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∆-wavy probability distributions and Potts model

Udrea Păun

Abstract. We define the wavy probability distributions on a subset and ∆-wavy probability
distributions — two generalizations of the wavy probability distributions. A classification

on the ∆-waviness is given. For the ∆-wavy probability distributions having normalization

constant, we give a formula for this constant, to compute this constant. We show that the Potts
model is a ∆-wavy probability distribution, where ∆ is a partition which will be specified.

For the normalization constant of Potts model, we give formulas and bounds. As to the

formulas for this constant, we give two general formulas, one of them is simple while the
other is more complicated, and based on independent sets, a formula for the Potts model on

connected separable graphs — closed-form expressions are then obtained in several cases —,
and a formula for the Potts model on graphs with a vertex of degree 2 — a recurrence relation

is then obtained for the normalization constant of Potts model on Cn, the cycle graph with n

vertices; the normalization constant of Ising model on Cn is computed using this relation. As
to the bounds for the normalization constant, we present two ways to obtain such bounds; we

illustrate these ways giving a general lower bound, and a lower bound and an upper one when

the model is the Potts model on Gn,n, the square grid graph, n = 6k, k ≥ 1 — two upper
bounds for the free energy per site of this model are then obtained, one of them being in the

limit. A sampling method for the ∆-wavy probability distributions is given and, as a result,

a sampling method for the Potts is given. This method — that for the Potts model too —
has two steps, Step 1 and Step 2, when |∆| > 1 and one step, Step 2 only, when |∆| = 1. For

the Potts model, Step 1 is, in general, difficult. As to Step 2, for the Potts model too, using

the Gibbs sampler in a generalized sense, we obtain an exact (not approximate) sampling
method having p + 1 steps (p + 1 substeps of Step 2), where p = |I| , I is an independent set,

better, a maximal independent set, best, a maximum independent set — for the Potts model
on Gn1,n2,...,nd , the d-dimensional grid graph, d ≥ 1, n1, n2, ..., nd ≥ 1, n1n2...nd ≥ 2, we

obtain an exact sampling method for half or half+1 vertices.
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1. ∆-wavy probability distributions

In this section, we present some basic things on nonnegative matrices, products of
stochastic matrices, the hybrid Metropolis-Hastings chain(s), the Gibbs sampler(s) in
a generalized sense, the wavy probability distributions, the wavy probability distri-
butions on subsets, and the ∆-wavy probability distributions. The notions of wavy
probability distribution on a subset and of ∆-wavy probability distribution together
with the things concerning them are new — the most important things obtained are
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for the ∆-wavy probability distributions: 1) a formula for the normalization con-
stant for the ∆-wavy probability distributions which have normalization constant; 2)
a sampling method. Moreover, two results, one on our hybrid Metropolis-Hastings
chain and the other on our Gibbs sampler in a generalized sense, are improved and a
classification on the ∆-waviness is given.

Set

Par (E) = {∆ | ∆ is a partition of E } ,
where E is a nonempty set. We shall agree that the partitions do not contain the
empty set. (E) ∈Par(E) ; (E) is the improper (degenerate) partition of E.

Definition 1.1. Let ∆1,∆2 ∈Par(E) . We say that ∆1 is finer than ∆2 if ∀V ∈ ∆1,
∃W ∈ ∆2 such that V ⊆W.

Write ∆1 � ∆2 when ∆1 is finer than ∆2.
In this article, a vector is a row vector and a stochastic matrix is a row stochastic

matrix.
The entry (i, j) of a matrix Z will be denoted Zij or, if confusion can arise, Zi→j .
Set

〈m〉 = {1, 2, ...,m} (m ∈ N, m ≥ 1),

〈〈m〉〉 = {0, 1, ...,m} (m ∈ N),

Nm,n = {P |P is a nonnegative m× n matrix} ,
Sm,n = {P |P is a stochastic m× n matrix} ,

Nn = Nn,n,

Sn = Sn,n.

Let P = (Pij) ∈ Nm,n. Let ∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉. Set the matrices

PU = (Pij)i∈U,j∈〈n〉 , P
V = (Pij)i∈〈m〉,j∈V , and PVU = (Pij)i∈U,j∈V .

Set

({i})i∈{s1,s2,...,st} = ({s1} , {s2} , ..., {st}) ;

({i})i∈{s1,s2,...,st} ∈ Par ({s1, s2, ..., st}) (t ≥ 1).

E.g.,

({i})i∈〈〈n〉〉 = ({0} , {1} , ..., {n}) .

Definition 1.2. Let P ∈ Nm,n. We say that P is a generalized stochastic matrix if
∃a ≥ 0, ∃Q ∈ Sm,n such that P = aQ.

Definition 1.3. ([13].) Let P ∈ Nm,n. Let ∆ ∈Par(〈m〉) and Σ ∈Par(〈n〉). We
say that P is a [∆]-stable matrix on Σ if PLK is a generalized stochastic matrix,
∀K ∈ ∆,∀L ∈ Σ. In particular, a [∆]-stable matrix on ({i})i∈〈n〉 is called [∆]-stable

for short.

Definition 1.4. ([13].) Let P ∈ Nm,n. Let ∆ ∈Par(〈m〉) and Σ ∈Par(〈n〉). We say
that P is a ∆-stable matrix on Σ if ∆ is the least fine partition for which P is a [∆]-
stable matrix on Σ. In particular, a ∆-stable matrix on ({i})i∈〈n〉 is called ∆-stable

while a (〈m〉)-stable matrix on Σ is called stable on Σ for short. A stable matrix on
({i})i∈〈n〉 is called stable for short.
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Let ∆1 ∈Par(〈m〉) and ∆2 ∈Par(〈n〉). Set (see [13] for G∆1,∆2
and [14] for G∆1,∆2

)

G∆1,∆2 = {P | P ∈ Sm,n and P is a [∆1] -stable matrix on ∆2 }
and

G∆1,∆2
= {P | P ∈ Nm,n and P is a [∆1] -stable matrix on ∆2 } .

When we study or even when we construct products of nonnegative matrices (in
particular, products of stochastic matrices) using G∆1,∆2

or G∆1,∆2
, we shall refer

this as the G method. G comes from the verb to group and its derivatives.
Below we give an important result — a beautiful result — on products of stochastic

matrices.

Theorem 1.1. ([13].) Let P1 ∈ G(〈m1〉),∆2
⊆ Sm1,m2

, P2 ∈ G∆2,∆3
⊆ Sm2,m3

, ...,
Pn−1 ∈ G∆n−1,∆n

⊆ Smn−1,mn
, Pn ∈ G∆n,({i})i∈〈mn+1〉

⊆ Smn,mn+1
. Then

P1P2...Pn

is a stable matrix (i.e., a matrix with identical rows, see Definition 1.4).

Proof. See [13]. �

Definition 1.5. (See, e.g., [21, p. 80].) Let P ∈ Nm,n. We say that P is a row-
allowable matrix if it has at least one positive entry in each row.

Let P ∈ Nm,n. Set

P =
(
P ij
)
∈ Nm,n, P ij =

{
1 if Pij > 0,
0 if Pij = 0,

∀i ∈ 〈m〉 ,∀j ∈ 〈n〉 . We call P the incidence matrix of P (see, e.g., [8, p. 222]).
In this article, the transpose of a vector x is denoted x′. Set e = e (n) =

(1, 1, ..., 1) ∈ Rn, ∀n ≥ 1.
In this article, some statements on the matrices hold eventually by permutation of

rows and columns. For simplification, further, we omit to specify this fact.
Warning! In this article, if a Markov chain has the transition matrix P = P1P2...Ps,

where s ≥ 1 and P1, P2, ..., Ps are stochastic matrices, then any 1-step transition of
this chain is performed via P1, P2, ..., Ps, i.e., doing s transitions: one using P1, one
using P2, ..., one using Ps.

Let S be a finite set with |S| = r, where r ≥ 2 (|·| is the cardinal; for “r ≥ 2”,
see below). Let π = (πi)i∈S be a positive probability distribution on S. One way to
sample approximately or, at best, exactly from S is by means of our hybrid Metropolis-
Hastings chain from [14]. Below we define this chain.

Let E be a nonempty set. Set ∆ � ∆′ if ∆′ � ∆ and ∆′ 6= ∆, where ∆,
∆′ ∈Par(E) .

Let ∆1, ∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) � ∆2 � ... � ∆t+1 = ({i})i∈S ,
where t ≥ 1. (∆1 � ∆2 implies r ≥ 2.) Let Q1, Q2, ..., Qt ∈ Sr, Q1 =

(
(Q1)ij

)
i,j∈S

,

Q2 =
(

(Q2)ij

)
i,j∈S

, ..., Qt =
(

(Qt)ij

)
i,j∈S

, such that

(C1) Q1, Q2, ..., Qt are symmetric matrices;

(C2) (Ql)
L
K = 0,∀l ∈ 〈t〉 − {1} ,∀K,L ∈ ∆l,K 6= L (this condition implies that Ql

is a block diagonal matrix and ∆l-stable matrix on ∆l,∀l ∈ 〈t〉 − {1});
(C3) (Ql)

U
K is a row-allowable matrix, ∀l ∈ 〈t〉 , ∀K ∈ ∆l, ∀U ∈ ∆l+1, U ⊆ K.
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Define the matrices

Pl =
(

(Pl)ij

)
i,j∈S

,

(Pl)ij =


0 if j 6= i and (Ql)ij = 0,

(Ql)ij min
(

1,
πj(Ql)ji
πi(Ql)ij

)
if j 6= i and (Ql)ij > 0,

1−
∑
k 6=i

(Pl)ik if j = i,

∀l ∈ 〈t〉 . Set P = P1P2...Pt.
The next result — a basic result — is an improvement of Theorem 2.3 from [14].

Theorem 1.2. Concerning P above we have — two general good things —

πP = π and P > 0.

If, moreover,

πi (Ql)ij = πj (Ql)ji , ∀l ∈ 〈t〉 ,∀i, j ∈ S,
then

Pl = Ql, ∀l ∈ 〈t〉 ( and, therefore, P = Q1Q2...Qt)

If, moreover,

Ql ∈ G∆l,∆l+1
,∀l ∈ 〈t〉 ,

then

Pl ∈ G∆l,∆l+1
,∀l ∈ 〈t〉 ,

and, as a result,

P = e′π

(therefore, in this case, the Markov chain with transition matrix P attains its station-
arity at time 1, its stationary probability distribution (limit probability distribution)
being, obviously, π).

Proof. For the first statement, see [14, Theorem 2.3]. The second statement is obvious
(see the definition of matrices Pl, l ∈ 〈t〉). It is also obvious that Pl ∈ G∆l,∆l+1

,
∀l ∈ 〈t〉 , if, moreover, Ql ∈ G∆l,∆l+1

, ∀l ∈ 〈t〉 . Further, using Theorem 1.1, ∃ψ, ψ is
a probability distribution on S, such that

P = e′ψ.

Further,

π = πP = πe′ψ = ψ.

So,

P = e′π.

�

By Theorem 1.2 (by πP = π and P > 0), Pn → e′π as n→∞. We call the Markov
chain with transition matrix P the hybrid Metropolis-Hastings chain. In particular,
we call this chain the hybrid Metropolis chain when Q1, Q2, ..., Qt are symmetric
matrices.

An important example of hybrid Metropolis-Hastings chain is presented in the next
result. This result is an improvement of Theorem 2.3 from [18].
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Theorem 1.3. Consider a hybrid Metropolis-Hastings chain with state space S (S
above, so, |S| = r ≥ 2) and transition matrix P = P1P2...Pt, P1, P2, ..., Pt corre-
sponding to Q1, Q2, ..., Qt, respectively. Suppose that ∀l ∈ 〈t〉 , ∀i, j ∈ S,

(Ql)ij =
πj∑

k∈S,(Ql)ik>0

πk
if (Ql)ij > 0

(see above for Ql, l ∈ 〈t〉 , π = (πi)i∈S , ...). Then

(Pl)ij =



0 if j 6= i and (Ql)ij = 0,

(Ql)ij if j 6= i and πj (Ql)ji ≥ πi (Ql)ij > 0,
πj∑

k∈S, (Ql)jk>0

πk
if j 6= i and πj (Ql)ji < πi (Ql)ij ,

1−
∑
k 6=i

(Pl)ik if j = i,

∀l ∈ 〈t〉 , ∀i, j ∈ S. If, moreover,

πi (Ql)ij = πj (Ql)ji , ∀l ∈ 〈t〉 ,∀i, j ∈ S,

then

Pl = Ql,∀l ∈ 〈t〉 .
If, moreover,

Ql ∈ G∆l,∆l+1
, ∀l ∈ 〈t〉 ,

then

Pl ∈ G∆l,∆l+1
, ∀l ∈ 〈t〉 ,

and, as a result,

P = e′π.

Proof. Theorem 2.3 from [18] and Theorem 1.2. �

We call the hybrid Metropolis-Hastings chain from Theorem 1.3 the cyclic Gibbs
sampler in a generalized sense — the Gibbs sampler in a generalized sense for short.

It is worthy to note that Theorem 2.4 from [18] can also be improved; adding
“If, moreover,

Ql ∈ G∆l,∆l+1
, ∀l ∈ 〈t〉 ,

then

Pl ∈ G∆l,∆l+1
, ∀l ∈ 〈t〉 ,

and, as a result,

P = e′π.”

(see above for Ql, l ∈ 〈t〉 , ∆l, l ∈ 〈t+ 1〉 , ...), we obtain an improvement of it.
Further, we consider that S = {s1, s2, ..., sr} , where r ≥ 2 (|S| = r). Equip S with

an order relation, 5 . Suppose that s1 5 s2 5 ... 5 sr. Let π = (πsi)i∈〈r〉 be a positive

probability distribution (on S). Let ∆1, ∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) �
∆2 � ... � ∆t+1 = ({si})i∈〈r〉 , where t ≥ 1 and ({si})i∈〈r〉 = ({s1} , {s2} , ..., {sr}) .
(t ≥ 1 implies t + 1 ≥ 2; further, ∆1 � ∆2 implies r ≥ 2.) Consider that ∆l =(
K

(l)
1 ,K

(l)
2 , ...,K

(l)
ul

)
, K

(l)
1 having the first

∣∣∣K(l)
1

∣∣∣ elements of S, K
(l)
2 having the next
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2

∣∣∣ elements of S (this condition and the next ones vanish when l = 1), ..., K
(l)
ul

having the last
∣∣∣K(l)

ul

∣∣∣ elements of S, ∀l ∈ 〈t+ 1〉 . Consider that

(c1)
∣∣∣K(l)

1

∣∣∣ =
∣∣∣K(l)

2

∣∣∣ = ... =
∣∣∣K(l)

ul

∣∣∣ , ∀l ∈ 〈t+ 1〉 with ul ≥ 2;

(c2) r = r1r2...rt with r1r2...rl = |∆l+1| , ∀l ∈ 〈t− 1〉 , and rt =
∣∣∣K(t)

1

∣∣∣.
We have

K(l)
v =

⋃
w∈Dv,bl

∪{vbl}

K(l+1)
w , ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 ,

where

bl =
|∆l+1|
|∆l|

, ∀l ∈ 〈t〉 ,

and

Dv,bl = {(v − 1) bl + 1, (v − 1) bl + 2, ..., vbl − 1} , ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 .

Suppose that ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀w ∈ Dv,bl , ∃α
(l,v)
w > 0 such that

πs
i+d

(l,v)
w

= α(l,v)
w πsi (direct proportionality), ∀i ∈ 〈r〉 with si ∈ K(l+1)

(v−1)bl+1,

which, using vectors, is equivalent to

(πsi)i∈〈r〉, si∈K(l+1)
w+1

= α(l,v)
w (πsi)i∈〈r〉, si∈K(l+1)

(v−1)bl+1

,

where

d(l,v)
w =

∣∣∣K(l+1)
(v−1)bl+1

∣∣∣+
∣∣∣K(l+1)

(v−1)bl+2

∣∣∣+ ...+
∣∣∣K(l+1)

w

∣∣∣ ,
∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀w ∈ Dv,bl — obviously,

(πsi)i∈〈r〉, si∈K(l+1)

(v−1)bl+1

=

(
πsj(l,v)

, πsj(l,v)+1
, ..., πs

j(l,v)+d
(l,v)
(v−1)bl+1

−1

)
,

(πsi)i∈〈r〉, si∈K(l+1)
w+1

=

(
πs

j(l,v)+d
(l,v)
w

, πs
j(l,v)+d

(l,v)
w +1

, ..., πs
j(l,v)+d

(l,v)
w +d

(l,v)
(v−1)bl+1

−1

)
,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀w ∈ Dv,bl , where sj(l,v) is the first element of K
(l+1)
(v−1)bl+1,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , so,

j (l, v) =

 1 if v = 1,∣∣∣K(l)
1

∣∣∣+
∣∣∣K(l)

2

∣∣∣+ ...+
∣∣∣K(l)

v−1

∣∣∣+ 1 if v 6= 1,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 .

Definition 1.6. ([19].) The probability distribution π = (πsi)i∈〈r〉 having the above

property (direct proportionality) we call the wavy probability distribution (with respect
to the order relation 5 and partitions ∆1, ∆2, ..., ∆t+1).

For simple examples of wavy probability distributions, see [17]–[19].
In the next result, giving a wavy probability distribution, we construct a Gibbs

sampler in a generalized sense which attains its stationarity at time 1... This chain is
constructed using the G method such that Theorem 1.1 can be applied.
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Theorem 1.4. ([19].) Let π = (πsi)i∈〈r〉 be a wavy probability distribution (on S)

with respect to the order relation 5 and partitions ∆1, ∆2, ..., ∆t+1 — for S,5, ...,
see Definition 1.6 and above this definition. Consider a Markov chain with state space
S and transition matrix P = P1P2...Pt (t ≥ 1), where (the notation from Definition
1.6 and above this definition is again used)

(Pl)s
i+d

(l,v)
w
→ξ =


πs

i+d
(l,v)
u∑

z∈{0}∪Dv,bl

πs
i+d

(l,v)
z

if ξ = s
i+d

(l,v)
u

for some u ∈ {0} ∪Dv,bl ,

0 if ξ 6= s
i+d

(l,v)
u

, ∀u ∈ {0} ∪Dv,bl ,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀i ∈ 〈r〉 with si ∈ K(l+1)
(v−1)bl+1, ∀w ∈ {0} ∪Dv,bl , ∀ξ ∈ S, setting

d
(l,v)
0 = 0, ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 . Then this chain is a Gibbs sampler in a generalized

sense and
P = e′π

(therefore, this chain attains its stationarity at time 1, its stationary probability dis-
tribution (limit probability distribution) being, obviously, π).

Proof. See [19]. �

Theorem 1.4 leads to the next result.

Theorem 1.5. ([19].) Let π = (πsi)i∈〈r〉 be a wavy probability distribution (on S)

with respect to the order relation 5 and partitions ∆1, ∆2, ..., ∆t+1 — for S, 5, ...,
see Definition 1.6 and above this definition. Suppose that

πsi =
νsi
Z
, ∀i ∈ 〈r〉 ,

where
Z =

∑
i∈〈r〉

νsi ,

Z is the normalization constant (Z ∈ R+). Then

Z = νs1
∏
l∈〈t〉

1 +
∑

w∈D1,bl

α(l,1)
w

 .

Proof. See [19]. �

Below we define two new notions, the wavy probability distribution on a subset
and ∆-wavy probability distribution, both being generalizations of the notion of wavy
probability distribution.

Definition 1.7. Let S be a finite set with |S| ≥ 2. Let π = (πi)i∈S be a positive
probability distribution (on S). Let A ⊆ S with |A| ≥ 2. Equip A with an order

relation,
A

5. Let ∆1, ∆2, ..., ∆t+1 ∈Par(A) with ∆1 = (A) � ∆2 � ... � ∆t+1 =
({i})i∈A , where t ≥ 1. We say that π is a wavy probability distribution on A (with

respect to the order relation
A

5 and partitions ∆1, ∆2, ..., ∆t+1) if

π|A =

(
πi

P (A)

)
i∈A

,
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the normalized restriction of π to A, is a wavy probability distribution (on A) with

respect to the order relation
A

5 and partitions ∆1, ∆2, ..., ∆t+1, where

P (A) =
∑
k∈A

πk.

In particular, a wavy probability distribution on S (A = S) is called wavy probability
distribution for short.

In the above definition, we considered a subset A of S with |A| ≥ 2. If A is a subset
of S with |A| = 1, we say by convention that π is a wavy probability distribution on
A. We need these improper (degenerate) wavy probability distributions on subsets
for the ∆-wavy probability distributions, see below.

Remark 1.1. If π = (πi)i∈S is a wavy probability distribution on A, A ⊆ S with
|A| ≥ 2, then Theorem 1.4 holds, in particular, for π|A. If, moreover, π has the
normalization constant, say, Z, then ZP (A) is the normalization constant of π|A,
and, using Theorem 1.5, we can compute ZP (A) .

Definition 1.8. Let S be a finite set with |S| ≥ 2. Let π = (πi)i∈S be a positive
probability distribution (on S). Let ∆ ∈ Par (S) . We say that π is a ∆-wavy prob-
ability distribution (on S) if π is a wavy probability distribution on L, ∀L ∈ ∆. In
particular, a (S)-wavy probability distribution is called wavy probability distribution
for short.

Consider that π is a wavy probability distribution on A, A ⊆ S (|A| ≥ 1). Obvi-
ously, when |Ac| ≥ 2 (Ac is the complement of A), π is a wavy probability distribution
on Ac with respect to the partitions (Ac) and ({x})x∈Ac and an order relation on Ac

fixed — any order relation on Ac fixed is good when the partitions are (Ac) and
({x})x∈Ac . (When |Ac| = 1, π is, by convention, a wavy probability distribution on
Ac.) Using these things, π is a (A,Ac)-wavy probability distribution. This is a simple
case in which from a wavy probability distribution on a subset we obtain a ∆-wavy
probability distribution.

The probability distributions on sets with one element are improper (degenerate).
Further, we consider finite sets with at least two elements — let S be a finite set with
|S| ≥ 2. Any probability distribution on S is a wavy probability distribution with
respect to (the partitions) (S) and ({i})i∈S . A wavy probability distribution on S with
respect to (S) and ({i})i∈S is called trivial — no order relation on S is mentioned; any
order relation on S can be used when the partitions are (S) and ({i})i∈S . A probability
distribution on S with |S| ≥ 3 which is wavy only with respect to (S) and ({i})i∈S
is called w-irregular (warning! the notion is w-irregular probability distribution, not
w-irregular wavy probability distribution; w-irregular comes from wavy/waviness and
irregular). The class of wavy probability distributions with respect to three or more
partitions (the class of nontrivial wavy probability distributions) is the best class of ∆-
wavy probability distributions — the probability distributions from this class can lead
to good or very good results, see, e.g., [19] and, here (for three partitions), Theorem
2.8, the first paragraph after the proof of Theorem 2.8, the last paragraph from Section
2, and Sections 3 and 4. Any probability distribution on S is a wavy probability
distribution on A with respect to (the partitions) (A) and ({i})i∈A , ∀A ⊆ S with
|A| ≥ 2. A wavy probability distribution on a subset, A, of S with respect to (A)
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and ({i})i∈A (this condition implies |A| ≥ 2) is called trivial. A wavy probability
distribution on a subset, A, of S with |A| = 1 (see the convention after Definition 1.7)
is by convention called trivial. A probability distribution which is wavy on a subset,
A, of S with |A| ≥ 3 only with respect to (A) and ({i})i∈A is called w-irregular
on A. In particular, a w-irregular probability distribution on S (A = S) is called
w-irregular probability distribution for short. A ∆-wavy probability distribution on
S is called trivial if it is a wavy probability distribution on L with respect to (L)
and ({i})i∈L , ∀L ∈ ∆ with |L| ≥ 2 (any ({i})i∈S-wavy probability distribution (on
S) is automatically trivial). A probability distribution on S is called ∆-w-irregular
if it is a probability distribution which is wavy on L only with respect to (L) and
({i})i∈L, ∀L ∈ ∆ with |L| ≥ 3; we consider that ∃L ∈ ∆ such that |L| ≥ 3. In
particular, a (S)-w-irregular probability distribution is called w-irregular probability
distribution for short. A probability distribution on S with |S| ≥ 3 is called W-
complicated if it is a ∆-w-irregular probability distribution, ∀∆ ∈Par(S) with the
property that ∃L ∈ ∆ such that |L| ≥ 3. Excepting the case when |S| is sufficiently
small, the class of W-complicated probability distributions is, on the ∆-waviness, the
worst class of probability distributions. Some W-complicated probability distributions
can be transformed into good ∆-wavy probability distributions — do not forget this
idea!; for an example, see the example for the alias method in [10, pp. 25−27]
and [15, pp. 422−424]. For our interest (for sampling, ...), it is important that
the probability distributions on finite sets with at least two elements be ∆-wavy
probability distributions with |∆| as small as possible — some excepted cases can
appear, see, e.g., the first paragraph after the proof of Theorem 2.5 (in Section 2).
To complete our classification on the ∆-waviness (the waviness is a special case of the
∆-waviness; the waviness on a subset can be considered, see the previous paragraph,
as being a special case of the ∆-waviness), we must say one thing more. From the
above notions, using the prefix “non”, we derive others: nontrivial wavy probability
distribution, non-w-irregular probability distribution, etc.

Below we give a basic result to compute normalization constants.

Theorem 1.6. Let π = (πi)i∈S be a ∆-wavy probability distribution (S is a finite set
with |S| ≥ 2; ∆ ∈ Par(S)). Suppose that π has the normalization constant, say, Z.
Then

Z =
∑
L∈∆

ZP (L) ,

where

P (L) =
∑
k∈L

πk, ∀L ∈ ∆.

Proof. Since ∑
L∈∆

P (L) = 1,

we have

Z =
∑
L∈∆

ZP (L) .

�
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Remark 1.2. If π = (πi)i∈S is a ∆-wavy probability distribution (on S), then The-
orem 1.4 holds, in particular, for

π|L =

(
πi

P (L)

)
i∈L

,∀L ∈ ∆ with |L| ≥ 2.

Remark 1.3. Let π = (πi)i∈S be a ∆-wavy probability distribution (on S) with
normalization constant Z.

(a) By Theorem 1.5 we can compute ZP (L) for some L ∈ ∆ with |L| ≥ 2 or for
all L ∈ ∆ with |L| ≥ 2; ZP (L) = νi if L = {i} and πi = νi

Z .
(b) If we can compute ZP (L) for all L ∈ ∆, then, using Theorem 1.6, we could

compute Z.
(c) If we know Z and ZP (L) for some L ∈ ∆, then we can compute the probability

P (L) . If we know Z and ZP (L) for all L ∈ ∆, then we can compute the probabilities
P (L) , L ∈ ∆.

For the ∆-wavy probability distributions, below we give a sampling method having
one step when |∆| = 1 and two steps when |∆| > 1.

Let π = (πi)i∈S be a ∆-wavy probability distribution (on S). Let X be a ran-
dom variable with probability distribution π. We generate the random variable X as
follows.

Step 1 (when |∆| > 1). Sample from ∆ according to the probability distribution
τ = (τL)L∈∆ (on ∆), where

τL = P (L) =
∑
k∈L

πk, ∀L ∈ ∆ (τL > 0, ∀L ∈ ∆).

Suppose that the result of sampling is, say, A (A ∈ ∆).
Step 2. Sample from A according to the probability distribution

π|A =

(
πi
τA

)
i∈A

=

(
πi

P (A)

)
i∈A

.

Suppose that the result of sampling is, say, j (j ∈ A ⊆ S).
Set X = j — this value of X is generated according to the ∆-wavy probability

distribution π (j is the result of sampling from S according to π) because by general
multiplicative formula (see, e.g., [8. p. 26])

P (X = j) =P (X ∈ {j}) =P (X ∈ {j} ∩A) =P ({X ∈ {j}} ∩ {X ∈ A}) =

= P (X ∈ A)P (X ∈ {j} |X ∈ A ) = τA ·
πj
τA

= πj .

To use the above sampling method exactly or approximately, we must use other
exact or approximate sampling methods — examples of methods which could be used:
the inversion method, rejection method, G method, method based on our Gibbs sam-
pler in a generalized sense (Theorem 1.4 could be used at Step 2 (because π|L is
a wavy probability distribution, ∀L ∈ ∆ with |L| ≥ 2 — when |L| = 1, π|L is an
improper probability distribution, so, no problem, no theorem (result) is necessary)
and at Step 1, in the latter case when τ is a nontrivial wavy probability distribution
or, more generally, when τ is a nontrivial Γ-wavy probability distribution, |Γ| being
sufficiently small), and method based on our hybrid Metropolis-Hastings chain with
P ∗ (see [14]–[15] for this chain). The last three methods are exact when Theorem
1.1, practically speaking, can be applied. The G method is neither the method based
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on our Gibbs sampler in a generalized sense nor the method based on our hybrid
Metropolis-Hastings chain (with or without P ∗), but it together with the Gibbs sam-
pler in a generalized sense or, more generally, with the hybrid Metropolis-Hastings
chain can give good or very good results, see, e.g., [16] — the Gibbs sampler in a
generalized sense from there was constructed taking into account Theorem 1.1.

2. Potts model

In this section, we present a few things about graphs. We then consider the Potts
model together with some basic results about it, the best results being: 1) the Potts
model on an arbitrary but fixed graph is a ∆-wavy probability distribution, where
∆, which depends on the fixed graph, is a partition which will be specified; 2) two
formulas for the normalization constant of Potts model (on an arbitrary but fixed
graph), one of them is simple while the other is more complicated, and based on
independent sets — we also give the steps we need to compute this constant by the
more complicated formula.

In this article, we work with nondirected simple finite graphs excepting Section
4, where we will work with nondirected simple finite graphs and nondirected finite
multigraphs without loops. (A simple graph is a graph without multiple edges and
loops.) Moreover, we work with nonempty graphs, i.e., with graphs which have at
least one edge. (For the graph theory, see, e.g., [4], [5], and [22].)

Let G = (V, E) be a (nonempty nondirected simple finite) graph, where V is the
vertex set (|V| ≥ 2) and E is the edge set (|E| ≥ 1). Below we give a few definitions,
the most important for the Potts model being that of maximum independent set.
Some simple and not too simple results are also considered.

Let (X,Y ) ∈Par(V) (consequently, X, Y 6= ∅). (X,Y ) is called a bipartition (of the
graph G) if each edge of G has a vertex (end) in X and a vertex (end) in Y. The graph
G is called bipartite if it has at least one bipartition. (For the notions of bipartition
and of bipartite graph and their definitions, see, e.g., [22, p. 51].) If the graph G is
connected and bipartite, then it has a unique bipartition (see, e.g., [1, p. 8]). The
graph G is bipartite if and only if it contains no odd cycles (see, e.g., [4, p. 54]). If
the graph G is bipartite, then it is isomorphic to a spanning subgraph of a complete
bipartite graph. (For isomorphic graphs, see, e.g., [4, p. 40].)

Let ∅ 6= I ⊆ V. I is called an independent set (of vertices of the graph G) if each
edge of G has at most one vertex (end) in I. This notion is a central one in the graph
theory. Obviously, if I is an independent set, then |I| < |V| (equivalently, I ⊂ V).
Obviously, the graph G has at least |V| independent sets (because if V ∈ V, then
{V } is an independent set). If I is an independent set, then it is called a maximal
independent set if ∀J, I ⊂ J ⊆ V, J is not an independent set. If I is a maximal
independent set of maximum cardinality, then it is called a maximum independent
set. (For the above notions and their definitions, see, e.g., [2, pp. 70−71], [6], and [7,
pp. 461−462] — see also Internet (Wikipedia, etc.; some books are available).)

If the graph G is connected and bipartite, and has the bipartition (X,Y ), then
(i) X and Y are maximum independent sets if |X| = |Y | ;
(ii) X is the maximum independent set while Y is a maximal independent set if

|X| > |Y | .
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An interesting example of connected and bipartite graph is Gn1,n2,...,nd
, the d-

dimensional grid graph (with dimensions n1, n2, ..., nd), d ≥ 1, n1, n2, ..., nd ≥ 1,
n1n2...nd ≥ 2.

Further, we consider a (nonempty nondirected simple finite) graph G = (V, E),
where V = {V1, V2, ..., Vn} is the vertex set and E is the edge set (|E| ≥ 1; |E| ≥
1 =⇒ n ≥ 2). Moreover, since for the Potts model the isolated vertices count, but at
least for the normalization constant it is sufficient to consider graphs without isolated
vertices (see Remark 3.1), further, we consider, for simplification, that the graph G
has no isolated vertices. (An isolated vertex is a vertex of degree 0, see, e.g., [4, p.
20].) [Vi, Vj ] is the edge whose ends are vertices Vi and Vj , where i, j ∈ 〈n〉 (i 6= j).
Consider the set of functions

〈〈h〉〉V = {f | f : V → 〈〈h〉〉} ,

where h ≥ 1 (h ∈ N). Represent the functions from 〈〈h〉〉V by vectors: if f ∈ 〈〈h〉〉V ,
Vi 7−→ f (Vi) := xi, ∀i ∈ 〈n〉 , then its vectorial representation is (x1, x2, ..., xn) .
(x1, x2, ..., xn) , x1, x2, ..., xn ∈ 〈〈h〉〉 , are called configurations (the configurations of
graph G). 〈〈h〉〉 can be seen as a set of colors; in this case, if (x1, x2, ..., xn) is a
configuration, then x1 is the color of V1, x2 is the color of V2, ..., xn is the color of
Vn.

Set (see, e.g., [10, Chapter 6])

H (x) =
∑

[Vi,Vj ]∈E

1 [xi 6= xj ] , ∀x ∈ 〈〈h〉〉n (x = (x1, x2, ..., xn) ),

where

1 [xi 6= xj ] =

{
1 if xi 6= xj ,
0 if xi = xj ,

∀x ∈ 〈〈h〉〉n , ∀i, j ∈ 〈n〉 . Extending the physical terminology, the function H is
called the energy or Hamiltonian; H (x) represents the energy (or Hamiltonian) of
configuration x.

Recall that R+ = {x | x ∈ R and x > 0} .
Set

πx =
θH(x)

Z
, ∀x ∈ 〈〈h〉〉n ,

where θ ∈ R+ and

Z =
∑

x∈〈〈h〉〉n
θ
H(x)

.

The probability distribution π = (πx)x∈〈〈h〉〉n (on 〈〈h〉〉n) is called, when 0 < θ <

1, the Potts model (on the graph G), see [20], see, e.g., also [10, Chapter 6], [11],
and [23] — we extend this notion considering θ ∈ R+. In particular, if h = 1 and
0 < θ < 1, π is called the Ising model (on the graph G), see [9], see, e.g., also [10,
Chapter 6] and [12] (no external field is allowed in our article) — we also extend this
notion considering θ ∈ R+. Z is called the normalization constant, or normalizing
constant, or, extending the physical terminology, partition function (of (or for the)
Potts model). In the theory of Potts model, Z is a central object (see, e.g., also [3,
p. 6]), so, its computation is a fundamental problem.

In this article, ⊕ is the addition modulo h+ 1.
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The next result is simple, but very useful — a basic result about H, about the
Potts model on graphs.

Theorem 2.1.

H (x1, x2, ..., xn) = H (x1 ⊕ k, x2 ⊕ k, ..., xn ⊕ k) , ∀x1, x2, ..., xn, k ∈ 〈〈h〉〉 .

For h = 1, we have

H (x1, x2, ..., xn) = H (x1 ⊕ 1, x2 ⊕ 1, ..., xn ⊕ 1) = H (x1, x2, ..., xn) ,

∀x1, x2, ..., xn ∈ 〈〈1〉〉 , where

xi = 1− xi =

{
1 if xi = 0,
0 if xi = 1,

∀i ∈ 〈n〉 .

Proof. See [16]. �

Let x = (x1, x2, ..., xn) ∈ Rn. Let a ∈ R. Let k ∈ 〈n〉. Set

x(a|k ) =
(
x

(a|k )
1 , x

(a|k )
2 , ..., x(a|k )

n

)
∈ Rn,

where

x
(a|k )
i =

{
xi if i 6= k,
a if i = k,

∀i ∈ 〈n〉. Therefore, x(a|k ) = (x1, x2, ..., xk−1, a, xk+1, ..., xn) (x1, x2, ..., xk−1 vanish
if k = 1 and xk+1, ..., xn vanish if k = n).

Let Vj , Vk ∈ V, j, k ∈ 〈n〉 , j 6= k. We say that Vk is adjacent to Vj if [Vj , Vk] ∈ E .
Obviously, Vk is adjacent to Vj if and only if Vj is adjacent to Vk (because [Vj , Vk] =
[Vk, Vj ] — the graph G is not directed).

Fix Vi ∈ V (i ∈ 〈n〉). Suppose that the vertices adjacent to Vi are Vw1
, Vw2

, ..., Vws(i)
.

Consider the subgraph

G (Vi) = (V (Vi) , E (Vi))

of G = (V, E), where V (Vi) =
{
Vi, Vw1

, Vw2
, ..., Vws(i)

}
(the vertex set) and E (Vi) ={

[Vi, Vw1
] , [Vi, Vw2

] , ...,
[
Vi, Vws(i)

]}
(the edge set). Obviously, G (Vi) is a star graph

(a star subgraph of G); Vi is its internal vertex (node). We call G (Vi) the Vi-star
subgraph (of G). Set

HG(Vi) (x) =
∑

k∈〈s(i)〉

1 [xi 6= xwk
] , ∀x ∈ 〈〈h〉〉n

(x is a configuration of the graph G; for 1[xi 6= xwk
], see the definition of H). We

call HG(Vi) the energy or Hamiltonian of (Vi-star subgraph) G (Vi). HG(Vi) (x) is the
energy ( or Hamiltonian) of configuration x on G (Vi) .

The next result is a generalization of Theorem 2.4 in [16].

Theorem 2.2. Consider the above graph G. Let I be an independent set of G (I does
not contain isolated vertices). Suppose that I =

{
Vi1 , Vi2 , ..., Vip

}
, where p ∈ 〈n− 1〉 ,

i1, i2, ..., ip ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈p〉 , u 6= v. Then

H
(
x(a|it )

)
−H

(
x(b|it )

)
= c(a,b),it,xw1

,xw2
,...,xws(it)

,
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∀x ∈ 〈〈h〉〉n , ∀a, b ∈ 〈〈h〉〉 , ∀t ∈ 〈p〉 , where, ∀x ∈ 〈〈h〉〉n , ∀a, b ∈ 〈〈h〉〉 , ∀t ∈ 〈p〉 ,
c(a,b),it,xw1

,xw2
,...,xws(it)

is a quantity which depends on (a, b) , it (equivalently, Vit),

and xw1 , xw2 , ..., xws(it)
, xw1 , xw2 , ..., xws(it)

being the colors of vertices Vw1 , Vw2 ,
..., Vws(it)

, respectively, Vw1
, Vw2

, ..., Vws(it)
being the vertices adjacent to Vit —

c(a,b),it,xw1
,xw2

,...,xws(it)
is a constant when a, b, it, xw1

, xw2
, ..., xws(it)

are fixed. The

difference c(a,b),it,xw1
,xw2

,...,xws(it)
, ∀x ∈ 〈〈h〉〉n , ∀a, b ∈ 〈〈h〉〉 , ∀t ∈ 〈p〉 , can be com-

puted using the formula — a simple formula —

c(a,b),it,xw1 ,xw2 ,...,xws(it)
= HG(Vit)

(
x(a|it )

)
−HG(Vit)

(
x(b|it )

)
,

∀x ∈ 〈〈h〉〉n , ∀a, b ∈ 〈〈h〉〉 , ∀t ∈ 〈p〉 .

Proof. Let x ∈ 〈〈h〉〉n . Let a, b ∈ 〈〈h〉〉. Let t ∈ 〈p〉. If [Vi, Vj ] ∈ E (i, j ∈ 〈n〉, i 6= j)
and Vi, Vj 6= Vit , then

1
[
x

(a|it )

i 6= x
(a|it )

j

]
= 1

[
x

(b|it )

i 6= x
(b|it )

j

]
(see the definitions of 1[xi 6= xj ] and x(a|k )), so,

1
[
x

(a|it )

i 6= x
(a|it )

j

]
− 1

[
x

(b|it )

i 6= x
(b|it )

j

]
= 0.

Now, it is easy, it is obvious — for the difference H
(
x(a|it )

)
− H

(
x(b|it )

)
, use the

definitions of H and x
(a|k )

and the previous equation while, for the formula for

c(a,b),it,xw1 ,xw2 ,...,xws(it)
, use the definitions of HG(Vi) and x

(a|k )

and the previous equa-

tion. �

Remark 2.1. (a) From Theorem 2.2, we have

c(a,b),it,xw1
,xw2

,...,xws(it)
+ c(b,a),it,xw1

,xw2
,...,xws(it)

= 0,

∀a, b ∈ 〈〈h〉〉 , ∀t ∈ 〈p〉 , ∀xw1
, xw2

, ..., xws(it)
∈ 〈〈h〉〉 .

(b) Replacing “a, b ∈ 〈〈h〉〉” with “a, b ∈ 〈〈h〉〉 , a ≤ b” (or with “a, b ∈ 〈〈h〉〉 , a ≥ b”)
and “c(a,b),it,xw1

,xw2
,...,xws(it)

” with “ca,b,it,xw1
,xw2

,...,xws(it)
” in Theorem 2.2, we obtain

a version of this theorem. The reader, if he/she wishes, can use this version instead
of Theorem 2.2.

Below we generalize some things from [18, Section 5].
Set

U(xi1
,xi2

,...,xil)
={(y1, y2, ..., yn)| (y1, y2, ..., yn)∈〈〈h〉〉n and yim =xim , ∀m∈〈l〉},

∀l ∈ 〈n〉 , ∀i1, i2, ..., il ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈l〉 , u 6= v, ∀xi1 , xi2 , ..., xil ∈ 〈〈h〉〉 , and,
more generally,

U(xi1⊕k,xi2⊕k,...,xil
⊕k) =

= {(y1, y2, ..., yn) | (y1, y2, ..., yn) ∈ 〈〈h〉〉n and yim = xim ⊕ k, ∀m ∈ 〈l〉} ,

∀l ∈ 〈n〉 , ∀i1, i2, ..., il ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈l〉 , u 6= v, ∀xi1 , xi2 , ..., xil , k ∈ 〈〈h〉〉 .
Set

S(xi1
,xi2

,...,xil)
=

⋃
k∈〈〈h〉〉

U(xi1
⊕k,xi2

⊕k,...,xil
⊕k),
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∀l ∈ 〈n〉 , ∀i1, i2, ..., il ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈l〉 , u 6= v, ∀ (xi1 , xi2 , ..., xil) ∈ {0} ×
〈〈h〉〉l−1

(warning! xi1 ∈ {0} only — xi2 , ..., xil ∈ 〈〈h〉〉). We will construct an
order relation on S(xi1 ,xi2 ,...,xil)

, ∀l ∈ 〈n〉 , ∀i1, i2, ..., il ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈l〉 ,

u 6= v, ∀ (xi1 , xi2 , ..., xil) ∈ {0} × 〈〈h〉〉
l−1

. To make this, we need the next result, a
generalization of Theorem 5.1 from [18].

Theorem 2.3. We have

U(xi1
⊕k,xi2

⊕k,...,xil
⊕k) = U(xi1

,xi2
,...,xil)

⊕ (k, k, ..., k) ,

∀l ∈ 〈n〉 , ∀i1, i2, ..., il ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈l〉 , u 6= v, ∀xi1 , xi2 , ..., xil , k ∈ 〈〈h〉〉,
where

U(xi1
,xi2

,...,xil)
⊕ (k, k, ..., k) =

=
{

(y1, y2, ..., yn)⊕ (k, k, ..., k)
∣∣∣ (y1, y2, ..., yn) ∈ U(xi1 ,xi2 ,...,xil)

}
=

=
{

(y1 ⊕ k, y2 ⊕ k, ..., yn ⊕ k)
∣∣∣ (y1, y2, ..., yn) ∈ U(xi1

,xi2
,...,xil)

}
,

∀l ∈ 〈n〉 , ∀i1, i2, ..., il ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈l〉 , u 6= v, ∀xi1 , xi2 , ..., xil , k ∈ 〈〈h〉〉
(the vector (k, k, ..., k) has dimension n).

Proof. Let l ∈ 〈n〉 . Let i1, i2, ..., il ∈ 〈n〉 , iu 6= iv, ∀u, v ∈ 〈l〉 , u 6= v. Let xi1 , xi2 , ...,
xil , k ∈ 〈〈h〉〉 .

“⊆” Let z = (z1, z2, ..., zn) ∈ U(xi1⊕k,xi2⊕k,...,xil
⊕k). It follows that zi1 = xi1 ⊕ k,

zi2 = xi2 ⊕ k, ..., zil = xil ⊕ k. Let t ∈ 〈n〉 , t 6= i1, i2, ..., il. We have

zt =

{
(h+ 1 + zt − k)⊕ k if zt < k,

(zt − k)⊕ k if zt ≥ k

(0 ≤ zt, k ≤ h). Further, we have h+ 1 + zt − k ∈ 〈〈h〉〉 if zt < k and zt − k ∈ 〈〈h〉〉 if
zt ≥ k. We conclude that z ∈ U(xi1

,xi2
,...,xil)

⊕ (k, k, ..., k) .

“⊇” Let z = (z1, z2, ..., zn) ∈ U(xi1 ,xi2 ,...,xil)
⊕ (k, k, ..., k) . We have zi1 = xi1 ⊕ k,

zi2 = xi2 ⊕ k, ..., zil = xil ⊕ k. Therefore, z ∈ U(xi1⊕k,xi2⊕k,...,xil
⊕k). �

Consider U(xi1
,xi2

,...,xil)
(xi1 , xi2 , ..., xil ∈ 〈〈h〉〉 , ...) equipped with the lexi-

cographic order,
lex
≤ . Let k ∈ 〈h〉 = 〈〈h〉〉 − {0} . Consider U(xi1

⊕k,xi2
⊕k,...,xil

⊕k)

equipped with the order relation
k
≤ defined as follows (see the formula for

U(xi1
⊕k,xi2

⊕k,...,xil
⊕k) from Theorem 2.3):

(a1 ⊕ k, a2 ⊕ k, ..., an ⊕ k)
k
≤ (b1 ⊕ k, b2 ⊕ k, ..., bn ⊕ k)

if

(a1, a2, ..., an)
lex
≤ (b1, b2, ..., bn) ,

where (a1, a2, ..., an) , (b1, b2, ..., bn) ∈ U(xi1 ,xi2 ,...,xil)
.

Set
0
≤=

lex
≤ .
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Consider S(xi1 ,xi2 ,...,xil)
(xi1 ∈ {0} , xi2 , ..., xil ∈ 〈〈h〉〉 , ...) equipped with the

order relation 0 defined as follows (see the definition of S(xi1
,xi2

,...,xil)
again):

(u1, u2, ..., un) 0 (v1, v2, ..., vn)

if

(u1, u2, ..., un) ∈ U(xi1
⊕k1,xi2

⊕k1,...,xil
⊕k1) and

(v1, v2, ..., vn) ∈ U(xi1
⊕k2,xi2

⊕k2,...,xil
⊕k2) for some k1, k2 ∈ 〈〈h〉〉 , k1 < k2,

or if

(u1, u2, ..., un) , (v1, v2, ..., vn) ∈ U(xi1
⊕k,xi2

⊕k,...,xil
⊕k) and

(u1, u2, ..., un)
k
≤ (v1, v2, ..., vn) for some k ∈ 〈〈h〉〉 ,

where (u1, u2, ..., un) , (v1, v2, ..., vn) ∈ S(xi1
,xi2

,...,xil)
.

Set

U(xs1
⊕k,xs2

⊕k,...,xsl
⊕k,xt1

=k1,xt2
=k2,...,xtm=km) =

=
{

(y1, y2, ..., yn)
∣∣ (y1, y2, ..., yn) ∈ 〈〈h〉〉n , ysg = xsg ⊕ k, ∀g ∈ 〈l〉 , and

yti = xti = ki,∀i ∈ 〈m〉} ,

∀l,m ∈ 〈n〉 , l + m ≤ n, ∀s1, s2, ..., sl, t1, t2, ..., tm ∈ 〈n〉 , su 6= sv, ∀u, v ∈ 〈l〉 , u 6= v,
tw 6= tz, ∀w, z ∈ 〈m〉 , w 6= z, {s1, s2, ..., sl}∩{t1, t2, ..., tm} = ∅, ∀xs1 , xs2 , ..., xsl , k, k1,
k2, ..., km ∈ 〈〈h〉〉.

Consider I =
{
Vi1 , Vi2 , ..., Vip

}
⊆ V, an independent set of G. Consider Ic ={

Vj1 , Vj2 , ..., Vjq
}
, the complement of I (q ≥ 1, p + q = n = |V|). Fix xj1 , xj2 ,

..., xjq ; xj1 , xj2 , ..., xjq ∈ 〈〈h〉〉 , xj1 , xj2 , ..., xjq are the colors of Vj1 , Vj2 , ..., Vjq
in the configurations from U(xj1

,xj2
,...,xjq ) ⊂ S(xj1

,xj2
,...,xjq ), respectively (xj1 ⊕ k,

xj2 ⊕ k, ..., xjq ⊕ k are the colors of Vj1 , Vj2 , ..., Vjq in the configurations from
U(xj1

⊕k,xj2
⊕k,...,xjq⊕k)

⊂ S(xj1
,xj2

,...,xjq ), respectively, where k ∈ 〈〈h〉〉). Define the

partitions of S(xj1
,xj2

,...,xjq ) ⊆ 〈〈h〉〉
n
:

∆
(xj1

,xj2
,...,xjq )

1 =
(
S(xj1

,xj2
,...,xjq )

)
(∆

(xj1
,xj2

,...,xjq )
1 is the improper partition of S(xj1

,xj2
,...,xjq ); the elements (configura-

tions) of S(xj1
,xj2

,...,xjq ) are in the order determined by 0),

∆
(xj1 ,xj2 ,...,xjq )
2 =

(
U(xj1

⊕k,xj2
⊕k,...,xjq⊕k)

)
k∈〈〈h〉〉

=

=
(
U(xj1

,xj2
,...,xjq ), U(xj1

⊕1,xj2
⊕1,...,xjq⊕1), ..., U(xj1

⊕h,xj2
⊕h,...,xjq⊕h)

)
(U(xj1

,xj2
,...,xjq ) contains the first

∣∣∣U(xj1
,xj2

,...,xjq )

∣∣∣ elements of S(xj1
,xj2

,...,xjq ),

U(xj1
⊕1,xj2

⊕1,...,xjq⊕1) contains the second
∣∣∣U(xj1

⊕1,xj2
⊕1,...,xjq⊕1)

∣∣∣ elements of
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S(xj1
,xj2

,...,xjq ), ..., U(xj1
⊕h,xj2

⊕h,...,xjq⊕h)
contains the last

∣∣∣U(xj1
⊕h,xj2

⊕h,...,xjq⊕h)

∣∣∣
elements of S(xj1

,xj2
,...,xjq )(see the definition of 0)),

∆
(xj1 ,xj2 ,...,xjq )
3 =

(
U(xj1

⊕k,xj2
⊕k,...,xjq⊕k,xi1

=k1)

)
k,k1∈〈〈h〉〉

=

=
(
U(xj1

,xj2
,...,xjq ,xi1

=0), U(xj1
,xj2

,...,xjq ,xi1
=1), ..., U(xj1

,xj2
,...,xjq ,xi1

=h),

U(xj1
⊕1,xj2

⊕1,...,xjq⊕1,xi1
=0⊕1), U(xj1

⊕1,xj2
⊕1,...,xjq⊕1,xi1

=1⊕1), ...,

U(xj1⊕1,xj2⊕1,...,xjq⊕1,xi1=h⊕1), ..., ..., U(xj1⊕h,xj2⊕h,...,xjq⊕h,xi1=0⊕h),

U(xj1
⊕h,xj2

⊕h,...,xjq⊕h,xi1
=1⊕h), ..., U(xj1

⊕h,xj2
⊕h,...,xjq⊕h,xi1

=h⊕h)

)
(U(xj1 ,xj2 ,...,xjq ,xi1=k1) ⊂ U(xj1 ,xj2 ,...,xjq ), ∀k1 ∈ 〈〈h〉〉 , and

U(xj1
,xj2

,...,xjq ) =
⋃

k1∈〈〈h〉〉

U(xj1
,xj2

,...,xjq ,xi1
=k1), etc.;

U(xj1
,xj2

,...,xjq ,xi1
=0) contains the first

∣∣∣U(xj1
,xj2

,...,xjq ,xi1
=0)

∣∣∣ elements of S(xj1
,xj2

,...,xjq )

(equivalently (here), of U(xj1
,xj2

,...,xjq )), ... (see the definitions of
k
≤ and 0)),

∆
(xj1

,xj2
,...,xjq )

4 =
(
U(xj1

⊕k,xj2
⊕k,...,xjq⊕k,xi1

=k1,xi2
=k2)

)
k,k1,k2∈〈〈h〉〉

=

=
(
U(xj1 ,xj2 ,...,xjq ,xi1=0,xi2=0), U(xj1 ,xj2 ,...,xjq ,xi1=0,xi2=1), ..., ...,

U(xj1
⊕h,xj2

⊕h,...,xjq⊕h,xi1
=h⊕h,xi2

=h⊕h)

)
,

...

∆
(xj1 ,xj2 ,...,xjq )
p+2 =

(
U(xj1

⊕k,xj2
⊕k,...,xjq⊕k,xi1

=k1,xi2
=k2,...,xip=kp)

)
k,k1,k2,...,kp∈〈〈h〉〉

.

Obviously,

∆
(xj1 ,xj2 ,...,xjq )
p+2 = ({x})x∈S

(xj1
,xj2

,...,xjq )

and

∆
(xj1

,xj2
,...,xjq )

1 � ∆
(xj1

,xj2
,...,xjq )

2 � ... � ∆
(xj1

,xj2
,...,xjq )

p+2 .

The next two results are about two basic properties of the Potts model, about the
structure of Potts model.

Theorem 2.4. Under the above conditions the Potts model on the graph G is a wavy
probability distribution on S(xj1

,xj2
,...,xjq ) with respect to the order relation 0 and

partitions

∆
(xj1 ,xj2 ,...,xjq )
1 , ∆

(xj1 ,xj2 ,...,xjq )
2 , ..., ∆

(xj1 ,xj2 ,...,xjq )
p+2 .

Proof. We must show that π|S
(xj1

,xj2
,...,xjq )

is a wavy probability distribution with

respect to the order relation 0 and partitions ∆
(xj1

,xj2
,...,xjq )

1 , ∆
(xj1

,xj2
,...,xjq )

2 , ...,

∆
(xj1

,xj2
,...,xjq )

p+2 . (For π|S
(xj1

,xj2
,...,xjq )

, see Definition 1.7.)
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Recall that (see above) ∆
(xj1 ,xj2 ,...,xjq )
l � ∆

(xj1 ,xj2 ,...,xjq )
l+1 , ∀l ∈ 〈p+ 1〉 . The con-

ditions (c1) and (c2) also hold. (See the definition of wavy probability distribution
again.)

Consider the partitions ∆
(xj1 ,xj2 ,...,xjq )
1 and ∆

(xj1 ,xj2 ,...,xjq )
2 . The first set of

∆
(xj1

,xj2
,...,xjq )

2 is U(xj1 ,xj2 ,...,xjq ), the second one is U(xj1⊕1,xj2⊕1,...,xjq⊕1), ..., the last

one is U(xj1
⊕h,xj2

⊕h,...,xjq⊕h)
. Let k ∈ 〈〈h〉〉 , k 6= 0. Let z ∈ U(xj1

⊕k,xj2
⊕k,...,xjq⊕k)

.

By Theorem 2.3, ∃y ∈ U(xj1
,xj2

,...,xjq ) such that z = y ⊕ (k, k, ..., k) . By Theorem

2.1, H (z) = H (y). Suppose that z is the sth element of U(xj1⊕k,xj2⊕k,...,xjq⊕k)
,

1 ≤ s ≤
∣∣∣U(xj1

⊕k,xj2
⊕k,...,xjq⊕k)

∣∣∣ (see the definition of wavy probability distribution

again). It follows that y is the sth element of U(xj1 ,xj2 ,...,xjq ) (see the definitions of

k
≤ and 0 again). Finally, we obtain(

π|S
(xj1

,xj2
,...,xjq )

)
z

=
πz

P
(
S(xj1 ,xj2 ,...,xjq )

) =
θH(z)

ZP
(
S(xj1 ,xj2 ,...,xjq )

) =

=
θH(y)

ZP
(
S(xj1

,xj2
,...,xjq )

) =
πy

P
(
S(xj1

,xj2
,...,xjq )

) =

(
π|S

(xj1
,xj2

,...,xjq )

)
y

(the proportionality factor is 1).

Now, we consider the partitions ∆
(xj1

,xj2
,...,xjq )

l+1 and ∆
(xj1

,xj2
,...,xjq )

l+2 , where 1 ≤

l ≤ p. Let K ∈ ∆
(xj1

,xj2
,...,xjq )

l+1 . We have

K =


U(xj1

⊕k,xj2
⊕k,...,xjq⊕k)

for some k ∈ 〈〈h〉〉 if l = 1,

U(xj1
⊕k,xj2

⊕k,...,xjq⊕k,xi1
=k1,xi2

=k2,...,xil−1
=kl−1)

for some k, k1, k2, ..., kl−1 ∈ 〈〈h〉〉 if 2 ≤ l ≤ p.

Using the order relation 0, the first subset of K belonging to ∆
(xj1

,xj2
,...,xjq )

l+2 is
(xi1 = k1, xi2 = k2, ..., xil−1

= kl−1 vanish when l = 1)

U(xj1⊕k,xj2⊕k,...,xjq⊕k,xi1=k1,xi2=k2,...,xil−1
=kl−1,xil

=0⊕k),

the second one is

U(xj1
⊕k,xj2

⊕k,...,xjq⊕k,xi1
=k1,xi2

=k2,...,xil−1
=kl−1,xil

=1⊕k), ...,

the last one is

U(xj1
⊕k,xj2

⊕k,...,xjq⊕k,xi1
=k1,xi2

=k2,...,xil−1
=kl−1,xil

=h⊕k).

Let g ∈ 〈h〉. Let v ∈ U(xj1
⊕k,xj2

⊕k,...,xjq⊕k,xi1
=k1,xi2

=k2,...,xil−1
=kl−1,xil

=g⊕k). Let

u ∈ U(xj1
⊕k,xj2

⊕k,...,xjq⊕k,xi1
=k1,xi2

=k2,...,xil−1
=kl−1,xil

=0⊕k), where

u = (ui)i∈〈n〉 , ui =

{
vi if i 6= il,

0⊕ k if i = il,
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∀i ∈ 〈n〉 . Suppose that v is the fth element of

U(xj1⊕k,xj2⊕k,...,xjq⊕k,xi1=k1,xi2=k2,...,xil−1
=kl−1,xil

=g⊕k).

It follows that u is the fth element of

U(xj1⊕k,xj2⊕k,...,xjq⊕k,xi1=k1,xi2=k2,...,xil−1
=kl−1,xil

=0⊕k)

because the first element of

U(xj1⊕k,xj2⊕k,...,xjq⊕k,xi1=k1,xi2=k2,...,xil−1
=kl−1,xil

=0⊕k)

is d = (d1, d2, ..., dn) , where

dje = xje ⊕ k, ∀e ∈ 〈q〉 ,

dit = xit = kit , ∀t ∈ 〈l − 1〉 , if 2 ≤ l ≤ p,
dr = 0⊕ k, ∀r ∈ 〈n〉 − F,

where

F =

{
{j1, j2, ..., jq} if l = 1,

{j1, j2, ..., jq} ∪ {i1, i2, ..., il−1} if 2 ≤ l ≤ p,
while the first element of

U(xj1
⊕k,xj2

⊕k,...,xjq⊕k,xi1
=k1,xi2

=k2,...,xil−1
=kl−1,xil

=g⊕k)

is d =
(
d1, d2, ..., dn

)
, where

dm =

{
dm if m 6= il,

g ⊕ k if m = il,

∀m ∈ 〈n〉 (see the definitions of 0 and
k
≤ again), etc. Finally, using Theorem 2.2, we

have(
π|S

(xj1
,xj2

,...,xjq )

)
v

=
πv

P
(
S(xj1 ,xj2 ,...,xjq )

) =
θH(v)

ZP
(
S(xj1 ,xj2 ,...,xjq )

) =

=
θ
H(u)+c(g⊕k,0⊕k),il,xw1

,xw2
,...,xw

s(il)

ZP
(
S(xj1 ,xj2 ,...,xjq )

) =

= θ
c(g⊕k,0⊕k),il,xw1 ,xw2 ,...,xw

s(il) · θH(u)

ZP
(
S(xj1 ,xj2 ,...,xjq )

) =

= θ
c(g⊕k,0⊕k),il,xw1

,xw2
,...,xw

s(il) · πu

P
(
S(xj1

,xj2
,...,xjq )

) =

= θ
c(g⊕k,0⊕k),il,xw1

,xw2
,...,xw

s(il) ·
(
π|S

(xj1
,xj2

,...,xjq )

)
u

(the proportionality factor is θ
c(g⊕k,0⊕k),il,xw1

,xw2
,...,xw

s(il) ), where xw1
, xw2

, ..., xws(il)

are the colors of vertices Vw1
, Vw2

, ..., Vws(il)
, respectively, Vw1

, Vw2
, ..., Vws(il)

being

the vertices adjacent to Vil . �
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Theorem 2.5. Consider the above graph G = (V, E). Consider I =
{
Vi1 , Vi2 , ..., Vip

}
⊆ V, an independent set of G. Consider Ic =

{
Vj1 , Vj2 , ..., Vjq

}
(Ic is the complement

of I, so, q ≥ 1, p + q = n = |V|). Then the Potts model on the graph G is a ∆-wavy
probability distribution, where

∆ =
(
S(xj1

,xj2
,...,xjq )

)
(xj1

,xj2
,...,xjq )∈{0}×〈〈h〉〉q−1

,

and, as a result,

|∆| = (h+ 1)
q−1

— this model is a wavy probability distribution on S(xj1
,xj2

,...,xjq ) with respect to the

order relation 0 and partitions ∆
(xj1

,xj2
,...,xjq )

1 , ∆
(xj1

,xj2
,...,xjq )

2 , ..., ∆
(xj1

,xj2
,...,xjq )

p+2

specified before Theorem 2.4, ∀
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

.

Proof. Definition 1.8 and Theorem 2.4 �

Concerning Theorem 2.5, there exists a one-to-one correspondence between inde-
pendent sets and partitions. It is important for the computation of normalization
constant, etc. that |∆| be as small as possible, but not in all cases, see, e.g., Remark
3.2 and the proof of Theorem 4.1. |∆| is minimum if and only if I is a maximum
independent set.

The next result is about the Potts model too, and is useful for sampling (see Section
6) and for the computation of normalization constant (see Theorem 2.7).

Theorem 2.6. Consider the Potts model on the (above) graph G = (V, E). Consider
I =

{
Vi1 , Vi2 , ..., Vip

}
⊆ V, an independent set of G. Consider Ic =

{
Vj1 , Vj2 , ..., Vjq

}
(recall that Ic is the complement of I, so, q ≥ 1, p+ q = n = |V|). Then

ZP
(
S(xj1

,xj2
,...,xjq )

)
= (h+ 1) θ

H

(
y(xj1

,xj2
,...,xjq )

)
×

×
∏
l∈〈p〉

1 +
∑
w∈〈h〉

θ
c(w,0),il,xw1

,xw2
,...,xw

s(il)

 ,

∀
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

, where y(xj1
,xj2

,...,xjq ) is the first element of

S(xj1
,xj2

,...,xjq ) (equivalently, of U(xj1
,xj2

,...,xjq )), ∀
(
xj1 , xj2 , ..., xjq

)
∈ {0}×〈〈h〉〉q−1

,

y(xj1 ,xj2 ,...,xjq ) =

(
y
(xj1 ,xj2 ,...,xjq )
i

)
i∈〈n〉

, ∀
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

,

y
(xj1 ,xj2 ,...,xjq )
i =

{
0 if i /∈ {j1, j2, , ..., jq} ,
xjk if i = jk for some k ∈ 〈q〉 ,

∀
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

, ∀i ∈ 〈n〉 ,

c(w,0),il,xw1
,xw2

,...,xw
s(il)

= H
(
y(xj1

,xj2
,...,xjq )(w|il )

)
−H

(
y(xj1

,xj2
,...,xjq )(0|il )

)
= HG(Vil)

(
y(xj1 ,xj2 ,...,xjq )(w|il )

)
−HG(Vil)

(
y(xj1 ,xj2 ,...,xjq )(0|il )

)
,
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∀
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

, ∀w ∈ 〈h〉 , ∀l ∈ 〈p〉, xw1
, xw2

, ..., xws(il)
are the

colors of Vw1
, Vw2

, ..., Vws(il)
, respectively, Vw1

, Vw2
, ..., Vws(il)

being the vertices adja-

cent to Vil (see Theorem 2.2; y(xj1 ,xj2 ,...,xjq )(w|il ) ∈ U(xj1
,xj2

,...,xjq ) ⊂ S(xj1
,xj2

,...,xjq )
— therefore, the colors of Vj1 , Vj2 , ..., Vjq are xj1 , xj2 , ..., xjq , respectively —,

∀
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

, ∀w ∈ 〈〈h〉〉 = {0} ∪ 〈h〉 , ∀l ∈ 〈p〉 ; obviously,

y(xj1
,xj2

,...,xjq )(0|il ) = y(xj1
,xj2

,...,xjq ), ∀
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

, ∀l ∈ 〈p〉).

Proof. Let
(
xj1 , xj2 , ..., xjq

)
∈ {0} × 〈〈h〉〉q−1

. By Definition 1.7 and Theorem 2.4,
π|S

(xj1
,xj2

,...,xjq )
is a wavy probability distribution (on S(xj1

,xj2
,...,xjq )) with respect

to the order relation 0 and partitions ∆
(xj1

,xj2
,...,xjq )

l , l ∈ 〈p+ 2〉 , its normalization

constant being ZP
(
S(xj1 ,xj2 ,...,xjq )

)
. To compute this constant, we will use Theorem

1.5. We have

π
y(xj1

,xj2
,...,xjq ) =

θ
H

(
y(xj1

,xj2
,...,xjq )

)
Z

,

bl = b
(xj1

,xj2
,...,xjq )

l =

∣∣∣∣∆(xj1
,xj2

,...,xjq )
l+1

∣∣∣∣
∆

(xj1 ,xj2 ,...,xjq )
l

=
(h+ 1)

l

(h+ 1)
l−1

= h+ 1, ∀l ∈ 〈p+ 1〉 ,

D1,bl = D
1,b

(xj1
,xj2

,...,xjq )
l

= {1, 2, ..., h} = 〈h〉 , ∀l ∈ 〈p+ 1〉 ,

and (see the proof of Theorem 2.4)

α(l,1)
w = α

(l,1),(xj1
,xj2

,...,xjq )
w =

{
1 if l = 1,

θ
c(w,0),il−1,xw1

,xw2
,...,xw

s(il−1) if l ∈ 〈p+ 1〉 − {1},

∀l ∈ 〈p+ 1〉 , ∀w ∈ 〈h〉 , where xw1
, xw2

, ..., xws(il−1)
are the colors of (vertices) Vw1

,

Vw2
, ..., Vws(il−1)

, respectively, Vw1
, Vw2

, ..., Vws(il−1)
being the vertices adjacent to

Vil−1
if l ∈ 〈p+ 1〉 − {1} . So, by Theorem 1.5,

ZP
(
S(xj1 ,xj2 ,...,xjq )

)
= θ

H

(
y(xj1

,xj2
,...,xjq )

) ∏
l∈〈p+1〉

1 +
∑
w∈〈h〉

α(l,1)
w


= (h+ 1) θ

H

(
y(xj1

,xj2
,...,xjq )

) ∏
l∈〈p+1〉−{1}

1 +
∑
w∈〈h〉

θ
c(w,0),il−1,xw1

,xw2
,...,xw

s(il−1)


= (h+ 1) θ

H

(
y(xj1

,xj2
,...,xjq )

) ∏
l∈〈p〉

1 +
∑
w∈〈h〉

θ
c(w,0),il,xw1

,xw2
,...,xw

s(il)

 .

�

The next result is another main result about the Potts model, a connection between
two central notions, independent set and normalization constant.
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Theorem 2.7. Under the same conditions as in Theorem 2.6 we have

Z = (h+ 1)
∑

(xj1
,xj2

,...,xjq )∈{0}×〈〈h〉〉q−1

[
θ
H

(
y(xj1

,xj2
,...,xjq )

)
·

·
∏
l∈〈p〉

1 +
∑
w∈〈h〉

θ
c(w,0),il,xw1

,xw2
,...,xw

s(il)


(xj1 , xj2 , ..., xjq are the colors of vertices Vj1 , Vj2 , ..., Vjq , respectively).

Proof. Theorems 1.6, 2.5, and 2.6. �

Based on the above result, we now can give the steps we need to compute the
normalization constant Z for the Potts model on G — an arbitrary but fixed graph
(this graph can be connected or not). Our interest is to obtain for Z a formula (an
expression) as good as possible (as simple as possible, ...) — this fact is taken into
account in these steps, the last step can be performed or not.

Step 1 (Graph level). Determine an independent set of G as large as possible (the
larger the independent set is, the smaller the numbers of terms of sum for Z from
Theorem 2.7 is), better, a maximal independent set of G as large as possible, best,
a maximum independent set of G (the last problem is NP-hard, but in some cases it
can easy be solved, see, e.g., [2, Chapter 4]).

Step 2 (Markov chain (or ∆-wavy probability distribution) level). For the indepen-
dent set of graph G found at Step 1, determine Z using the formula from Theorem
2.7.

Step 3 (Algebraic level, if possible). Simplify, if possible, the formula (expression)
for Z found at Step 2 — determine, if possible, the identical products, use, if possible,
algebraic identities, ...

Example 2.1. (A simple case.) Consider the Potts model on the complete bipartite
graph K2,n−2, where n ≥ 3. Consider that the bipartition of this graph is (X,Y ),
where X = {V1, V2} , Y = {V3, V4, ..., Vn} ({V1, V2, ..., Vn} is the vertex set of this
graph).

Step 1 (for the Potts model on K2,n−2). We take I = Y. I is an independent
set (of K2,n−2) if n = 3, a maximum independent set if n = 4, and the maximum
independent set if n ≥ 5 (if n = 3, X is a maximum independent set, and we can take
I = X).

Steps 2-3. By Theorem 2.7 we have

Z = (h+ 1)
∑

x1=0,x2∈〈〈h〉〉

θH(y(x1,x2))
n∏
i=3

1 +
∑
w∈〈h〉

θc(w,0),i,x1,x2

 .

Since

H
(
y(x1,x2)

)
=

{
0 if x1 = x2 = 0,

n− 2 if x1 = 0, x2 ∈ 〈h〉 ,
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and

c(w,0),i,x1,x2
=


2 if x1 = x2 = 0,

0 if x1 = 0, x2 ∈ 〈h〉 , x2 = w,

1 if x1 = 0, x2 ∈ 〈h〉 , x2 6= w,

∀w ∈ 〈h〉 , ∀i ∈ {3, 4, ..., n} (I = Y = {V3, V4, ..., Vn}), finally, we have

Z = (h+ 1)
{
θ0
(
1 + hθ2

)n−2
+ hθn−2

[
1 + θ0 + (h− 1) θ

]n−2
}

=

= (h+ 1)
{(

1 + hθ2
)n−2

+ hθn−2 [2 + (h− 1) θ]
n−2
}
.

For h = 1 (for the Ising model), we have

Z = 2
[(

1 + θ2
)n−2

+ (2θ)
n−2
]
.

Remark 2.2. (a) Using Theorem 2.7, it is also easy to compute the normalization
constant of Potts model on an arbitrary but fixed nonempty spanning subgraph (with-
out isolated vertices) of the complete bipartite graph K2,n−2, or, more generally, of the
graph G = (V, E) , |V| = n (|E| ≥ 1), which has an independent set I with |I| = n− 2,
where n ≥ 3 in both cases. Note, moreover, that the Potts model on the above graph
G is a ∆-wavy probability distribution with |∆| = h+1, where ∆ = ... — see Theorem
2.5.
(b) Using Theorem 2.7, it is also easy to compute the normalization constant for
the Potts model on the complete bipartite graph K1,n−1 (the star graph with n ver-

tices), where n ≥ 2. In this case, Z = (h+ 1) (hθ + 1)
n−1

. This formula for Z was
also obtained in [16] and, moreover, will be also obtained in Section 3 by a different
method.

Set

U(xs1=a1,xs2=a2,...,xsl
=al) =

= {(y1, y2, ..., yn) | (y1, y2, ..., yn) ∈ 〈〈h〉〉n and ysb = xsb = ab, ∀b ∈ 〈l〉} ,

∀l ∈ 〈n〉 , ∀s1, s2, ..., sl ∈ 〈n〉 , su 6= sv, ∀u, v ∈ 〈l〉 , u 6= v, ∀a1, a2, ..., al ∈ 〈〈h〉〉 .
Below we give another general formula for the normalization constant of Potts

model.

Theorem 2.8. (Based on Theorem 2.3(vi) in [16]; see also Remark 5.1 in [18].)
Consider the Potts model on the graph G. Then

Z = (h+ 1)
∑

x∈U(xs=a)

θH(x), ∀s ∈ 〈n〉 , ∀a ∈ 〈〈h〉〉 .

Proof. See the proof of Theorem 2.3(vi) in [16]. �

Theorems 2.7 and 2.8 are somehow related because the former is based on ∆-wavy
probability distributions while the latter is based on wavy probability distributions
(see Theorem 1.5 and, in [18], Theorem 5.2 and Remark 5.1). In some cases, the
above simple formula for the normalization constant is or seem better than that from
Theorem 2.7. We illustrate this fact in the next example.
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Example 2.2. Consider the Ising model on Kn, the complete graph with n vertices
(n ≥ 2). Consider that the vertices of Kn are V1, V2, ..., Vn. By Theorem 2.8 we have
(h = 1 and we work with s = 1 and a = 0)

Z = 2
∑

x∈U(x1=0)

θH(x)

= 2
∑

i∈〈〈n−1〉〉

[the term of Z dues to the configurations with 0 in V1 and

i 1s in the other vertices]

= 2
∑

i∈〈〈n−1〉〉

Cin−1θ
i(n−i).

Now, we apply Theorem 2.7 for the independent set {Vn} (this is a maximum inde-
pendent set). Setting

T = {k | k ∈ 〈n− 1〉 − {1} and xk = 1} ,

we have

Z = 2
∑

(x1,x2,...,xn−1)∈{0}×〈〈1〉〉n−2

θ
H
(
y(x1,x2,...,xn−1)

)
(1 + θc(1,0),n,x1,x2,...,xn−1 ) =

= 2
∑

i∈〈〈n−2〉〉

∑
(x1,x2,...,xn−1)∈{0}×〈〈1〉〉n−2

|T |=i

θi(n−i)
(
1 + θn−2i−1

)

= 2
∑

i∈〈〈n−2〉〉

Cin−2θ
i(n−i) (1 + θn−2i−1

)
.

This formula is a bit more complicated than the former one, but its sum has n − 1
terms.

Based on the formulas from Theorems 2.7 and 2.8 we will give other ways to com-
pute normalization constants for the Potts model in the next two sections. Sometimes,
both formulas will be used, the results obtained being good or very good in some cases
— for an example, see Theorem 4.1 and its proof (see also Theorems 4.2 and 4.3);
another example is in Remark 3.2.

3. Potts model on connected separable graphs

In this section, we give a formula for the normalization constant of Potts model on a
connected separable graph. This formula can be used to compute the normalization
constant for the Ising or Potts model in many cases — we give a few examples, for
trees, for the friendship graphs, for the windmill graphs, for the bull graph, and for
others.

When we work with two or more subgraphs or graphs — sometimes, even when we
work with one graph —, we will use subscripts or superscripts in the case when the
energies are used, in that when the normalization constants are used, etc. E.g., HG
is (denote) the energy of graph G.
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Remark 3.1. (See also Remark 4.14 in [16].) Consider the Potts model on a
nonempty graph G with connected components G1, G2, ..., Gm. Suppose that Gk is
a nonempty subgraph of G, ∀k ∈ 〈m〉 . Consider the Potts model on Gk, ∀k ∈ 〈m〉 . It
is easy to prove that

ZG = ZG1ZG2 ...ZGm
(ZG is the normalization constant of Potts model on G, ...). The condition that Gk
be a nonempty subgraph of G, ∀k ∈ 〈m〉 , can be removed. Indeed, removing this
condition and setting by convention

ZGk = h+ 1

when Gk is a trivial subgraph (a vertex-subgraph) of G, where k ∈ 〈m〉 , we have

ZG = ZG1ZG2 ...ZGm .

Due to the above remark, it is sufficient to compute the normalization constant(s)
for the Potts model on connected graphs.

Definition 3.1. (See, e.g., [22, p. 54].) Let G be a connected graph. Let H and K
be two subgraphs of G. (H,K) is called a 1-separation of G if H∪K = G, H∩K is a
vertex-graph, and H and K have each at least one edge. The vertex of H∩K is called
the cut-vertex of 1-separation (H,K) .

Definition 3.2. (See, e.g., [22, p. 54].) Let G be a (connected or not) graph. G is
called a separable graph if it is disconnected (nonconnected) or has a (at least one)
1-separation when it is connected.

Definition 3.3. (See, e.g., [22, pp. 54 and 60].) Let G be a (connected or not)
graph. Let B be a subgraph of G. B is called a block of (graph) G if it is a maximal
nonseparable subgraph of G. (If B is a block of G, it follows from Definition 3.2 that
it is a connected subgraph of G.)

Definition 3.4. (See, e.g., [22, p. 64].) Let G be a graph. Let B be a block of G. B
is called an extremal block (of G) if it includes exactly one cut-vertex of G.

Theorem 3.1. (See, e.g., [22, p. 64].) Let G be a connected separable graph. Then
it has at least two extremal blocks.

Proof. See, e.g., [22, p. 64]. (This result is based on the fact that Blk(G), the block-
graph of G, is a tree, see, e.g., [22, pp. 63–64].) �

Below we give the main result of this section on the Potts model.

Theorem 3.2. Consider a connected separable graph G = (V, E) with V = {V1, V2, ...
..., Vn} (n ≥ 3). Consider that its blocks are B1, B2, ..., Bm, where m ≥ 2. Consider
the Potts model on G. Consider the Potts model on Bk, ∀k ∈ 〈m〉 . Then

ZG =
1

(h+ 1)
m−1ZB1

ZB2
...ZBm

.

Proof. Induction on m.
m = 2. In this case, ∃j1 ∈ 〈n〉 such that (B1,B2) is a 1-separation of G with

cut-vertex Vj1 . Consider that Bk = (Vk, Ek) , ∀k ∈ 〈2〉 . We have

HG (xG) = HB1
(xB1

) +HB2
(xB2

) , ∀xG ∈ 〈〈h〉〉n ,
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where, setting
Tk = {i | i ∈ 〈n〉 and Vi ∈ Vk } ,∀k ∈ 〈2〉 ,

obviously (see our convention when we use two or more subgraphs or graphs again),

xG = (xi)i∈〈n〉 , xG ∈ 〈〈h〉〉
n
,

and
xBk

= (xi)i∈Tk
, ∀k ∈ 〈2〉 , xBk

∈ 〈〈h〉〉|Tk| = 〈〈h〉〉|Vk| , ∀k ∈ 〈2〉 .
By Theorem 2.8 we have

ZG = (h+ 1)
∑

xG∈UG
(xj1

=0)

θHG(xG) = (h+ 1)
∑

xB1∈U
B1

(xj1
=0)

xB2∈U
B2

(xj1
=0)

θHB1(xB1)+HB2(xB2)

= (h+ 1)
∑

xB1∈U
B1

(xj1
=0)

θHB1(xB1)
∑

xB2∈U
B2

(xj1
=0)

θHB2(xB2)

= (h+ 1)
∑

xB1∈U
B1

(xj1
=0)

θHB1(xB1) 1

h+ 1
ZB2

=
1

h+ 1
ZB2

(h+ 1)
∑

xB1∈U
B1

(xj1
=0)

θHB1(xB1)

 =
1

h+ 1
ZB1ZB2 .

m − 1 7→ m. By Theorem 3.1, ∃i1 ∈ 〈m〉 , ∃k1 ∈ 〈n〉 such that Bi1 is an extremal
block of G with cut-vertex Vk1 . It follows that (Bi1 ,B 6=i1) is a 1-separation of G with
cut-vertex Vk1 , where

B 6=i1 =
⋃

i∈〈m〉,i6=i1

Bi.

Consider, besides the Potts model on Bi1 , the Potts model on B 6=i1 (Bi1 and B6=i1 are
subgraphs of G). Finally, using the case (step) m = 2, we have

ZG =
1

h+ 1
ZBi1

ZB6=i1
=

1

h+ 1
ZBi1

 1

(h+ 1)
m−2

∏
k∈〈m〉,k 6=i1

ZBk

 =

=
1

(h+ 1)
m−1ZB1

ZB2
...ZBm

.

�

Let G1 and G2 be two graphs. We write G1
∼= G2 if G1 and G2 are isomorphic — for

isomorphic graphs and this notation, see, e.g., [4, p. 40].
Further, we give a few examples for Theorem 3.2.

Example 3.1. Let T = (V, E) be a tree with V = {V1, V2, ..., Vn} (n ≥ 2). Consider
the Potts model on T . If n = 2, by Theorem 2.8 we have

ZT = (h+ 1)
∑

xT ∈UT(x1=0)

θHT (xT ) = (h+ 1) (1 + hθ) .
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Now, we consider that n ≥ 3. In this case, T is a connected separable graph with
n− 1 blocks, B1, B2, ..., Bn−1, B1

∼= B2
∼= ... ∼= Bn−1

∼= P2, P2 is the path graph with
2 vertices. Consider the Potts model on Bk, ∀k ∈ 〈n− 1〉. Consider the Potts model
on P2. By Theorem 3.2 we have

ZT =
1

(h+ 1)
n−2 (ZP2)

n−1
=

=
1

(h+ 1)
n−2 [(h+ 1) (1 + hθ)]

n−1
= (h+ 1) (1 + hθ)

n−1
.

Therefore,

ZT = (h+ 1) (1 + hθ)
n−1

,∀n ≥ 2.

This result was also obtained in [16], but by a different method. For h = 1 and
T = Pn (for the 1-dimensional Ising model), Pn is the path graph with n vertices, we
have

ZPn
= 2 (1 + θ)

n−1
,∀n ≥ 2

(a known result, see, e.g., [12, p. 36] or [16] — in [12], it is considered a different
formula for energy, but each of the two formulas can be obtained from the other).

Example 3.2. Let G = (V, E) be a connected separable graph (|V| ≥ 3). Let
G1 = (V1, E1) be a connected graph with |V1| ≥ 2. Consider that the blocks of G are
B1, B2, ..., Bm (m ≥ 2), and B1

∼= B2
∼= ... ∼= Bm ∼= G1. Consider the Potts model on

each of these graphs (the blocks are graphs). Then (by Theorem 3.2)

ZG =
1

(h+ 1)
m−1 (ZG1)

m
.

If h = 1 and G1 = Ck, Ck is the cycle graph with k vertices, we have

ZG =
1

2m−1

(
(1− θ)k + (1 + θ)

k
)m

because

ZCk = (1− θ)k + (1 + θ)
k

(for ZCk , see, e.g., [12, p. 35], [18], or, here, Theorem 4.3).
If h = 1, G1 = C3, and the graph G has a cut-vertex only (therefore, all blocks B1, B2,
..., Bm are extremal), then G = Fm (by definition), Fm is the friendship graph (with
m blocks, each block being isomorphic to C3), and

ZFm
=

1

2m−1

(
(1− θ)3

+ (1 + θ)
3
)m

=

=
1

2m−1

[
2
(
1 + 3θ2

)]m
= 2

(
1 + 3θ2

)m
.

If h = 1 and G1 = Kl, Kl is the complete graph with l vertices, then, by Example 2.2,

ZG =
1

2m−1

2
∑

i∈〈〈l−1〉〉

Cil−1θ
i(l−i)

m = 2

 ∑
i∈〈〈l−1〉〉

Cil−1θ
i(l−i)

m .
If h = 1, G1 = Kl, and the graph G has a cut-vertex only, then G=Wd(l,m) (by defi-
nition), Wd(l,m) is the windmill graph (with m blocks, each block being isomorphic
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to Kl), and

ZWd(l,m) = 2

 ∑
i∈〈〈l−1〉〉

Cil−1θ
i(l−i)

m .
Example 3.3. Let G = (V, E) be a connected separable graph (|V| ≥ 3). Consider
that the blocks of G are B1, B2, ..., Bm (m ≥ 2). Suppose that B1

∼= B2
∼= ... ∼= Bu ∼=

P2 and Bu+1
∼= Bu+2

∼= ... ∼= Bm ∼= Ck, where u ∈ 〈m− 1〉. Consider the Potts model
on each of these graphs. Then (by Theorem 3.2)

ZG =
1

(h+ 1)
m−1 (ZP2

)
u

(ZCk)
m−u

=

=
1

(h+ 1)
m−1 [(h+ 1) (1 + hθ)]

u
(ZCk)

m−u
=

1

(h+ 1)
m−u−1 (1 + hθ)

u
(ZCk)

m−u

If h = 1 and k = 3, we have

ZG =
1

2m−u−1
(1 + θ)

u [
2
(
1 + 3θ2

)]m−u
= 2 (1 + θ)

u (
1 + 3θ2

)m−u
.

If h = 1, m = 3, u = 2, the blocks B1 and B2 are extremal, and k = 3, then G = the
bull graph (by definition) and

ZG = 2 (1 + θ)
2 (

1 + 3θ2
)
.

Remark 3.2. The case of Theorem 3.2 when we have at least m−1 blocks isomorphic
to P2 can be proved by induction by a different method, using Theorems 2.7 and 2.8.
The proof is based on the fact that there exists an extremal block isomorphic to P2

both for the step m = 2 and for the step m − 1 7→ m. We do the proof for the step
m = 2 only. Suppose that B1

∼= P2 and has the vertices V1 and V2. Suppose that
V2 is the cut-vertex of 1-separation (B1,B2) . Consider the independent set {V1} . By
Theorems 2.7 and 2.8 we have

ZG = (h+ 1)
∑

(x2,x3,...,xn)G∈{0}×〈〈h〉〉
n−2

θ
HG
(
y
(x2,x3,...,xn)G
G

)1 +
∑
w∈〈h〉

θ
cG
(w,0),1,x2

=

= (h+ 1)
∑

xB2∈U
B2
(x2=0)

θHB2(xB2) (1 + hθ) =

= (1 + hθ)

(h+ 1)
∑

xB2∈U
B2
(x2=0)

θHB2(xB2)

 =
1

h+ 1
ZP2

ZB2
=

1

h+ 1
ZB1

ZB2
.

4. Potts model on graphs with a vertex of degree 2

In this section, under certain conditions, we give a formula for the normalization
constant of Potts model on a graph with a vertex of degree 2. This formula leads to
a recurrence relation for the normalization constant of Potts model on Cn, the cycle
graph with n vertices (n ≥ 3), and, further, we compute the normalization constant
of Ising model on Cn.
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In this section, besides the Potts model on graphs, we must work with the Potts
model on multigraphs — we work with nondirected finite multigraphs without loops.
If G is a nonempty nondirected finite graph with loops or a nondirected finite multi-
graph with loops and G′ is the graph or multigraph obtained from it by delet-
ing/removing the loops, we set by convention

HG (x) = HG′ (x) , ∀x ∈ 〈〈h〉〉n ,

supposing that G′ is nonempty when it is a graph, where n = the order of G (=
the number of vertices of G, see, e.g., [4, p. 19]), 〈〈h〉〉 = the set of colors of G, ...
So, we can work with G′ instead of G. The definition of Potts model on multigraphs
(nondirected finite multigraphs without loops) is the same as that from Section 2 for
the Potts model on graphs, with the difference that the edge set from there is replaced
with an edge multiset. E.g., considering the multigraph G = (V, E) , V = {V1, V2, V3} ,
E = {[V1, V2] , [V1, V2] , [V2, V3] , [V3, V1]} , and the Potts model on G, we have, e.g.,
H (0, 1, 0) = 3 (x1 = 0 (0 is the color of V1), x2 = 1, x3 = 0), not H (0, 1, 0) = 2,

because V1 and V2 are joint by two edges, and π(0,1,0) = θ3

Z .
It is easy to see that Theorem 2.8 can be extended for the Potts model on multi-

graphs. Moreover, Theorems 2.1, 2.2, and 2.4–2.7 can also be extended for the Potts
model on multigraphs — good exercises for the reader! Moreover, Theorem 3.2 can
also be extended for the Potts model on connected separable multigraphs —another
good exercise for the reader!

In the next result, we introduce a new method, a “superposition” method, to
compute the normalization constants for the Potts model, and which is based on
Theorems 2.7 and 2.8, and the extension of Theorem 2.8 for the Potts model on
multigraphs.

Theorem 4.1. Let G = (V, E) be a graph with V = {V1, V2, ..., Vn} , where |V| = n ≥ 4
and |E| ≥ 3. Suppose that degVn = 2 (degVn = the degree of Vn). Suppose that the
vertices adjacent to Vn are Vn−2 and Vn−1 (Vn−2 and Vn−1 are adjacent or not).
Further, we construct a graph and a graph or multigraph. We delete the vertex Vn
and edges [Vn−2, Vn] and [Vn−1, Vn] (these edges are the incident edges with Vn), and
obtain the graph, say, G1, G1 = (V1, E1) ,

V1 = V − {Vn} , E1 = E − {[Vn−2, Vn] , [Vn−1, Vn]} .

We then “superpose” Vn−2 on Vn−1 in G1, i.e., we remove (delete) Vn−1 from V1 and,
in E1, each edge [X,Vn−1] with X 6= Vn−2, if any, is replaced with the edge [X,Vn−2] ,
then, if [Vn−2, Vn−1] ∈ E1, this edge is removed from E1, and obtain the graph or
multigraph (without loops), say, G2, G2 = (V2, E2) ,

V2 = V1 − {Vn−1} = V − {Vn−1, Vn} ,

E2 = {[X,Y ] | [X,Y ] ∈ E1 and X,Y 6= Vn−1 }∪{[X,Vn−2] | [X,Vn−1] ∈ E1, X 6= Vn−2 } ,

E2 is a set or a multiset, ∪ is the union of sets or multisets. Consider the Potts model
on each of G, G1, G2. Then

ZG = θ [2 + (h− 1) θ]ZG1 + (1− θ)2
ZG2 .
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Proof. Consider the independent set {Vn} of G. By Theorem 2.7 we have

ZG = (h+ 1)
∑

(x1,x2,...,xn−1)G∈〈〈h〉〉
n−2×{0}

[
θ
HG

(
y
(x1,x2,...,xn−1)G
G

)
·

·

1 +
∑
w∈〈h〉

θ
cG
(w,0),n,xn−2,xn−1


= (h+ 1)

 ∑
(x1,x2,...,xn−1)G∈〈〈h〉〉

n−3×{0}2
θ
HG

(
y
(x1,x2,...,xn−1)G
G

) (
1 + hθ2

)
+

+
∑

(x1,x2,...,xn−1)G∈〈〈h〉〉
n−3×〈h〉×{0}

θ
HG

(
y
(x1,x2,...,xn−1)G
G

)
[2 + (h− 1) θ]

 =

(below, in the second term, the factor θ is due to the fact that xn−2 ∈ 〈h〉 , xn−1 =

0,
(
y

(x1,x2,...,xn−1)G
G

)
n

= 0 (see the definition of y

(
xj1

,x
j2
,...,x

jq

)
in Theorem 2.6;(

y
(x1,x2,...,xn−1)G
G

)
n

is the nth component of y
(x1,x2,...,xn−1)G
G ), and (the graph) G1

will be used instead of G)

= (h+ 1)
(
1 + hθ2

) ∑
(z1,z2,...,zn−1)G1

∈〈〈h〉〉n−3×{0}2
θ
HG1

(
(z1,z2,...,zn−1)G1

)
+

+ (h+ 1) [2 + (h− 1) θ] θ
∑

(z1,z2,...,zn−1)G1
∈〈〈h〉〉n−3×〈h〉×{0}

θ
HG1

(
(z1,z2,...,zn−1)G1

)
=

= (h+ 1)
(
1 + hθ2

) ∑
zG1∈U

G1
(zn−2=zn−1=0)

θHG1(zG1)+

+ (h+ 1) [2 + (h− 1) θ] θ
∑
a∈〈h〉

∑
zG1∈U

G1
(zn−2=a,zn−1=0)

θHG1(zG1).

By Theorem 2.8 we have

ZG1 = (h+ 1)
∑

zG1∈U
G1
(zn−1=0)

θHG1(zG1) =

= (h+ 1)

 ∑
zG1∈U

G1
(zn−2=zn−1=0)

θHG1(zG1) +
∑
a∈〈h〉

∑
zG1∈U

G1
(zn−2=a,zn−1=0)

θHG1(zG1)

 ,

so,

(h+ 1)
∑
a∈〈h〉

∑
zG1∈U

G1
(zn−2=a,zn−1=0)

θHG1(zG1) =ZG1 − (h+ 1)
∑

zG1∈U
G1
(zn−2=zn−1=0)

θHG1(zG1).



238 U. PĂUN

For the Potts model on G2, using Theorem 2.8 (when G2 is a graph) or its extension
(when G2 is a multigraph), we have

ZG2 = (h+ 1)
∑

zG2∈U
G2
(zn−2=0)

θHG2(zG2) = (h+ 1)
∑

zG1∈U
G1
(zn−2=zn−1=0)

θHG1(zG1).

Finally, we have

ZG =
(
1 + hθ2

)
ZG2 + θ [2 + (h− 1) θ] (ZG1 − ZG2) =

= θ [2 + (h− 1) θ]ZG1 + (1− θ)2
ZG2 .

�

It is easy to see — a good exercise for the reader! — that Theorem 4.1 can
be generalized — if G is either a graph with a vertex of degree 2 or a multigraph
whose underlying graph (see, e.g., [4, p. 30] for this graph) has a vertex of degree
2, and we then construct a graph or multigraph, G1, and we then construct a graph
or multigraph, G2, ... (for the completion, see Theorem 4.1, see also its proof —
some things will be similar to those from Theorem 4.1), we obtain a generalization of
Theorem 4.1.

Below we give an application of the above result. This application is for the Potts
model on Cn (the cycle graph with n vertices). One reason to study this model is the
following: the Potts model on Cn can be seen as a 1-dimensional Potts model with
cyclic boundary condition as the Ising model on Cn is seen, see, e.g., [12, pp. 31−32],
as a 1-dimensional Ising model with cyclic boundary condition. For another reason,
see the next section (Theorem 5.2, Remark 5.1, ...).

Theorem 4.2. Consider the Potts model on Cn, ∀n ≥ 3. Then

ZCn+1
= (h+ 1) θ [2 + (h− 1) θ] (1 + hθ)

n−1
+ (1− θ)2

ZCn−1
,∀n ≥ 4.

Proof. Let n ≥ 4. By Theorem 4.1, taking G = Cn+1, we have G1 = Pn (the path
graph with n vertices) and G2 = Cn−1, and, further,

ZCn+1
= θ [2 + (h− 1) θ]ZPn

+ (1− θ)2
ZCn−1

=

(see Example 3.1 for ZPn
)

= (h+ 1) θ [2 + (h− 1) θ] (1 + hθ)
n−1

+ (1− θ)2
ZCn−1

.

�

Using the recurrence relation from Theorem 4.2, below we compute the normaliza-
tion constant for the Ising model on Cn. For other two computation methods for this
constant, see [12, pp. 31−35] (in this book, for this constant, it is given an equivalent
formula to the formula from our article) and [18].

Theorem 4.3. Consider the Ising model on Cn, ∀n ≥ 3. Then

ZCn = (1− θ)n + (1 + θ)
n
, ∀n ≥ 3.

Proof. Induction on n.
n = 3. By Theorem 2.8 we have (h = 1)

ZC3 = 2
(
1 + 3θ2

)
.
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(Theorem 2.7 can also be used.) Since

(1− θ)3
+ (1 + θ)

3
= 2

(
1 + 3θ2

)
,

we have

ZC3 = (1− θ)3
+ (1 + θ)

3
.

n = 4. Similar to the case n = 3.
n− 1 7→ n+ 1. By Theorem 4.2 we have

ZCn+1
= 4θ (θ + 1)

n−1
+ (1− θ)2

[
(1− θ)n−1

+ (1 + θ)
n−1
]

=

= 4θ (θ + 1)
n−1

+ (1− θ)n+1
+ (1− θ)2

(1 + θ)
n−1

=

= (1− θ)n+1
+
(
4θ + 1− 2θ + θ2

)
(1 + θ)

n−1
=

= (1− θ)n+1
+
(
1 + 2θ + θ2

)
(1 + θ)

n−1
=

= (1− θ)n+1
+ (1 + θ)

2
(1 + θ)

n−1
= (1− θ)n+1

+ (1 + θ)
n+1

.

�

5. Bounds

Simple expressions, closed-form expressions for the normalization constant of Potts
model in concrete cases are possible — we think so — in a small number of such cases
(see, e.g., Examples 3.1, 3.2, and 3.3). Such expressions are also possible in the limit in
some cases. We do not hope more. So, for this constant, we must find approximations
and lower and upper bounds — if possible, good and very good approximations, good
and very good lower and upper bounds. In this section, we present two ways to obtain
bounds for the normalization constant of Potts model. One of these ways is for lower
bounds, and is based on Theorem 2.7, while the other is for lower and upper bounds,
and is based on connected separable spanning subgraphs and Theorem 3.2. We will
illustrate these two ways — moreover, for one of the illustrative examples, two upper
bounds for the free energy per site are given, one of them being in the limit.

Each term of the sum from Theorem 2.7 is a lower bound for the normalization
constant of Potts model. Several such terms by summing up lead to a better lower
bound for this constant — the larger the number of terms is, the better the lower
bound is. We give just one result here — computing a “big” term of the sum from
Theorem 2.7, below it is given a lower bound for the normalization constant of Potts
model.

Theorem 5.1. Under the same conditions as in Theorem 2.7 we have

Z ≥ (h+ 1)
∏
l∈〈p〉

(
1 + hθdeg Vil

)
,

where deg Vil is the degree of Vil , ∀l ∈ 〈p〉 .
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Proof. By Theorem 2.7 we have

Z ≥ (h+ 1) θH(y(0,0,...,0))
∏
l∈〈p〉

1 +
∑
w∈〈h〉

θc(w,0),il,0,0,...,0

 =

= (h+ 1)
∏
l∈〈p〉

(
1 + hθdeg Vil

)
.

�

Let G = (V, E) be a graph. Let J1, J2 ⊆ R be two nonempty finite sets. Suppose
that

V =
{
V(z1,z2) | (z1, z2) ∈ J1 × J2

}
.

Let (a, b) ∈ R2. Consider the graph G + (a, b) = (V + (a, b) , E + (a, b)) , where

V + (a, b) =
{
V(z1+a,z2+b)

∣∣ V(z1,z2) ∈ V
}
,

E + (a, b) =
{[
V(u1+a,u2+b), V(z1+a,z2+b)

] ∣∣ [V(u1,u2), V(z1,z2)

]
∈ E

}
.

We call the graph G + (a, b) the (a, b)-translated graph of G.

Consider the 2-dimensional grid graph Gn1,n2
= (Vn1,n2

, En1,n2
) of dimensions n1

and n2, where n1, n2 ≥ 1 (n1, n2 ∈ N), n1n2 ≥ 2,

Vn1,n2
=
{
V(i1,i2) | (i1, i2) ∈ 〈n1〉 × 〈n2〉

}
,

and
En1,n2

=
{[
V(i1,i2), V(j1,j2)

]
| (i1, i2) , (j1, j2) ∈ 〈n1〉 × 〈n2〉 and

either j1 = i1 and j2 − i2 = 1 or j1 − i1 = 1 and j2 = i2} .
Further, we construct a connected separable spanning subgraph of Gn1,n2

when
n1 = n2 = 6k, where k ≥ 1. The blocks of this subgraph are isomorphic to C4 or P2,
and are constructed as follows.

B1 = (V1, E1) ∼= C4,
where

V1 =
{
V(1,1), V(2,1), V(2,2), V(1,2)

}
and

E1 =
{[
V(1,1), V(2,1)

]
,
[
V(2,1), V(2,2)

]
,
[
V(2,2), V(1,2)

]
,
[
V(1,2), V(1,1)

]}
,

B2 = B1 + (1, 1) ,

B3 = B2 + (1,−1) = B1 + (2, 0) ,

B4 = B3 + (1, 1) ,

B5 = B4 + (1,−1) ,

...

B6k−2 = B6k−3 + (1, 1) ,

B6k−1 = B6k−2 + (1,−1) .

Using the blocks B1, B2, ..., B6k−1, we construct (consider) the blocks

Bt(6k−1)+1 = B1 + (0, 3t) ,

Bt(6k−1)+2 = B2 + (0, 3t) ,
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...

Bt(6k−1)+6k−1 = B6k−1 + (0, 3t) ,

∀t, 1 ≤ t ≤ 2k − 1 (1 + 3t ≤ 6k − 2 =⇒ t ≤ 2k − 1).
All the above blocks (B1, B2, ..., B6k−1, ...) are isomorphic to C4, and the number

of them is (equal to) 2k (6k − 1) because

6k − 1 + (6k − 1) max
1≤t≤2k−1

t = 6k − 1 + (6k − 1) (2k − 1) = 2k (6k − 1) .

Now, we construct the blocks which are isomorphic to P2. The subgraph({
V(1,u), V(1,u+1)

}
,
{[
V(1,u), V(1,u+1)

]})
,

where 2 ≤ u ≤ 6k − 1, is considered to be a block if
[
V(1,u), V(1,u+1)

]
is not an edge

of any above block which is isomorphic to C4.
For each u ∈ {2, 3, 5, 6, 8, 9, ..., 6k − 4, 6k − 3, 6k − 1}, we obtain such a block. For
u = 3, we have V(1,u+1) = V(1,4) ∈ B1·(6k−1)+1 (here, t = 1); for u = 6, we have
V(1,u+1) = V(1,7) ∈ B2(6k−1)+1 (here, t = 2); ...; for u = 6k − 3, we have V(1,u+1) =
V(1,6k−2) ∈ B(2k−1)(6k−1)+1 (here, t = 2k−1). So, the number of these blocks is 4k−1
(because

2 max
1≤t≤2k−1

t+ 1 = 2 (2k − 1) + 1 = 4k − 2 + 1 = 4k − 1).

The subgraph
B′ =

({
V(6k,2), V(6k,3)

}
,
{[
V(6k,2), V(6k,3)

]})
is considered to be a block. The subgraphs B′ + (0, 3t) , 1 ≤ t ≤ 2k − 1 (2 + 3t ≤
6k − 1 =⇒ t ≤ 2k − 1) are also considered blocks. The number of these blocks, B′
and B′ + (0, 3t) , 1 ≤ t ≤ 2k − 1, is 2k. We finished the construction of blocks which
are isomorphic to P2. The number of these blocks is 4k − 1 + 2k, i.e., 6k − 1.

For the next result, we need to compute (to know) ZP2
and ZC4 . By Theorem 2.8,

ZP2 = (h+ 1) (1 + hθ) .

To compute ZC4 , consider C4 = (V, E) ,

V = {V1, V2, V3, V4} and E = {[V1, V2] , [V2, V3] , [V3, V4] , [V4, V1]} .
By Theorem 2.7 for the maximum independent set {V2, V4} we have

ZC4 = (h+ 1)
∑

(x1,x3)C4
∈{0}×〈〈h〉〉

[
θ
HC4

(
y
(x1,x3)C4
C4

)
·

·

1 +
∑
w∈〈h〉

θ
c
C4
(w,0),2,x1,x3

1 +
∑
w∈〈h〉

θ
c
C4
(w,0),4,x1,x3

 .
Since

HC4

(
y

(x1,x3)C4
C4

)
=

{
0 if x1 = x3 = 0,

2 if x1 = 0, x3 ∈ 〈h〉
and

cC4(w,0),2,x1,x3
= cC4(w,0),4,x1,x3

=


2 if x1 = x3 = 0,

0 if x1 = 0, x3 ∈ 〈h〉 , x3 = w,

1 if x1 = 0, x3 ∈ 〈h〉 , x3 6= w,
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∀w ∈ 〈h〉 , it follows that

ZC4 = (h+ 1)
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}
.

Theorem 5.2. Let n = 6k, where k ≥ 1. Consider the Potts model on (the grid
graph) Gn,n.
(i) If 0 < θ < 1, then

ZGn,n
≤ (h+ 1)

{(
1 + hθ2

)2
+ hθ2 [2 + (h− 1) θ]

2
}n

3 (n−1)

(1 + hθ)
n−1

.

(ii) If θ ≥ 1, then

ZGn,n
≥ (h+ 1)

{(
1 + hθ2

)2
+ hθ2 [2 + (h− 1) θ]

2
}n

3 (n−1)

(1 + hθ)
n−1

.

Proof. Denote by G the connected separable spanning subgraph of Gn,n constructed
above. It is easy to prove that (a similar case is in the proof of Theorem 4.1 in [16])

HGn,n (x) ≥ HG (x) , ∀x ∈ 〈〈h〉〉n
2

(x = xGn,n
= xG ; xGn,n

= xG because Gn,n and G have the same vertices, n2 vertices).
By Theorem 3.2 we have

ZG =
1

(h+ 1)
(2k+1)(6k−1)−1

(ZC4)
2k(6k−1)

(ZP2
)
6k−1

=

= (h+ 1)
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}n

3 (n−1)

(1 + hθ)
n−1

.

(i) Since 0 < θ < 1, we have

ZGn,n =
∑

x∈〈〈h〉〉n2

θHGn,n (x) ≤
∑

x∈〈〈h〉〉n2

θHG(x) = ZG =

= (h+ 1)
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}n

3 (n−1)

(1 + hθ)
n−1

.

(ii) Since θ ≥ 1, we have

ZGn,n
=

∑
x∈〈〈h〉〉n2

θHGn,n (x) ≥
∑

x∈〈〈h〉〉n2

θHG(x) = ZG =

= (h+ 1)
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}n

3 (n−1)

(1 + hθ)
n−1

.

�

Remark 5.1. (a) In Theorem 5.2, n = 6k. The other cases, n = 6k + 1, n = 6k + 2,
..., n = 6k + 5, can also be studied.
(b) The spanning trees of connected separable spanning subgraph G of Gn,n from the
proof of Theorem 5.2 are also spanning trees of Gn,n. Consider such a spanning tree,
say, T . By Theorem 4.1 from [16] or proceeding as in the proof of Theorem 5.2 we
have

ZG ≤ ZT = (h+ 1) (1 + hθ)
n−1

if 0 < θ < 1

and
ZG ≥ ZT = (h+ 1) (1 + hθ)

n−1
if θ ≥ 1.
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Further, we have (see the proof of Theorem 5.2)

ZGn,n
≤ ZG ≤ ZT if 0 < θ < 1

and
ZGn,n ≥ ZG ≥ ZT if θ ≥ 1.

Therefore, in Theorem 5.2, we obtained bounds for ZGn,n
better than those from

Theorem 4.1 in [16].
(c) If we know the normalization constant for the Potts model on a given graph,
G′ = (V ′, E ′) , or bounds — if possible, good and very good bounds for it —, we can
compute other things on this model (see, e.g., [16]; see, e.g., also [3, p. 6]). Consider,

e.g., the free energy per site, fG
′

n′ ,

fG
′

n′ =
lnZG′

n′

(see, e.g., [16]), where n′ = |V ′| . Further, we consider Gn,n, G, and T from (b).
Consider that 0 < θ < 1; the case when θ ≥ 1 is left to the reader. By (b) we have
(n = 6k)

f
Gn,n

n2 =
lnZGn,n

n2
≤ fGn2 =

lnZG
n2

≤ fTn2 =
lnZT
n2

.

It follows that
lim sup
n→∞

f
Gn,n

n2 ≤ lim sup
n→∞

fGn2 ≤ lim sup
n→∞

fTn2

(n→∞ =⇒ n2 →∞). From Theorem 4.12(iii) in [16], we have

lim sup
n→∞

fTn2 = lim
n→∞

fTn2 = ln (hθ + 1) ;

lim
n→∞

fTn2 is the limit free energy per site, see [16], of (or for the) Potts model on T .
lim sup
n→∞

fGn2 can be computed;

lim sup
n→∞

fGn2 = lim sup
n→∞

lnZG
n2

=

= lim sup
n→∞

ln (h+ 1)
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}n

3 (n−1)

(1 + hθ)
n−1

n2
=

= lim
n→∞

ln (h+ 1)

n2
+ lim
n→∞

ln
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}n

3 (n−1)

n2
+

+ lim
n→∞

ln (1 + hθ)
n−1

n2
= lim
n→∞

n2

3 −
n
3

n2
ln
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}

+

+ lim
n→∞

n− 1

n2
ln (1 + hθ) =

1

3
ln
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}

( lim
n→∞

fGn2 exists; lim sup
n→∞

fGn2 = lim
n→∞

fGn2). Finally, we have

lim sup
n→∞

f
Gn,n

n2 ≤ 1

3
ln
{(

1 + hθ2
)2

+ hθ2 [2 + (h− 1) θ]
2
}
≤ ln (hθ + 1) .

Therefore, we obtained a bound (an upper bound) for lim sup
n→∞

f
Gn,n

n2 better than

ln (hθ + 1) (recall that we considered the case when 0 < θ < 1 only; the bound
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ln (hθ + 1) also appears in Theorem 4.12(i) in [16]; Theorem 4.12(i) in [16] can be
generalized replacing “lim” with “lim sup”). If we know or can prove — mathemati-

cal proof, not (physical or not) arguments or postulates —that lim
n→∞

f
Gn,n

n2 exists — for

the Potts (not Ising) model on Gn,n —, then, in the above inequality and other places,

lim sup
n→∞

f
Gn,n

n2 can be replaced with lim
n→∞

f
Gn,n

n2 . We call lim sup
n→∞

f
Gn,n

n2 the superior limit

free energy per site of (or for the) Potts model on Gn,n.

Recall that the bounds given in this section are, first of all, illustrative — if they
are useful or not, this is another story. This subject can much be developed. The
reader, if he/she wants, can try, e.g., to give bounds for the normalization constant
of Potts model on the 3-dimensional grid graph.

6. Sampling

In this section, we give a method for sampling from 〈〈h〉〉n according to the Potts
model and some comments for it. For the Potts model on Gn1,n2,...,nd

, the d-dimensional
grid graph, d ≥ 1, n1, n2, ..., nd ≥ 1, n1n2...nd ≥ 2, we obtain an exact sampling
method for half or half+1 vertices.

Consider the Potts model π = (πx)x∈〈〈h〉〉n on the graph G = (V, E) , V = {V1, V2, ...

..., Vn} (n ≥ 2), from Section 2. Recall that the graph G has no isolated vertices (see
Section 2 again). In fact, on sampling, it is sufficient to consider only this case
because in the case when the graph G has isolated vertices we can proceed as follows:
each isolated vertex is colored with the color i with the probability 1

h+1 , ∀i ∈ 〈〈h〉〉 .
Recall that (x1, x2, ..., xn) , x1, x2, ..., xn ∈ 〈〈h〉〉 , are the configurations of (graph)
G; x ∈ 〈〈h〉〉n , 〈〈h〉〉n is the set of configurations.

Let I =
{
Vi1 , Vi2 , ..., Vip

}
be an independent set of G, p ≥ 1 (I 6= ∅; p ≥ 1 =⇒ I 6=

∅), better, a maximal independent set of G, best, a maximum independent set of G.
Consider Ic =

{
Vj1 , Vj2 , ..., Vjq

}
, the complement of I, where p+q = n = |V| (q ≥ 1).

The Potts model on G is a ∆-wavy probability distribution, where

∆ =
(
S(xj1

,xj2
,...,xjq )

)
(xj1

,xj2
,...,xjq )∈{0}×〈〈h〉〉q−1

,

see Theorem 2.5. Using the sampling method for the ∆-wavy probability distributions
from Section 1, we obtain the following sampling method for the Potts model on G
— this method can also be used exactly or approximately.

Step 1. Sample from

∆ =
(
S(xj1

,xj2
,...,xjq )

)
(xj1

,xj2
,...,xjq )∈{0}×〈〈h〉〉q−1

(∆ ∈Par(〈〈h〉〉n)) according to the probability distribution

τ =

(
τS

(xj1
,xj2

,...,xjq )

)
(xj1

,xj2
,...,xjq )∈{0}×〈〈h〉〉q−1

,
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where, see Step 1 from Section 1 and Theorem 2.6,

τS
(xj1

,xj2
,...,xjq )

= P
(
S(xj1

,xj2
,...,xjq )

)
=

=
h+ 1

Z
θ
H

(
y(xj1

,xj2
,...,xjq )

) ∏
l∈〈p〉

1 +
∑
w∈〈h〉

θ
c(w,0),il,xw1 ,xw2 ,...,xw

s(il)

 ,

∀
(
xj1 , xj2 , ..., xjq

)
∈ {0}×〈〈h〉〉q−1

, where... — for the completion, see Theorem 2.6.

Suppose that the result of sampling is, say, S(bj1 ,bj2 ,...,bjq ), where
(
bj1 , bj2 , ..., bjq

)
∈

{0} × 〈〈h〉〉q−1
.

Step 2. Sample from S(bj1 ,bj2 ,...,bjq ) according to the probability distribution

π|S
(bj1

,bj2
,...,bjq )

=

 πx
τS

(bj1
,bj2

,...,bjq )


x∈S

(bj1
,bj2

,...,bjq )

=

=

 πx

P
(
S(bj1 ,bj2 ,...,bjq )

)

x∈S

(bj1
,bj2

,...,bjq )

.

Suppose that the result of sampling is, say, z, where z ∈ 〈〈h〉〉n , zj1 = bj1 , zj2 = bj2 ,
..., zjq = bjq .

z is the result of sampling from 〈〈h〉〉n according to the Potts model π (see the
sampling method from Section 1 again).

Step 1 is a challenging problem because |∆| = (h+ 1)
q−1

, q = n − p (p = |I|, so,
we need an independent set as large as possible), and the components of τ are not
too simple (Z is known or not, ...). We could obtain good results at Step 1 using
Theorem 1.4 if τ is a nontrivial wavy probability distribution or, more generally, if
τ is a nontrivial Γ-wavy probability distribution, |Γ| being sufficiently small. At first
glance, the worst case for Step 1 is when G ∼= Kn (Kn = the complete graph) because
{Vi} is a maximum independent set, so, p = 1, ∀i ∈ 〈n〉 .

As to Step 2, if we use the Gibbs sampler in a generalized sense from Theorem 1.4,
this chain attains its stationarity at time 1, so, we have an exact sampling method
having, see Theorem 2.4, p + 1 steps (p + 1 substeps of Step 2) — 2 ≤ p + 1 ≤ n;
p+ 1 = 2 when G ∼= Kn, and a maximum independent set of this graph is considered;
p+ 1 = n when G is the star graph (with n vertices), and the maximum independent
set of this graph is considered.

For Step 2, we consider the case when G = Gn1,n2,...,nd
. Gn1,n2,...,nd

is the d-
dimensional grid graph of dimensions n1, n2, ..., nd,

Gn1,n2,...,nd
= (Vn1,n2,...,nd

, En1,n2,...,nd
) ,

where d ≥ 1, n1, n2, ..., nd ≥ 1, n1n2...nd ≥ 2,

Vn1,n2,...,nd
=
{
V(i1,i2,...,id) | (i1, i2, ..., id) ∈ 〈n1〉 × 〈n2〉 × ...× 〈nd〉

}
,

and
En1,n2,...,nd

=

=
{[
V(i1,i2,...,id), V(j1,j2,...,jd)

]
| (i1, i2, ..., id) , (j1, j2, ..., jd) ∈〈n1〉×〈n2〉×...×〈nd〉
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and ∃!k ∈ 〈d〉 such that jk − ik = 1 and ju = iu, ∀u ∈ 〈d〉 − {k}}
(∃! = there exists a unique).
Gn1,n2,...,nd

is a bipartite graph, its bipartition is (X,Y ), where

X =


{
V(i1,i2,...,id)

∣∣ V(i1,i2,...,id) ∈ Vn1,n2,...,nd
and i1 + i2 + ...+ id is even

}
if d is even,{

V(i1,i2,...,id)

∣∣ V(i1,i2,...,id) ∈ Vn1,n2,...,nd
and i1 + i2 + ...+ id is odd

}
if d is odd,

and Y = Xc (any edge of Gn1,n2,...,nd
has one end in X and one end in Y, so, (X,Y )

is a bipartition of Gn1,n2,...,nd
— this is unique because Gn1,n2,...,nd

is a connected
graph).

Some of the above things on Gn1,n2,...,nd
and the next result, on Gn1,n2,...,nd

too,
could be known to the reader, but this fact is not too important, it is important the
fact that we need them.

Theorem 6.1. (i) V(1,1,...,1) ∈ X.
(ii) |X| = |Y | if n1n2...nd is even.
(iii) |X| = |Y |+ 1 if n1n2...nd is odd.

Proof. (i) Obvious.
(ii) Suppose that n1n2...nd is even. Then ∃k ∈ 〈d〉 such that nk is even. Set

Ak =
{
V(i1,i2,...,id)

∣∣ V(i1,i2,...,id) ∈ Vn1,n2,...,nd
and is = 1, ∀s ∈ 〈d〉 − {k}

}
.

Therefore,

Ak =
{
V(1,1,...,1) (ik = 1), V(1,1,...,1,2,1,...,1) (ik = 2),..., V(1,1,...,1,nk,1,...,1) (ik = nk)

}
.

The set Ak has nk elements (vertices), nk

2 of them belong to X and the other nk

2
belong to Y (V(1,1,...,1) ∈ X (see (i)), V(1,1,...,1,2,1,...,1) ∈ Y, ..., V(1,1,...,1,nk,1,...,1) ∈ Y
(because nk is even)).
Further, we denote elements of 〈d〉 − {k} by k1, k2, ..., kd−1. Suppose that k1 < k2 <
... < kd−1 (k1 = 1 if k 6= 1, k1 = 2 if k = 1, etc.). Set

Ak,k1,k2,...,kt =
{
V(i1,i2,...,id)

∣∣ V(i1,i2,...,id) ∈ Vn1,n2,...,nd

and is = 1, ∀s ∈ 〈d〉 − {k, k1, k2, ..., kt}} ,
∀t ∈ 〈d− 1〉 . The condition “ is = 1, ∀s ∈ 〈d〉 − {k, k1, k2, ..., kt}” from the definition
of Ak,k1,k2,...,kt vanishes when t = d − 1, so, Ak,k1,k2,...,kd−1

= Vn1,n2,...,nd
. It follows

that

Ak,k1,k2,...,kt =
⋃

b∈〈nkt〉

{
V(i1,i2,...,id)

∣∣ V(i1,i2,...,id) ∈ Vn1,n2,...,nd
, ikt = b,

and is = 1, ∀s ∈ 〈d〉 − {k, k1, k2, ..., kt}} =

= Ak,k1,k2,...,kt−1 ∪
⋃

b∈〈nkt〉−{1}

{
V(i1,i2,...,id)

∣∣ V(i1,i2,...,id) ∈ Vn1,n2,...,nd
, ikt = b,

and is = 1, ∀s ∈ 〈d〉 − {k, k1, k2, ..., kt}} ,
∀t ∈ 〈d− 1〉 (Ak,k1,k2,...,kt = Ak,k1,k2,...,kt−1

if nkt = 1 (t ∈ 〈d− 1〉)) and∣∣Ak,k1,k2,...,kt−1

∣∣ =
∣∣{V(i1,i2,...,id)

∣∣ V(i1,i2,...,id) ∈ Vn1,n2,...,nd
, ikt = b,

and is = 1, ∀s ∈ 〈d〉 − {k, k1, k2, ..., kt}| ,



∆-WAVY PROBABILITY DISTRIBUTIONS AND POTTS MODEL 247

∀t ∈ 〈d− 1〉 , ∀b ∈ 〈nkt〉 − {1} (k1, k2, ..., kt−1 vanish when t = 1).
The set Ak,k1 has nknk1 elements (nknk1 is even),

nknk1

2 of them belong to X and

the other
nknk1

2 belong to Y because Ak,k1 = Ak ∪ ... and |Ak| = ... (see above), and
Ak has nk

2 elements belonging to X and nk

2 elements belonging to Y.
Proceeding in this way for Ak,k1,k2 , for Ak,k1,k2,k3 , ..., for Ak,k1,k2,...,kd−1

, we obtain
that the set Vn1,n2,...,nd

(Ak,k1,k2,...,kd−1
= Vn1,n2,...,nd

) has nknk1 ...nkd−1
elements,

nknk1
...nkd−1

2 of them belong to X and the other
nknk1

...nkd−1

2 belong to Y. Therefore,

|X| = |Y | = n1n2...nd
2

.

(iii) Suppose that n1n2...nd is odd. In this case, n1, n2, ..., nd are odd numbers. We
can use the above sets Ak and Ak,k1,k2,...,kt , t ∈ 〈d− 1〉 , with only the difference that
k is chosen from 〈d〉 by us (here, nk is odd). Further, we use the above sets and take
k = 1.
The set A1 has n1 elements,

⌊
n1

2

⌋
+ 1 of them belong to X and the other

⌊
n1

2

⌋
belong

to Y (V(1,1,...,1) ∈ A1 ∩X; bxc = max {z | z ∈ Z and z ≤ x} ,∀x ∈ R). It follows that

the set A1,2 has n1n2 elements,
⌊
n1n2

2

⌋
+ 1 of them belong to X and the other

⌊
n1n2

2

⌋
belong to Y. Proceeding in this way for A1,2,3, for A1,2,3,4, ..., for A1,2,...,d, we obtain
that Vn1,n2,...,nd

(A1,2,...,d = Vn1,n2,...,nd
) has n1n2...nd elements,

⌊
n1n2...nd

2

⌋
+ 1 of

them belong to X and the other
⌊
n1n2...nd

2

⌋
belong to Y. Therefore,

|X| =
⌊n1n2...nd

2

⌋
+ 1 > |Y | =

⌊n1n2...nd
2

⌋
.

�

Since |X| ≥ |Y | (by Theorem 6.1), we take I = X, and have

p = |I| = |X| =

{
n1n2...nd

2 if n1n2...nd is even,⌊
n1n2...nd

2

⌋
+ 1 if n1n2...nd is odd.

Therefore, for Step 2, using the Gibbs sampler in a generalized sense from Theorem
1.4, we have an exact sampling method for the Potts model on Gn1,n2,...,nd

having,
see Theorem 2.4, n1n2...nd

2 + 1 steps (substeps of Step 2) if n1n2...nd is even and⌊
n1n2...nd

2

⌋
+ 2 steps if n1n2...nd is odd — an exact sampling method for half or

half+1 vertices of the grid graph.

It remains to find, if any, a fast exact sampling method for the Potts model on
Gn1,n2,...,nd

. For the Potts model on Gn1
, we have a fast exact sampling method having

n1 steps — n1 vertices, n1 steps, one-to-one correspondence — leaving the inversion
of a bijective function aside, see [16].

At present we know that our sampling method for the Potts model with Steps 1
and 2 is — using Theorem 1.4, ... — fast and exact in some cases, such as, when the
graph is K2,n, n ≥ 2 (the more general case when the graph is Km,n, the complete
bipartite graph, 1 ≤ m ≤ n, could be analyzed), because, in this case, we have good
things both for Step 1 and for Step 2; for Step 1, P

(
S(0,j)

)
= P

(
S(0,k)

)
, ∀j, k ∈ 〈h〉

(hint: use bijective functions and ⊕; due these equations, τ is a nice probability
distribution, it is an almost uniform probability distribution, so, the computation
of probabilities P

(
S(0,i)

)
, i ∈ 〈h〉 , is not necessary (see, e.g., [19, Comment 4] for

the almost uniform probability distributions...)), P
(
S(0,0)

)
can easy be computed,

P
(
S(0,0)

)
+ hP

(
S(0,1)

)
= 1 (we can use this equation if we want to compute the
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probabilities P
(
S(0,i)

)
, i ∈ 〈h〉), Z is computed in Example 2.1 (for K2,n−2), and

we can take Γ � Γ′ =
({
S(0,0)

}
,
{
S(0,1), S(0,2), ..., S(0,h)

})
such that τ be a Γ-wavy

probability distribution — and we can use the sampling method from Section 1 (not
from this section) for the Γ-wavy probability distribution τ —, we can take Γ = Γ′

when h is not too large, considering, in this latter case, that τ is a trivial wavy
probability distribution on (the subset)

{
S(0,1), S(0,2), ..., S(0,h)

}
(τ is a trivial wavy

probability distribution on
{
S(0,0)

}
(by convention)) while, as to Step 2, using the

Gibbs sampler in a generalized sense (Theorems 1.4 and 2.4), our method has n + 1
steps (n + 1 substeps of Step 2; n 7−→ n + 1 is a very good polynomial function (in
n)). For the case when the graph is K1,n, see [16] — the fast exact sampling method
from there, which is for the Potts model on K1,n−1 (we worked with the star graph
with n vertices in [16]), is, in fact, the sampling method from here for the Potts model
on K1,n−1 using Theorem 1.4, ...

Note that, mathematically speaking — the technology is not taken into account
—, our sampling method for the Potts model depends on θ, h, and (the graph) G.
For the case when the graph is Km,n, it depends on θ, h, m, and n — the smaller h,
m, and n are, the faster our sampling method is; as to θ, θmn is the quantity with the
greatest exponent we need for Step 1. Note, moreover, that Km,n has no cycles when
m = 1 (n ≥ 1) while it has cycles when 2 ≤ m ≤ n (K2,2 = G2,2 = C4), so, we can
have fast exact sampling both when the graphs have no cycles and when they have
cycles. The graphs which have no cycles are the trees (Gn1

is a tree, ∀n1 ≥ 2 ) and
their generalizations, the forests, see [16] for fast exact sampling (and other things)
for the Potts model on these graphs.

What is the fastest exact sampling method we can have (obtain) for the Potts model,
in particular, for the Potts model on Gn1,n2,...,nd

?
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