get

(u⊕ z′)′, (z ⊕ u′)′ ∈ Ii and so u ∈ z

Ii
=
x

Ii
. By the similar way, we have u ∈ z

Ij
=

y

Ij

and so
z

Iγ
⊆ x

Ii
∩ x

Ij
. Hence B is a base for a topology on E.

(ii) Let τ be the topology induced by B and
x

Ii
be an element of B containing 0.

Then
x

Ii
=

0

Ii
and so (x, 0) ∈ θIi . It results that x ∈ Ii. Therefore,

x

Ii
= Ii and so

x

Ii
is an ideal of E. �

Theorem 3.3. Let S = {Ii : i ∈ Λ} be a system of E, B = { x
Ii

: x ∈ E, i ∈ Λ} and

(E, τ) be a linear topological space induced by B. Then (E, τ) is a topological effect
algebra.

Proof. By Lemma 3.2, (E, τ) is a topological space. Let f : E × E −→ E be a map
which for every x, y ∈ E,

f(x, y) =

{
x⊕ y x⊕ y is defined in E

0 otherwise

We prove that for any z ∈ E, f−1(
z

Ii
) is an open subset of E×E. Let (x, y) ∈ f−1(

z

Ii
).

Then x⊕y = f(x, y) ∈ z

Ii
. Clearly,

x

Ii
× y
Ii

is an open subset of E×E containing (x, y).

If f(x, y) = 0, then we consider
0

Ii
× 0

Ii
that is an open subset of E × E containing

(0, 0). For any (u, v) ∈ x

Ii
× y

Ii
, we have (x, u), (y, v) ∈ θIi . By Proposition 3.1, we

have (x ⊕ y, u ⊕ v) ∈ θIi and so u ⊕ v ∈ z

Ii
. It results that

x

Ii
× y

Ii
⊆ z

Ii
. Hence

f−1(
z

Ii
) is an open subset of E. It means that f is a continuous map. Therefore,

(E, τ) is a topological effect algebra. �

Proposition 3.4. Let S = {Ii : i ∈ Λ} and T = {Ji : i ∈ Γ} be two systems of E and
τ, υ be the topologies induced by them, respectively. Then τ is finer than υ if for any
γ ∈ Γ, there exists λ ∈ Λ such that Iλ ⊆ Jγ .

Proof. The proof is straightforward. �

Note. From now on, in this paper, S = {Ii : i ∈ Λ} is a system of ultra ideals of E

and τ is a linear topology on E induced by B = { x
Ii

: i ∈ Λ}, unless otherwise stated.

Proposition 3.5. Let J be a nonempty subset of E. Then J is an ideal of E if and
only if (a′ ⊕ b)′, b ∈ J imply a ∈ J , for any a, b ∈ E.

Proof. (⇐) Let for a, b ∈ E such that a 	 b, b ∈ J . Then by Proposition 2.2 (viii),
we have (a′ ⊕ b)′, b ∈ J and so a ∈ J . Now, let b ≤ a and a ∈ J . Since b ≤ a, there



68 S. SAIDI GORAGHANI AND R. A. BORZOOEI

exists c ∈ E such that b⊕ c = a ∈ J and so by Proposition 2.1, we have b ∈ J . Hence
J is an ideal of E.
(⇒) Let J be an ideal of E and (a′ ⊕ b)′, b ∈ J , for any a, b ∈ E. By Proposition
2.2(viii), a	 b ∈ J and so a ∈ J . �

Lemma 3.6. Let ∅ 6= K ⊆ E. If for any Ii ∈ S,
K

Ii
=
⋃
{ x
Ii

: x ∈ K}, then

K̄ =
⋂
{K
Ii

: Ii ∈ S}, where K̄ is the topological closure of K.

Proof. Let x ∈
⋂
{K
Ii

: Ii ∈ S}. Then x ∈ K

Ii
, for every i ∈ Λ. Thus for every

a

Ii
∈ B,

x ∈ a

Ii
implies

a

Ii
∩K 6= ∅. Hence for every U ∈ τ , x ∈ U implies U ∩K 6= ∅. It results

that x ∈ K̄ and so
⋂
{K
Ii

: Ii ∈ S} ⊆ K̄. Similarly, we have K̄ ⊆
⋂
{K
Ii

: Ii ∈ S}.

Therefore, K̄ =
⋂
{K
Ii

: Ii ∈ S}. �

Theorem 3.7. If I is an ideal of E, then Ī is an ideal of E, too.

Proof. Let I be an ideal of E and (x′ ⊕ y)′ , y ∈ Ī, for some x, y ∈ E. Then by

Lemma 3.6, Ī =
⋂
{ I
Ii

: Ii ∈ S} and so for every Ii ∈ S, we have (x′ ⊕ y)′ , y ∈ I

Ii
=⋃

{ t
Ii

: t ∈ I}. Hence there exist t1, t2 ∈ I such that (x′ ⊕ y)′ ∈ t1
Ii
, y ∈ t2

Ii
and so

(t1, (x
′ ⊕ y)′), (t2, y) ∈ θIi . It means that (t1 ⊕ (x′ ⊕ y))′, (t2 ⊕ y′)′ ∈ Ii ⊆ I. Since

I is an ideal of E and t1, t2 ∈ I, by Proposition 3.5, we have (x′ ⊕ y)′, y ∈ I and so

x ∈ I. Since (x, x) ∈ θIi , for every Ii ∈ S, we have x ∈ I

Ii
and so x ∈ Ī. Therefore, Ī

is an ideal of E. �

Corollary 3.8. Let I be an ideal of E. Then I is dense in E if and only if I ′∩Ii 6= ∅,
for every Ii ∈ S, where I ′ = {x′ : x ∈ I}.

Proof. Let I be dense in E. Then Ī = E and so by Lemma 3.6,
I

Ii
= E, for every

Ii ∈ S. Let Ii ∈ S. Since 1 ∈ I

Ii
= E, there is a ∈ I such that (1, a) ∈ θIi and so

a′ = (1′ ⊕ a)′ ∈ Ii. Hence Ii ∩ I ′ 6= ∅.
Conversely, let Ii ∈ S and x be an arbitrary element of E. Since Ii ∩ I ′ 6= ∅, there
exists a ∈ Ii ∩ I ′ such that a ∈ Ii. Since (a′ ⊕ 0)′, (0′ ⊕ a)′ ∈ Ii, we have (a, 0) ∈ θIi
and so (0, a) ∈ θIi . Hence by Proposition 3.1, we have (x, (a ⊕ x′)′) ∈ θIi . Since
(a ⊕ x′)′ ≤ a′ ∈ Ii, we get (a ⊕ x′)′ ∈ Ii. Also, since (x, (a ⊕ x′)′) ∈ θIi , we

have x ∈ (a⊕ x′)′

Ii
⊆ I

Ii
. Hence I =

I

Ii
, for every Ii ∈ S. Now, by Lemma 3.6,

Ī =
⋂
{ I
Ii

: Ii ∈ S} = E. Therefore, I is dense in E.

�

Theorem 3.9. The topological space (E, τ) is a Hausdorff space if and only if
⋂
{Ii :

Ii ∈ S} = {0}.
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Proof. Let (E, τ) be a Hausdorff space. Then by Theorem 2.3, the set {0} is closed.
Hence by Lemma 3.6, we have

{0} = ¯{0} =
⋂
{ 0

Ii
: Ii ∈ S} =

⋂
{Ii : Ii ∈ S}.

Conversely, let
⋂
{Ii : Ii ∈ S} = {0} and x, y be incomparable elements of E. Then

x � y or y � x and so (x′ ⊕ y)′ 6= 0 or (x ⊕ y′)′ 6= 0. Let (x′ ⊕ y)′ 6= 0. Then by
the assumption there is γ ∈ Λ such that (x′ ⊕ y)′ /∈ Iγ and so (x, y) /∈ θIγ . It means

that x /∈ y

Iγ
. Since x ∈ x

Iγ
and

x

Iγ
∩ y

Iγ
= ∅, we conclude that (E, τ) is a Hausdorff

space. �

Theorem 3.10. For topological space (E, τ), the following statements are equivalent:
(i) (E, τ) is a Hausdorff space.
(ii) (E, τ) is a T1-space.
(iii) (E, τ) is a T0-space.

Proof. The proofs of (i)⇒ (ii) and (ii)⇒ (iii) are clear.
(iii) ⇒ (i) Let (E, τ) be a T0-space and x ∈

⋂
{Ii : Ii ∈ S}. Then (x, 0) ∈ θIi and

so x ∈ 0

Ii
, for every Ii ∈ S. If U is an open subset of E containing x, then there

exist y ∈ E and Ij ∈ S such that x ∈ y

Ij
⊆ U . Hence x ∈ y

Ij
∩ 0

Ij
. It follows that

0

Ij
=

y

Ij
⊆ U and so 0 ∈ U . Then there is no disjoint open neighborhood for x or 0

containing the other and so by the assumption x = 0. Therefore, by Theorem 3.9, we
conclude that (E, τ) is a Hausdorff space. �

Theorem 3.11. Let (E, τ) be a topological effect algebra, I be an ideal of E and

π : E −→ E

I
be the natural homomorphism. If

E

I
is a Hausdorff space, then I is a

closed ideal of E. The converse is true, when π is an open map.

Proof. Let
E

I
be a Hausdorff space and x ∈ E \ I. Then

x

I
6= 0

I
and by assumption,

there are two open subsets V,W of
E

I
such that

x

I
∈ W, 0

I
∈ V and V ∩W = ∅.

Hence

x ∈ π−1(W ) ∈ τ , I ⊆ π−1(V ) ∈ τ , I ∩ π−1(W ) = ∅
Since π−1(W ) is an open subset of E such that x ∈ π−1(W ) and π−1(W )∩ I = ∅, we
have x /∈ Ī and so I = Ī.

Conversely, let π be open and
x

I
6= y

I
, for some x, y ∈ E. Then (x′ ⊕ y)′ ∈ E \ I

or (x ⊕ y′)′ ∈ E \ I. Let (x′ ⊕ y)′ ∈ E \ I. Then by assumption, (x′ ⊕ y)′ /∈ Ī and
so there is an open subset V of E such that (x′ ⊕ y)′ ∈ V and V ∩ I = ∅. Hence
0

I
/∈ V

I
. Consider the map f : E × E −→ E is defined by f(a, b) = (a′ ⊕ b)′, for

every a, b ∈ E. Since (E, τ) is a topological effect algebra, f is a continuous map and

so π ◦ f is continuous map, too. Since π is an open map,
V

I
is an open subset of

E

I
. Hence (π ◦ f)−1(

V

I
) is an open subset of E × E and so there are W,A ∈ τ such
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that (π ◦ f)−1(
V

I
) = W × A. Since (x′ ⊕ y)′ ∈ V , we get (π ◦ f)(x, y) ∈ V

I
and so

(x, y) ∈ (π ◦ f)−1(
V

I
). Hence x ∈W , y ∈ A and so

x

I
∈ W

I
and

y

I
∈ A

I
. Since π is an

open map,
W

I
and

A

I
are open subsets of

E

I
. Now, we show that

W

I
∩ A
I

= ∅. Let

z

I
∈ W

I
∩ A
I

. Then there are a ∈W and b ∈ A such that
a

I
=
b

I
=
z

I
. It results that

V

I
= π◦f(W×A) 3 π(f(a, b)) = π((a′⊕b)′) =

(a′ ⊕ b)′

I
= (

a

I

′
⊕ b
I

)′ = (
z

I

′
⊕ z
I

)′ =
0

I
.

It means that
0

I
∈ V

I
, which is a contradiction. Therefore,

W

I
∩ A
I

= ∅ and so
E

I
is

a Hausdorff space. �

Let I be an ideal of E,
E

I
be the quotient effect algebra with respect to I, π :

E −→ E

I
be the natural epimorphism and Ω be a topology on E. Then we present

definition of topology on
E

I
as follows:

A subset U of
E

I
is open if π−1

I (U) is an open subset of E. This topology on
E

I
is

called the quotient topology induced by πI . Let Ω̄ be the quotient topology on
E

I
. If

V ∈ Ω̄, then there exists U ∈ Ω such that πI(U) = V .
In the next theorem, we will find a method to construct a Hausdorff topological

effect algebra, using a system of ultra ideals. In fact, we will show that if I is a system

of E and I =
⋂
i∈Λ Ii, then

E

I
is a Hausdorff topological effect algebra, with respect

to quotient topology induced by I.

Proposition 3.12. Let I be an ideal of E, τ be a topology on E and τ̄ be the quotient

topology on
E

I
.

(i) If (E, τ) is a topological effect algebra, then (
E

I
, τ̄) is a topological effect algebra,

too,
(ii) If the canonical epimorphism πI is open and (E, τ) is a topological effect algebra,

then (
E

I
, τ̄) is a topological effect algebra, too.

Proof. The proof is straightforward. �

Lemma 3.13. Let I be an ideal of topological effect algebra (E, τ) and I ⊆
⋂
{Ii :

Ii ∈ S}. Then the natural homomorphism π : E −→ E

I
is an open map and the

topological space (
E

I
, τ̄) is a topological effect algebra.

Proof. Since the set { x
Ii

: x ∈ E, Ii ∈ S} is a base for τ , it is sufficient to show that

π(
x

Ii
) is an open subset in

E

I
, for any x ∈ E and Ii ∈ S. We show that π−1(π(

x

Ii
)) ∈ τ .
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Let a be an arbitrary element of π−1(π(
x

Ii
)). Then π(a) ∈ π(

x

Ii
) and so

a

I
∈

(
x

Ii
)

I
.

Hence there exists b ∈ x

Ii
such that (a, b) ∈ θI . Since (b, x) ∈ θIi and I ⊆ Ii, we get

(a, b), (b, x) ∈ θIi and so (a, x) ∈ θIi . Hence a ∈ x

Ii
and so π−1(π(

x

Ii
)) ⊆ x

Ii
. Clearly,

x

Ii
⊆ π−1(π(

x

Ii
)) and so

x

Ii
= π−1(π(

x

Ii
)) ∈ τ . Now, by Proposition 3.12 (ii), we

conclude that (
E

I
, τ̄) is a topological effect algebra. �

Proposition 3.14. If I ⊆ J , then
x

I
⊆ x

J
, where I, J ⊆ E.

Proof. Let y ∈ x

I
. Then (x, y) ∈ θI and so (x′ ⊕ y)′, (x ⊕ y′)′ ∈ I ⊆ J . Hence

(x′⊕y)′, (x⊕y′)′ ∈ J and so (x, y) ∈ θJ . Therefore, y ∈ x

J
and therefore,

x

I
⊆ x

J
. �

Theorem 3.15. Let I be an ideal of topological effect algebra (E, τ) and I ⊆
⋂
{Ii :

Ii ∈ S}. Then (
E

Ī
, τ̄) is a Hausdorff topological effect algebra, where τ̄ is the quotient

topology on
E

Ī
.

Proof. The first, we show that the natural homomorphism π′ : E −→ E

Ī
is open.

Since B = { x
Ii

: x ∈ E, Ii ∈ S} is a base for τ , it is sufficient to show that π′(
x

Ii
) is

an open subset in
E

Ī
. Let x ∈ E and Ii ∈ S. Since I ⊆ Ī, by Proposition 3.14, we

get
(
x

Ii
)

I
⊆

(
x

Ii
)

Ī
. Let a ∈

(
x

Ii
)

Ī
. Then there is b ∈ x

I
such that (a′ ⊕ b)′, (a ⊕ b′)′ ∈

Ī. By Lemma 3.6, (a′ ⊕ b)′, (a ⊕ b′)′ ∈ I

Ii
and so there are z, y ∈ I such that

(z′ ⊕ (a′ ⊕ b)′)′, (y′ ⊕ (a ⊕ b′)′)′ ∈ Ii. Since I ⊆ Ii, by Proposition 3.5, we get

(a′ ⊕ b)′, (a ⊕ b′)′ ∈ Ii and so a ∈
(
x

Ii
)

I
. Hence

(
x

Ii
)

I
=

(
x

Ii
)

Ī
. By Lemma 3.13, the

natural homomorphism π : E −→ E

Ī
is open and so π(

x

Ii
) is an open subset of E.

Since π(
x

Ii
) =

(
x

Ii
)

I
, we get

(
x

Ii
)

Ī
is an open subset of E. It follows that π′(

x

Ii
) =

(
x

Ii
)

Ī
is open and so π′ is an open map. Therefore, by Theorem 3.11 and Lemma 3.13,

(
E

Ī
, τ̄) is a Hausdorff topological effect algebra. �

Let (E,U) be a topological effect algebra and A be a connected subset of E. Then
A is called a connected component of E if for every connected subset B of E with
A ⊆ B, we have A = B. Moreover, C(x) is showed the connected component of E
containing x, for every x ∈ E.
In the following, we want to give some results about connected components of a
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topological effect algebra (E,U). It is clear that, they are hold for topology induced
by a system S of an effect algebra E.

Lemma 3.16. Let (E,U) be a topological effect algebra and C(x) be the connected
component of x, for any x ∈ E. Then
(i) C(0) is the greatest closed ideal of E, which is connected.
(ii) C(0) = {0} if and only if C(x) = {x}, for any x ∈ E.

Proof. (i) It is enough to prove that C(0) is an ideal of E. Clearly, C(0) 6= ∅. Let
x, y ∈ C(0). We prove x ⊕ y ∈ C(0). Since (E, τ) is a topological effect algebra, the
map fx : E −→ E is a continuous map, where

fx(y) =

{
x⊕ y where x⊕ y is defined in E

0 otherwise

So x ⊕ C(0) = {x ⊕ c | c ∈ C(0)} = fx(C(0)) is a connected subset of E. Since
0 ∈ C(0), we have

x = x⊕ 0 ∈ ((x⊕ C(0)) ∩ C(0))

and so C(0) ∪ (x⊕ C(0)) is a connected subset of E containing 0. Hence

C(0) ∪ (x⊕ C(0)) ⊆ C(0)

where (x ⊕ C(0)) ⊆ C(0). It follows that x ⊕ y ∈ C(0). Hence by Proposition 2.1,
C(0) is an ideal of E. Since ¯C(x) = C(x), for any x ∈ E, C(0) is the greatest closed
ideal of E, which is connected.
(ii) Let C(0) = {0} and x ∈ E. Similar to the proof of (i), we can show that
(x′ ⊕ C(x))′ is a connected subset of E. Since x ∈ C(x), we have 0 ∈ (x′ ⊕ C(x))′

and so

(x′ ⊕ C(x))′ ⊆ C(0) = {0}
Hence (x′⊕a)′ = 0, for any a ∈ C(x). By similar way, (a′⊕x)′ = 0, for any a ∈ C(x)
and so C(x) = {x}. The proof of converse is clear. �

Theorem 3.17. Let (E,U) be a topological effect algebra and C(0) be the connected

component of 0 such that the natural homomorphism π : E −→ E

C(0)
be open. Then

C(
x

C(0)
) =

x

C(0)
, for any x ∈ E.

Proof. Since (E,U) is a topological effect algebra, it is routine to see that (
E

C(0)
, Ū)

is a topological effect algebra, too. Hence by Lemma 3.16(ii), it suffices to show

that C(
0

C(0)
) = { 0

C(0)
}. Let C(

0

C(0)
) 6= { 0

C(0)
} and S be a connected subset of

E

C(0)
containing { 0

C(0)
} such that there exists

x

C(0)
∈ S − { 0

C(0)
}. Then S̄ is a

connected subset of
E

C(0)
, which is closed. Clearly, π−1(S̄) is a closed subset of E

such that C(0) ( π−1(S̄), where π : E −→ E

C(0)
is the natural homomorphism. Since

C(0) is the greatest connected subset of E containing 0, so π−1(S̄) is not connected.
Hence there exists A ⊆ π−1(S̄), which is both closed and open in π−1(S̄). Let
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B = π−1(S̄) − A. Since π−1(S̄) is a closed subset of (E,U) and A and B are closed
subsets of π−1(S̄), we get A,B are closed subsets of (E,U). Since π is onto, we have

S̄ = π(π−1(S̄)) = π(A ∪B) = π(A) ∪ π(B).

Since π−1(π(A)) = A and π−1(π(B)) = B, we have

π−1(π(A) ∩ π(B)) = π−1(π(A)) ∩ π−1(π(B)) = A ∩B = ∅

and so π(A) ∩ π(B) = ∅. Now, we show that
E

C(0)
− π(A) = π(E − A) and

E

C(0)
−

π(B) = π(E −B). Clearly,

E

C(0)
− π(A) ⊆ E −A

C(0)
= π(E −A)

Let
x

C(0)
∈ E −A

C(0)
. Then there is y ∈ E−A such that

x

C(0)
=

y

C(0)
. Let y ∈ π−1(S̄).

Since y ∈ A ∪ B and y ∈ E − A, we get y ∈ B. Hence
y

C(0)
∈ B

C(0)
= π(B). Since

π(A) ∩ π(B) = ∅, we have
y

C(0)
/∈ A

C(0)
and so

x

C(0)
=

y

C(0)
∈ E

C(0)
− A

C(0)

If y /∈ π−1(S̄), then
y

C(0)
/∈ S̄. Since S̄ = π(A)∪π(B), we have

y

C(0)
/∈ π(A) =

A

C(0)
and so

x

C(0)
=

y

C(0)
∈ E

C(0)
− A

C(0)

Then
E

C(0)
−π(A) = π(E−A). By the similar way, we have

E

C(0)
−π(B) = π(E−B).

Since A,B are closed subsets of (E,U) and π is an open map, we get
E

C(0)
−π(A) and

E

C(0)
− π(B) are open subset of (

E

C(0)
, Ū) and so π(A) and π(B) are closed subsets

of (
E

C(0)
, Ū). Hence π(A) and π(B) are closed subsets of S̄. By S̄ = π(A)∪π(B) and

π(A)∩π(B) = ∅, we get π(A) = S̄−π(B) and so π(A) is an open subset of S̄. It follows

that S̄ is not connected, which is a contradiction. Therefore, C(
0

C(0)
) = { 0

C(0)
}. �

4. Conclusion

Effect algebras generalized many examples of quantum structures, like Boolean alge-
bras, orthomodular lattices or posets, orthoalgebras, MV -algebras and etc. In this
paper, a new family of ideals in an effect algebra E is introduced, and a topology τ
on E by those ideals is constructed. Some conditions under which that (E, τ) is a
Hausdorff space are investigated. Also, some results are obtained about connected
components of this topological space, and a quotient topological effect algebra is
constructed. In future works, we will present definitions of cauchy sequence and con-
vergence sequence in a linear topological effect algebra. Then we intend to construct
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a complete topology on an effect algebra. Also, we shall try to investigate tensor
product of effect algebras and topological structures of them.
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