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General properties of the symmetric groupoid of a finite set
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Abstract. The aim of this paper is to give some basic properties of the symmetric groupoid
of an arbitrary or finite set. The determination of subgroupoids and related topics on the
symmetric groupoid of a finite set is discussed.
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1. Introduction

The concept of groupoid was introduced by H. Brandt [1] in a 1926 paper on
the composition of quadratic forms in four variables. The concept of groupoid is a
generalization of the notion of group. In many aspects a groupoid is like a group with
several neutral elements. A groupoid with only one neutral element is a group.

Groupoids also appeared in Galois theory in the description of relations between
subfields of a field K via morphisms of K in a paper of A. Loewy [11] around 1927
( the isotropy groups of the constructed groupoid turn out to be the Galois groups ).

A generalization of Brandt groupoid has appeared in the work of C. Ehresmann
[5] around 1950. There are various definitions for Brandt groupoids, see [2], [3], [14],
[15]. In this paper we use the definition of the groupoid given in [14].

A groupoid can be endowed with other algebraic, topological or geometric struc-
tures. So we will find Borel groupoids, topological groupoids, measure groupoids, Lie
groupoids, symplectic groupoids and so on.

The algebraic, topological and differentiable groupoids play an important role by
their applications in algebra, measure theory, harmonic analysis , differential geome-
try, symplectic geometry and quantum mechanics. For details in these areas, see [3],
[4], [6]-[9], [12]-[16].

This paper deals with the groupoids in the sense of Brandt. In the second Section
some definitions and results about groupoids are given. The third Section deals
with the symmetric groupoid of an arbitrary set. Section 4 is dedicated to establish
properties of the symmetric groupoid of degree n.

2. Groupoids and related concepts

Let G be a set endowed with the maps α (source) and β (target), α, β : G −→ G,
the composition law µ : G(2) −→ G, (x, y) −→ µ(x, y), where G(2) = { (x, y) ∈
G × G | β(x) = α(y) } and the inversion map i : G −→ G, x −→ i(x). We write
sometimes x · y or xy for µ(x, y) and x−1 for i(x). The elements of G(2) are
called composable pairs of G.
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The 5- tuple (G,α, β, µ, i) is a (Brandt) groupoid, if the maps α, β, µ, i satisfy
the following axioms :

(1) (associativity) (xy)z = x(yz), in the sense that, if one side of the equation is
defined so is the other one and then they are equal;

(2) (identities) (α(x), x), (x, β(x)) ∈ G(2) and α(x)x = xβ(x) = x;
(3) (inverses) (x−1, x), (x, x−1) ∈ G(2) and x−1x = β(x), xx−1 = α(x).
The element α(x) [ resp. β(x) ] is the left unit (resp. right unit) of x ∈ G. The

subset G0 = α(G) = β(G) of G is called the unit set of G and we say that G is
a G0 - groupoid or a groupoid over G0.

A G0 -groupoid G will be denoted by (G,α, β, µ, i;G0) or (G,α, β;G0) or
(G;G0). The maps α, β, µ and i are called the structural functions of G.

For each u ∈ G0, the set α−1(u) (resp. β−1(u) ) is called the α - fibre [ resp.
β - fibre ] of G over u ∈ G0.

A G0 -groupoid G is said to be transitive, if the map (α, β) : G −→ G0 ×
G0, x → (α, β)(x) = (α(x), β(x)) is surjective ; (α, β) is called the anchor of G.

For the structural functions of a groupoid (G,α, β, µ, i;G0), the following asser-
tions hold:

α(u) = β(u) = u and u · u = u forall u ∈ G0; (1)

α(xy) = α(x) and β(xy) = β(y), (∀) (x, y) ∈ G(2); (2)

α ◦ i = β, β ◦ i = α and i ◦ i = IdG; (3)

G(u) = α−1(u) ∩ β−1(u) = {x ∈ G | α(x) = β(x) = u } (4)
is a group with respect to the restriction of µ to G(u), called the isotropy group
of G at u.

Definition 2.1. A nonempty subset H of a G0-groupoid G is called subgroupoid
of G if it is closed under multiplication (when it is defined) and inversion, i.e. the
following conditions hold :

(i) for all x, y ∈ H such that xy is defined, we have xy ∈ H;
(ii) for all x ∈ H, we have x−1 ∈ H.

Note that from the condition (ii) of Definition 2.1, we deduce that α(h) ∈ H
and β(h) ∈ H, for all h ∈ H. If α(H) = β(H) = G0, then H is called a wide
subgroupoid of G.

A group G having e as unit element is just a {e} - groupoid and conversely,
every groupoid with one unit element is a group. The wide subgroupoids of G are
just the subgroups of G.

Example 2.1. (i) We give on a nonempty set X the following groupoid structure
: α = β = IdX , the elements x, y ∈ X are composable iff x = y and we define
xx = x. This groupoid is called the nul groupoid over X.

(ii) The pair groupoid over a set. Let X be a nonempty set. Then G = X×X
is a groupoid with respect to the rules: α(x, y) = (x, x), β(x, y) = (y, y), the elements
(x, y) and (y′, z) are composable in G iff y′ = y and we take (x, y)·(y, z) = (x, z)
and the inverse of (x, y) is defined by (x, y)−1 = (y, x). The unit space of the pair
groupoid X × X is the diagonal ∆X = {(x, x) | x ∈ X} which can be identified
with X. The isotropy group G(u) at u = (x, x) is the nul group {(u, u)}.
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A subgroupoid H of the pair groupoid X × X is a relation on X which is
symmetric and transitive. A wide subgroupoid H is an equivalence relation on X.

(iii) If { Gi | i ∈ I } is a disjoint family of groupoids, let G = ∪i∈IGi

and G(2) = ∪i∈IGi,(2). Here, two elements x, y ∈ G may be composed iff they
lie in the same groupoid Gi. This groupoid is called the disjoint union of the
groupoids Gi, i ∈ I, and it is denoted by

∐
i∈I Gi. The unit set of this groupoid

is G0 = ∪i∈IGi,0, where Gi,0 is the unit set of Gi.
In particular, the disjoint union of the groups Gi, i ∈ I, is a groupoid,i.e. G =∐

i∈I Gi, which be called the groupoid associated to family of groups Gi, i ∈ I.
For this groupoid, the isotropy group at ei ∈ Gi is the group Gi and G0 = {ei | i ∈
I }, where ei is the unit element of Gi.

Let (G,α, β, µ, i;G0) and (G′, α′, β′, µ′, i′;G′
0) be two groupoids. A morphism

between these groupoids is a pair (f, f̃) of maps f : G −→ G′ and f̃ : G0 → G′
0

such that the following two conditions are satisfied:
(i) f(µ(x, y)) = µ′(f(x), f(y)), for all (x, y) ∈ G(2);
(ii) α′ ◦ f = f̃ ◦ α and β′ ◦ f = f̃ ◦ β.

A morphism of groupoids (f, f̃) : (G;G0) → (G′;G′
0) is said to be isomorphism

of groupoids, if f and f̃ are bijective maps.

Example 2.2. (i) If G is a group, then the map δ : G×G → G, δ(x, y) = xy−1,
is a morphism of groupoids from the pair groupoid G × G into G.

(ii) The anchor map (α, β) : G −→ G0 × G0 of the G0 -groupoid G into the
pair groupoid G0 × G0 is a morphism of groupoids.

In a groupoid (G,α, β;G0) the relation defined on G0 by:

u ∼G v ⇐⇒ (∃)x ∈ G with α(x) = u and β(x) = v (5)

is an equivalence relation. Its equivalence classes are called orbits and the orbit of
u ∈ G0 is denoted by [u]. The quotient set G0/G determined by this equivalence
relation is called the orbit space.

A groupoid (G,G0) is transitive iff G0/G is a singleton.
There is a natural decomposition of the unit space G0 of a groupoid G into

orbits. Over each orbit there is a transitive groupoid and the disjoint union of these
transitive groupoids is the original groupoid G.

Definition 2.2. By a normal subgroupoid of a groupoid G, we mean a wide
subgroupoid H of G satisfying the property : for all x ∈ G and h ∈ H such
that the product xhx−1 is defined, we have xhx−1 ∈ H.

Proposition 2.1. ([4]) A wide subgroupoid H of the G0 - groupoid G is normal
iff xH(β(x)) = H(α(x))x for all x ∈ G, where H(u) denotes the isotropy group
of the groupoid H at u.

Example 2.3. (i) If G is a G0 - groupoid, then G0 and Is(G) = {x ∈
G | α(x) = β(x) } = ∪u∈G0G(u) are normal subgroupoids of G, called the nul
subgroupoid and the isotropy subgroupoid of G, respectively.

(ii) If f : G → G′ is a morphism of groupoids, then Kerf = {x ∈ G | f(x) ∈
G′

0 } is a normal subgroupoid of G.
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Let H a wide subgroupoid of the G0 - groupoid G. The relation ” ≡ ” defined
on the groupoid G by:{

x ≡ y(modH) ⇐⇒
(∃)h ∈ H(α(x)), h′ ∈ H(β(x)) such that y = hxh′ (6)

is an equivalence relation. We denote by x̂ the equivalence class of x ∈ G relative
to the equivalence relation ” ≡ ” and let G/ ≡ = { x̂ | x ∈ G } be the set of the
equivalence classes defined on G by ” ≡ ”.

Proposition 2.2. ([4]) If H is a normal subgroupoid of G, then

x̂ = xH(β(x)) = H(α(x))x, (∀) x ∈ G. (7)

If H is a normal subgroupoid of G, then

G/ ≡= {xH(β(x)) |x ∈ G} = { H(α(x))x |x ∈ G} (8)

G0/ ≡= { û | u ∈ G0 } = { H(u) | u ∈ G0 }. (9)

The quotient set G/ ≡ has a natural structure of groupoid having G0/ ≡ as
unit set with respect to the following rules: − α̂, β̂ : G/ ≡ → G/ ≡ are defined by

α̂(x̂) = H(α(x)), β̂(x̂) = H(β(x)), (10)

− the multiplication law is defined by

x̂ · ŷ = (xy)H(β(xy)) ⇐⇒ β̂(x̂) = α̂(ŷ) (11)

− and the inverse of x̂ = xH(β(x)) is defined by

î(x̂) = x−1H(β(x−1)) = x−1H(α(x)). (12)

The groupoid (G/ ≡, α̂, β̂, µ̂, î;G0/ ≡) is called the quotient groupoid of G relative
to H and will be denoted by G/H. For more details concerning the groupoids, see
[4], [7]-[9], [16].

3. The symmetric groupoid S(M)

Let M be a nonempty set. By a quasipermutation of the set M we mean an
injective map from a subset of M into M.

We denote by G = S(M) or G = Inj(S) the set of all quasipermutations of
M, i.e. S(M) = {f | f : A → M,f is injective and ∅ 
= A ⊆ M }.

For f ∈ S(M), let D(f) be the domain of f, R(f) = f(D(f)) and G(2) =
{ (f, g) | R(f) = D(g) }. For (f, g) ∈ G(2) we define µ(f, g) = g ◦ f.

If IdA denotes the identity on A, then G0 = { IdA | A ⊆ M } is the set of units
of G, denoted by S0(M) and f−1 is the inverse function from R(f) to D(f).
The maps α, β are defined by α(f) = IdD(f), β(f) = IdR(f). Thus S(M) is a
groupoid over S0(M). S(M) is called the symmetric groupoid of M or the groupoid
of quasipermutations of M.

Theorem 3.1. If M and N are equipotent sets, then the symmetric groupoids
S(M) and S(N) are isomorphic.
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Proof. Let ϕ : M → N be a bijective map. For each f ∈ S(M) we have
that ϕ ◦ f ◦ ϕ−1 is an injective mapping from a subset of N into N. Hence
ϕ ◦ f ◦ϕ−1 ∈ S(N). It is easy to check that the map ϕ̃ : S(M) → S(N) defined by
ϕ̃(f) = ϕ ◦ f ◦ ϕ−1, (∀) f ∈ S(M), is a bijective morphism of groupoids. Therefore,
the groupoids S(M) and S(N) are isomorphic. �

For a given groupoid (G;G0), let (S(G);S0(G)) be the symmetric groupoid of
the set G, where S0(G) = {IdA | A ⊆ G}.

We consider now the set L(G) = { La | a ∈ G } of all left translations La :
G −→ G, x → La(x) = ax, whenever (a, x) ∈ G(2).

We have D(La) = { x ∈ G | (a, x) ∈ G(2) } 
= ∅, since (a, β(a)) ∈ G(2) and so
La ∈ S(G). Hence L(G) is a subset of S(G).

For all a, b, x ∈ G such that β(a) = α(b) and β(b) = α(x) we have La(Lb(x)) =
La(bx) = a(bx) = (ab)x = Lab(x) and we note that La ◦ Lb = Lab if (a, b) ∈ G(2).
Consequently, we have Lα(x) ◦ Lx = Lx ◦ Lβ(x) = Lx, (∀) x ∈ G.

For all u ∈ G0 we have Lu = IdD(Lu), hence Lu ∈ S0(G) and L0(G) =
{Lu | u ∈ G0} is a subset of S0(G). Since L(G) ⊆ S(G) and the conditions (i) and
(ii) from Definition 2.1 are satisfied, it follows that L(G) is a subgroupoid of S(G).

This groupoid is called the groupoid of left translations of G.

Theorem 3.2. (Cayley theorem for groupoids.) Every groupoid G is isomorphic
to a subgroupoid of the symmetric groupoid S(G).

Proof. Let (L(G);L0(G)) be the groupoid of left translations of G. We have that
L(G) is a subgroupoid of S(G). It is easy to verify that ϕ : G −→ L(G), ϕ(a) =
La, (∀) a ∈ G, is an isomorphism of groupoids. �

Remark 3.1. In view of Cayley’s theorem for groupoids, many groupoids occur nat-
urally as subgroupoids of some symmetric groupoid.

4. The symmetric groupoid of a finite set

When M = {1, 2, ..., n}, we write Sn for S(M) and call Sn the symmetric
groupoid of degree n.

The symmetric groupoid of a finite set play an important role in the study of finite
groupoids, since by Cayley’s theorem every finite groupoid of degree n is isomorphic
to some subgroupoid of Sn.

Theorem 4.1. ([10]) Let n be a fixed number such that n ≥ 1. The symmetric
groupoid Sn contains |Sn| elements, where

| Sn | =
n∑

k=1

k!(
(
n
k

)
)2.

Proof. For each k, 1 ≤ k ≤ n, we denote by Xk = { i1, i2, . . . , ik } a subset of
M = {1, 2, . . . , n} such that 1 ≤ i1 < i2 < . . . < ik ≤ n.

If Xk is a fixed subset of M, let fk : Xk → M be an injective mapping.

We write the function fk in the following form
(

i1 i2 . . . ik
fk(i1) fk(i2) . . . fk(ik)

)
,

where fk(ij) ∈ M, for j = 1, k and fk(ij) 
= fk(is) for j, s = 1, k.
Using the fact that the set M contains

(
n
k

)
subsets with k elements of the

form {fk(i1), fk(i2), . . . , fk(ik)}, it follows that there exist
(
n
k

)
injective mappings
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having the domain {i1, i2, . . . , ik} and with values into M, where
(
n
k

)
is the k -

th binomial coefficient.
For each injective mapping

fk =
(

i1 i2 . . . ik
fk(i1) fk(i2) . . . fk(ik)

)

having the image {fk(i1), fk(i2), . . . , fk(ik)} we obtain k! injective mappings
taking on 2 -th arrow an arbitrary permutation of elements fk(i1), fk(i2), . . . ,
fk(ik). Hence, for a fixed subset Xk of M we have k!

(
n
k

)
injective mappings

defined on Xk with values into M.
The set M contains

(
n
k

)
subsets of the form Xk = {i1, i2, . . . , ik} and for each

Xk there exist k!
(
n
k

)
injective mappings. This implies that we have (k!

(
n
k

)
)
(
n
k

)
=

k!(
(
n
k

)
)2 injective mappings having the domain that contains k elements of M.

Since 1 ≤ k ≤ n we obtain that Sn contains
n∑

k=1

k!(
(
n
k

)
)2 injective mappings

defined on the subsets of M and with values into M . �

Theorem 4.2. Let Sn be the symmetric groupoid of degree n. Then the normal
subgroupoids Sn,0 and Is(Sn) contain |Sn,0| resp. |Is(Sn)| elements, where

| Sn,0 | = 2n − 1, | Is(Sn)| =
n∑

k=1

k!
(
n
k

)
.

Proof. For 1 ≤ k ≤ n, we denote by Xk = { i1, i2, . . . , ik } a subset of M =
{1, 2, . . . , n} such that 1 ≤ i1 < i2 < . . . < ik ≤ n.

If Xk is a fixed subset of M, then IdXk
=

(
i1 i2 . . . ik
i1 i2 . . . ik

)
is a unity of

Sn.
Using the fact that the set M contains

(
n
k

)
subsets with k elements of the form

{fk(i1), fk(i2), . . . , fk(ik)}, it follows that there exist
(
n
k

)
units having the domain

{i1, i2, . . . , ik}.
Since 1 ≤ k ≤ n we obtain that Sn,0 contains

n∑
k=1

(
n
k

)
identity mappings defined

on the subsets of M with values into M. Hence |Sn,0| = 2n − 1.
Using the fact that the isotropy groups G(fj), fj ∈ G0 = Sn,0 of Sn are disjoint

sets, we have |Is(Sn)| = |⋃fj∈G0
G(fj)| =

∑
fj∈G0

|G(fj)|.

For a fixed unity IdXk
=

(
i1 i2 . . . ik
i1 i2 . . . ik

)
, denoted by f0,k, the isotropy

group G(f0,k) is a group of order k!.
Using the fact that the set G0 contains

(
n
k

)
units with the domain {i1, i2, . . . , ik},

it follows that there exist
(
n
k

)
isotropy groups having k! elements. Therefore, we

have | Is(Sn)| =
n∑

k=1

k!
(
n
k

)
. �

Let us illustrate the concepts of Section 2 in the case of the symmetric groupoid
of degree 2 or 3.

By Theorem 4.1, the symmetric groupoid S2 is {fi | i = 1, 6 }, where f1 =(
1
1

)
, f2 =

(
2
2

)
, f3 =

(
1 2
1 2

)
, f4 =

(
1
2

)
, f5 =

(
2
1

)
, f6 =

(
1 2
2 1

)
.

The composition law µ : G(2) → G defined on G = S2 is given in the table
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· f1 f2 f3 f4 f5 f6

f1 f1 f4

f2 f2 f5

f3 f3 f6

f4 f4 f1

f5 f5 f2

f6 f6 f3

The absence of the element from the arrow ”i” and the column ”j” in the
table of composition law indicates the fact that the pair (fi, fj) ∈ S2 × S2 is not
composable. Indeed, for example we have that f1 · f2 is not defined, since R(f1) =

{1} 
= D(f2) = {2}; f1 · f4 = f4 ◦ f1 =
(

1
2

) (
1
1

)
=

(
1
2

)
= f4.

The set of unit elements of G is G0 = {f1, f2, f3}. The structural functions
α, β and i, the α - fibres, β - fibres and isotropy groups of G = S2 are given by

f f1 f2 f3 f4 f5 f6

α(f) f1 f2 f3 f1 f2 f3

β(f) f1 f2 f3 f2 f1 f3

i(f) f1 f2 f3 f5 f4 f6

u f1 f2 f3

α−1(u) {f1, f4} {f2, f5} {f3, f6}
β−1(u) {f1, f5} {f2, f4} {f3, f6}

G(u) {f1} {f2} {f3, f6}
We calculate now the orbits of the symmetric groupoid G = S2.
We have f2 ∼ f1, since (∃) f5 ∈ G such that α(f5) = f2 and β(f5) = f1. We

obtain that [f1] = [f2] = { f1, f2 } and [f3] = {f3}. Therefore, the orbit space of
G = S2 is G0/G = { {f1, f2 }, { f3 } }. We have that G = S2 is not a transitive
groupoid.

Proposition 4.1. The symmetric groupoid G = S2 contains a transitive subgroupoid
H4 = { f1, f2, f4, f5 } of order 4.

Proof. Using the tables for the composition law defined on S2 and for the structural
functions, it is easy to verify that the conditions from the definition of a subgroupoid
are satisfied for H4. The set of unit elements of H4 is H4,0 = {f1, f2} and H4

is not a wide subgroupoid of S2, since H4,0 ⊂ G0.
The map (α, β) : H4 → H4,0 × H4,0 given by (α, β)(f) = (α(f), β(f)),

(∀) f ∈ H4, is surjective. Indeed, we have that: for (fi, fi) ∈ H4,0, (∃) fi ∈ H4

such that α(fi) = β(fi) = fi, i = 1, 2;
for (f1, f2) ∈ H4,0, (∃) f4 ∈ H4 such that α(f4) = f1, β(f4) = f2;
for (f2, f1) ∈ H4,0, (∃) f5 ∈ H4 such that α(f5) = f2, β(f5) = f1.

Therefore, H4 is a transitive subgroupoid of G = S2. �

Remark 4.1. (i) The isotropy subgroupoid of S2 is H = Is(S2) = G(f1)∪G(f2)∪
G(f3) = {f1, f2, f3, f6}. We have |H4| = 4, |Is(S2)| = 4 and the groupoids H4

and Is(S2) are not isomorphic.
(ii) We have that |S2| = 6, |Is(S2)| = 4 and the order of Is(S3) is not a divisor

of |S2|. Hence, Lagrange’ s theorem for finite groups is not valid for finite groupoids.

Proposition 4.2. Let H and K be two subgroupoids of a groupoid G such that
H ∩K = ∅. If the products x · z and t · y are not defined in G for all x, y ∈ H
and z, t ∈ K, then H ∪ K is a subgroupoid of G.

Proof. It is easy to verify that the conditions from Definition 2.1 are satisfied. �
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Proposition 4.3. The symmetric groupoid G = S2 contains a subgroupoid Hj of
order j, for 1 ≤ j ≤ 4.

Proof. Using the above subgroupoids and Proposition 4.2, we obtain the following list
of subgroupoids of the symmetric groupoid S2 : (1) subgroupoids of order 1 :

H1
1 = {f1} = G(f1), H2

1 = {f2} = G(f2), H3
1 = {f3} = H1.

(2) subgroupoids of order 2 :
H1

2 = {f3, f6} = G(f3), H2
2 = G(f1) ∪ G(f2) = {f1, f2} = H2.

(3) subgroupoids of order 3 and 4 :
H1

3 = S3,0 = {f1, f2, f3} ( the nul subgroupoid );
H1

4 = {f1, f2, f3, f6} = Is(S2), H2
4 = { f1, f2, f4, f5 } = H4.

Hence, the symmetric groupoid G = S2 contains only two normal subgroupoids,
namely S2,0 and Is(S2) and one transitive groupoid, namely H4. �

Proposition 4.4. The quotient groupoid G/H = S2/Is(S2) of S2 determined by
the isotropy subgroupoid Is(S2) is a groupoid of order 5 .

Proof. We point out the left cosets determined by the subgroupoid H in G, i.e.
the sets f̂i = fiH(β(fi)), for all i = 1, 6. We have: f̂1 = {f1}, f̂2 = {f2},

f̂3 = f3H(β(f3)) = f3H(f3) = f3{f3, f6} = {f3 · f3, f3 · f6} = {f3, f6},
f̂4 = {f4}, f̂5 = {f5} and f̂6 = {f3, f6} = f̂3.

Then G/H = {f̂j | j = 1, 5 } and G0/H = {f̂k | k = 1, 3 }.
Applying the relations (10)−(12), we calculate the products of elements in G/H

and the images of its elements by the maps α̂, β̂, î. These are given by the tables:

· f̂1 f̂2 f̂3 f̂4 f̂5

f̂1 f̂1 f̂4

f̂2 f̂2 f̂5

f̂3 f̂3

f̂4 f̂4 f̂1

f̂5 f̂5 f̂2

f̂ f̂1 f̂2 f̂3 f̂4 f̂5

α̂(f) f̂1 f̂2 f̂3 f̂1 f̂2

β̂(f) f̂1 f̂2 f̂3 f̂2 f̂1

î(f) f̂1 f̂2 f̂3 f̂5 f̂4

.

�

Remark 4.2. If we consider the nul subgroupoid H ′ = {f1, f2, f3} and we compute
the left cosets determined by H ′ in G, we obtain f̃i = fiH

′(β(fi)), for all i = 1, 6,
where

f̃1 = {f1}, f̃2 = {f2}, f̃3 = {f3}, f̃4 = {f4}, f̃5 = {f5}, f̃6 = {f6}.
The quotient groupoid S2/S2,0 = {f̃j | j = 1, 6 } is a groupoid with 6 elements.

We have |S2| = |G/H ′| = 6 and S2 
∼= S2/S2,0.

By Theorem 4.1, the symmetric groupoid S3 is {gi | i = 1, 33 }, where

g1 =
(

1
1

)
, g2 =

(
2
2

)
, g3 =

(
3
3

)
, g4 =

(
1 2
1 2

)
,

g5 =
(

1 3
1 3

)
, g6 =

(
2 3
2 3

)
, g7 =

(
1 2 3
1 2 3

)
,

g8 =
(

1
2

)
, g9 =

(
1
3

)
, g10 =

(
2
1

)
, g11 =

(
2
3

)
,

g12 =
(

3
1

)
, g13 =

(
3
2

)
, g14 =

(
1 2
2 1

)
, g15 =

(
1 2
1 3

)
,
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g16 =
(

1 2
3 1

)
, g17 =

(
1 2
2 3

)
, g18 =

(
1 2
3 2

)
,

g19 =
(

1 3
1 2

)
, g20 =

(
1 3
2 1

)
, g21 =

(
1 3
3 1

)
,

g22 =
(

1 3
2 3

)
, g23 =

(
1 3
3 2

)
, g24 =

(
2 3
1 2

)
,

g25 =
(

2 3
2 1

)
, g26 =

(
2 3
1 3

)
, g27 =

(
2 3
3 1

)
,

g28 =
(

2 3
3 2

)
, g29 =

(
1 2 3
2 3 1

)
, g30 =

(
1 2 3
3 1 2

)
,

g31 =
(

1 2 3
2 1 3

)
, g32 =

(
1 2 3
3 2 1

)
, g33 =

(
1 2 3
1 3 2

)
.

The nul subgoupoid of Γ = S3 is Γ0 = S3,0 = { gi | i = 1, 7 }. The isotropy
groups of the groupoid Γ are the following ones :

Γ(gj) = {gj} for j = 1, 3, Γ(g4) = {g4, g14}, Γ(g5) = {g5, g21}, Γ(g6) = {g6, g28}
and Γ(g7) = {g7, g29, g30, g31, g32, g33 }.

The isotropy subgroupoid of S3 is Is(S3) =
7⋃

i=1

Γgi
and it is a normal subgroupoid

of order 15.

Remark 4.3. (i) The symmetric groupoid S3 contains :

(a) a transitive subgroupoid K9 = {g1, g2, g3, g8, g9, g11, g12, g13} of order 9;

(b) a subgroupoid K6 = Γ(g4) ∪ Γ(g5) ∪ Γ(g6) of order 6 such that K6 
∼= S2.
(ii) Γ/K = S3/Is(S3) is a groupoid of order 19 (see [10]).

Let (G,α, β, µ, i;G0) be a groupoid and ψ : G → G′ a bijective map from G
into a set G′. We consider the maps α′, β′, i′ : G′ → G′ given by α′ = ψ ◦α, β′ =
ψ ◦ β, i′ = ψ ◦ i and we take G′

0 = ψ(G0).
For (x′, y′) ∈ G′ × G′ we define the multiplication law on G′ by µ′(x′, y′) =

ψ(µ(ψ−1(x′), ψ−1(y′))) ⇐⇒ (ψ−1(x′), ψ−1(y′)) ∈ G(2), i.e.

x′ · y′ = ψ(ψ−1(x′) · ψ−1(y′)) ⇐⇒ ψ−1(x′) · ψ−1(y′) is defined in G. (13)

We have G′
0 = α′(G′) = β′(G′) and

(x, y) ∈ G(2) ⇐⇒ (x′, y′) ∈ G′
(2), where x′ = ψ(x), y′ = ψ(y). (14)

It is easy to prove the following

Proposition 4.5. Let (G,α, β, µ, i;G0) be a groupoid and ψ : G → G′ a bijective
map. Then

(i) (G′, α′, β′, µ′, i′;G′
0) is a groupoid, where

α′ = ψ ◦ α, β′ = ψ ◦ β, i′ = ψ ◦ i, G′
0 = ψ(G0) and the multiplication µ′ is

given by (3.1).
(ii) ψ : (G;G0) → (G′;G′

0) is an isomorphism of groupoids.

The groupoid (G′, α′, β′, µ′, i′;G′
0) is called the direct image of the groupoid

(G,α, β, µ, i;G0) by the bijection ψ : G → G′. Also, we say that the groupoid
G′ is obtained by transport of the structure from the groupoid G via the bijection
ψ : G → G′.
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In the sequel we give a method for construction of finite groupoids. For instance,
we will construct a groupoid of order 9. For this, we consider the transitive groupoid
H4 = { f1, f2, f4, f5 } of S2 and the bijection ϕ : H4 → M4, where M4 =
{ a1, a2, a3, a4 }, ϕ(f1) = a1, ϕ(f2) = a2, ϕ(f4) = a3, ϕ(f5) = a4.

Applying Proposition 4.5 we introduce on M4 a structure of groupoid over M4,0 =
{ a1, a2 } obtained by transporting the structure of H4 via ϕ and we notice that
M4 is a transitive groupoid such that M4

∼= H4.
We now consider the set M5 = {a5, a6, a7, a8, a9 } and the bijection ψ :

S2/Is(S2) → M5, ψ(f̂1) = a5, ψ(f̂2) = a6, ψ(f̂3) = a7, ψ(f̂4) = a8, ψ(f̂5) = a9.
Applying Proposition 4.5, the set M5 has a groupoid structure over M5,0 =

{ a5, a6, a7 } obtained by transporting the structure of S2/Is(S2) via ψ. We notice
that M5 is a groupoid of order 5 and M5

∼= S2/Is(S2).
Using now the groupoids M4 and M5, we consider the disjoint union of these

groupoids and we denote M = M4

∐
M5.

The composition law and the structural functions of the groupoid M = { ai | i =
1, 9 } are given by the following tables:

· a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 a1 a3

a2 a2 a4

a3 a3 a1

a4 a4 a2

a5 a5 a8

a6 a6 a9

a7 a7

a8 a8 a5

a9 a9 a6

a a1 a2 a3 a4 a5 a6 a7 a8 a9

α(a) a1 a2 a1 a2 a5 a6 a7 a5 a6

β(a) a1 a2 a2 a1 a5 a6 a7 a6 a5

i(a) a1 a2 a4 a3 a5 a6 a7 a9 a8

We have that M is a groupoid of order 9 and M 
∼= K9.

Remark 4.4. Applying the above method we can construct several finite groupoids of
any order. For example, if we want to construct a groupoid of order 72, we consider
the groupoids Ωi, i = 1, 6, such that Ω1

∼= H4, Ω2
∼= S2/Is(S2), Ω3

∼= S2, Ω4
∼=

K9, Ω5
∼= Is(S3), Ω6

∼= S3 and we take the disjoint union Ω =
6∐

i=1

Ωi. We obtain

that Ω is a groupoid of order 72.
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