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A-wavy probability distributions and Potts model

UDREA PAUN

ABSTRACT. We define the wavy probability distributions on a subset and A-wavy probability
distributions — two generalizations of the wavy probability distributions. A classification
on the A-waviness is given. For the A-wavy probability distributions having normalization
constant, we give a formula for this constant, to compute this constant. We show that the Potts
model is a A-wavy probability distribution, where A is a partition which will be specified.
For the normalization constant of Potts model, we give formulas and bounds. As to the
formulas for this constant, we give two general formulas, one of them is simple while the
other is more complicated, and based on independent sets, a formula for the Potts model on
connected separable graphs — closed-form expressions are then obtained in several cases —,
and a formula for the Potts model on graphs with a vertex of degree 2 — a recurrence relation
is then obtained for the normalization constant of Potts model on Cy, the cycle graph with n
vertices; the normalization constant of Ising model on C,, is computed using this relation. As
to the bounds for the normalization constant, we present two ways to obtain such bounds; we
illustrate these ways giving a general lower bound, and a lower bound and an upper one when
the model is the Potts model on Gn, n, the square grid graph, n = 6k, K > 1 — two upper
bounds for the free energy per site of this model are then obtained, one of them being in the
limit. A sampling method for the A-wavy probability distributions is given and, as a result,
a sampling method for the Potts is given. This method — that for the Potts model too —
has two steps, Step 1 and Step 2, when |A| > 1 and one step, Step 2 only, when |A| = 1. For
the Potts model, Step 1 is, in general, difficult. As to Step 2, for the Potts model too, using
the Gibbs sampler in a generalized sense, we obtain an exact (not approximate) sampling
method having p + 1 steps (p + 1 substeps of Step 2), where p = |I|, I is an independent set,
better, a maximal independent set, best, a maximum independent set — for the Potts model
on Gny no,...,ng, the d-dimensional grid graph, d > 1, n1,n2,...,ng > 1, nina..ng > 2, we
obtain an exact sampling method for half or half+1 vertices.
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1. A-wavy probability distributions

In this section, we present some basic things on nonnegative matrices, products of
stochastic matrices, the hybrid Metropolis-Hastings chain(s), the Gibbs sampler(s) in
a generalized sense, the wavy probability distributions, the wavy probability distri-
butions on subsets, and the A-wavy probability distributions. The notions of wavy
probability distribution on a subset and of A-wavy probability distribution together
with the things concerning them are new — the most important things obtained are
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for the A-wavy probability distributions: 1) a formula for the normalization con-
stant for the A-wavy probability distributions which have normalization constant; 2)
a sampling method. Moreover, two results, one on our hybrid Metropolis-Hastings
chain and the other on our Gibbs sampler in a generalized sense, are improved and a
classification on the A-waviness is given.
Set
Par (E) = {A| A is a partition of £},

where E is a nonempty set. We shall agree that the partitions do not contain the
empty set. (E) €ePar(E); (F) is the improper (degenerate) partition of E.

Definition 1.1. Let Ay, Ay €Par(E). We say that Ay is finer than Aq it VV € Ay,
JdW € Ag such that V C W.

Write A; < Ay when A is finer than As.

In this article, a vector is a row vector and a stochastic matrix is a row stochastic
matrix.

The entry (7,7) of a matrix Z will be denoted Z;; or, if confusion can arise, Z;_, ;.

Set

(m)={1,2,...m}(meN, m>1),
((m)) ={0,1,...,m} (meN),
Nyn = {P|P is a nonnegative m x n matrix },
Sm.n = {P|P is a stochastic m x n matrix },
Ny, = Ny n,
Sy = Sn.n-
Let P = (Pj;) € Nppn. Let 0 # U C (m) and 0 # V C (n). Set the matrices

Py = (Pij)ieU,je(m , PV = (Pi')zE(m),jeV’ and PI‘J/ = (Pij)ieU,jeV ‘
Set
{1} ictsr sarsy = s} {s2} o {se})s
({i})ie{shsz)w&} € Par ({s1, s2,-..,8¢1) (t>1).
E.g.,

({i})ie<<n>) = ({0} {1}, ... {n}).

Definition 1.2. Let P € N, ,,. We say that P is a generalized stochastic matriz if
Ja >0, 3Q € Sy, such that P = a@.

Definition 1.3. ([13].) Let P € N,,,. Let A €Par((m)) and ¥ €Par((n)). We
say that P is a [A]-stable matriz on X if P{; is a generalized stochastic matrix,
VK € A,VL € ¥. In particular, a [A]-stable matrix on ({i});c,, is called [A]-stable
for short.

i€(n

Definition 1.4. ([13].) Let P € Ny, ,,. Let A €Par((m}) and ¥ €Par((n)). We say
that P is a A-stable matriz on X if A is the least fine partition for which P is a [A]-
stable matrix on Y. In particular, a A-stable matrix on ({i});c, is called A-stable
while a ((m))-stable matrix on X is called stable on ¥ for short. A stable matrix on
({i})ic () is called stable for short.
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Let Ay €Par({m)) and Ay €Par((n)). Set (see [13] for Ga, A, and [14] for Ga, a,)
Ga,.a, ={P| P € Sy, and P is a [Aq]-stable matrix on Ay}
and -
Ga,.n, ={P| P € N, , and P is a [A;]-stable matrix on Ay }.
When we study or even when we construct products of nonnegative matrices (in
particular, products of stochastic matrices) using Ga, a, or Ga, a,, we shall refer
this as the G method. G comes from the verb to group and its derivatives.

Below we give an important result — a beautiful result — on products of stochastic
matrices.

Theorem 1.1. ([13].) Let P, € G(<m1>)7A2 C Smimas P2 € Gay.ng © Sy mgs o)

Pn—l € GAn—lyAn g Smn—hmn’ PTL € GAH,({i})E(anrﬂ g Smnvmn+1' Then
P P...P,
is a stable matriz (i.e., a matriz with identical rows, see Definition 1./).
Proof. See [13]. O

Definition 1.5. (See, e.g., [21, p. 80].) Let P € N,,,. We say that P is a row-
allowable matrix if it has at least one positive entry in each row.

Let P € Ny, . Set

N -~ 1if Py > 0,
P:(&”eNmmP”:{Oﬁé;m

Vi € (m),Vj € (n). We call P the incidence matriz of P (see, e.g., [8, p. 222]).

In this article, the transpose of a vector z is denoted z’. Set e = e(n) =
(1,1,..,1) € R", V¥n > 1.

In this article, some statements on the matrices hold eventually by permutation of
rows and columns. For simplification, further, we omit to specify this fact.

Warning! In this article, if a Markov chain has the transition matrix P = P, P;...Ps,

where s > 1 and Py, P, ..., P; are stochastic matrices, then any 1-step transition of
this chain is performed via Py, P, ..., Ps, i.e., doing s transitions: one using P;, one
using Ps, ..., one using Ps.

Let S be a finite set with |S| = r, where r > 2 (|| is the cardinal; for “r > 27,
see below). Let m = (m;);,. g be a positive probability distribution on S. One way to
sample approximately or, at best, exactly from S is by means of our hybrid Metropolis-
Hastings chain from [14]. Below we define this chain.

Let F be a nonempty set. Set A = A’ if A’ < A and A’ # A, where A,
A" ePar(F).

Let Alv AQ, ey At+1 GP&I‘(S) with A, = (S) = Ay = ... = At+1 = ({i})iES’

where t > 1. (A; = Ay implies r > 2.) Let Q1, Q2, ..., Q: € Sy, Q1 = ((Ql)ij>,

Q2 = ((QQ)ij)i,jes’ v Q= ((Qt)i]‘)i’jes, such that

(C1) Qq, Qq, ..., Q; are symmetric matrices;

(C2) (Ql)f( =0,Vie (t)— {1} ,VK,L € A;, K # L (this condition implies that Q;
is a block diagonal matrix and Aj-stable matrix on A, VI € (¢) — {1});

(C3) (Ql)IU( is a row-allowable matrix, Vi € (t), VK € A, VU € A4, U C K.

)
JES



A-WAVY PROBABILITY DISTRIBUTIONS AND POTTS MODEL 211

Define the matrices

Fi= ((B)ij>i,jes ’

0 if j #14 and (Ql)ij =0,
(Q1),, min (1 "“Q”ﬂ) if j £ and (Q),; >0
(P);; = Vig P (@) Vij ’
1_Z(Pl)m if j =1,
ki

Vi € <t> .Set P=PP...P,.
The next result — a basic result — is an improvement of Theorem 2.3 from [14].

Theorem 1.2. Concerning P above we have — two general good things —
mP =7 and P > 0.

If, moreover,
Ur (Ql)ij =Ty (Ql)ji’ Vi e <t> Vi, j €5,
then
P, =Qq, VI €(t)( and, therefore, P = (Q1Q2...Q¢)

If, moreover,

Q; € GAl’AHl,Vl S <t>,
then

P e GA;,AHNVZ S <t>,
and, as a result,

P=c¢n

(therefore, in this case, the Markov chain with transition matriz P attains its station-

arity at time 1, its stationary probability distribution (limit probability distribution)
being, obviously, ).

Proof. For the first statement, see [14, Theorem 2.3]. The second statement is obvious
(see the definition of matrices P, [ € (t)). It is also obvious that P, € Ga,.a,.,,
Vi € (t), if, moreover, Q; € Ga, a,,,, VI € (t). Further, using Theorem 1.1, 3¢, ¢ is
a probability distribution on S, such that

P =
Further,
T =1P =me =)
So,
P=¢nr.

O

By Theorem 1.2 (by 7P = w and P > 0), P™ — €'7 as n — co. We call the Markov
chain with transition matrix P the hybrid Metropolis-Hastings chain. In particular,
we call this chain the hybrid Metropolis chain when Qq, Q2, ..., Q; are symmetric
matrices.

An important example of hybrid Metropolis-Hastings chain is presented in the next
result. This result is an improvement of Theorem 2.3 from [18].
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Theorem 1.3. Consider a hybrid Metropolis-Hastings chain with state space S (S
above, so, |S| = r > 2) and transition matric P = P\ P5...P,, P, P, ..., P; corre-
sponding to Q1, Q2, ..., Q¢, respectively. Suppose that ¥l € (t), Vi, j € S,

(Ql)ij = i if (Ql)ij >0
Tk
k€S, (Q1);,>0
(see above for Q, 1 € (t), @ = (mi);cqg, ). Then
0 if j #1 and (Ql)ij =0,
(Q); ifj# 1 and w5 (Qi);; 2 mi (Q1);; >0,
(P);; = ———— i#Fi and 7 (Qu); < (Qu)y,

kES, (Ql)jk>0

1= (P)y ifi=1i,

k#i

vi e (t), Vi,j € S. If, moreover,
5 (Ql)ij =Ty (Ql)ji’ Vi e (t),Vi,j €S,
then
P =Q,Vle(t).

If, moreover,

Q€ GAhAH—l’ Vi € <t>,
then

P e GAZ;AlJrl? Vi e <t>,

and, as a result,
P=¢n.

Proof. Theorem 2.3 from [18] and Theorem 1.2. O

We call the hybrid Metropolis-Hastings chain from Theorem 1.3 the cyclic Gibbs
sampler in a generalized sense — the Gibbs sampler in a generalized sense for short.
It is worthy to note that Theorem 2.4 from [18] can also be improved; adding
“If, moreover,
Q; € GAlvAH»l? vl € <t>,
then
P e GAZ7Al+1’ vl € <t>,
and, as a result,
P=én>
(see above for Q, 1 € (), A;, L€ (t+1), ...), we obtain an improvement of it.
Further, we consider that S = {s1, s, ..., s, } , where r > 2 (|S| = r). Equip S with
an order relation, < . Suppose that s;1 < 59 < ... < s5,.. Let 7 = (Wsz‘)ie(w be a positive
probability distribution (on S). Let Aj, As, ..., Ayrq €Par(S) with Ay = () =
Ay = o= Dppr = ({sib)iey » where t > 1 and ({si});e(,y = ({s1}, {52}, ... {s:}).
(t > 1 implies ¢t + 1 > 2; further, A; > A, implies » > 2.) Consider that A; =

(Kl(l), 2(1), ,Kq(fl)) , Kl(l) having the first ’Kl(l)‘ elements of S, Kél) having the next
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‘Kél)’ elements of S (this condition and the next ones vanish when [ = 1), ..., Kq(fl
having the last ‘Kffl)‘ elements of S, VI € (t + 1) . Consider that

(c1) K{”’ - ‘Ké”’ - = ‘KS} Ve (t+ 1) with uy > 2;

(c2) r = rire...ry with rirg..rp = [Ajpq|, VI € (t — 1), and 7y = ‘K%t)‘.

We have

K® = U KD vie ), Yoe (w),
weDv,hlU{Ubl}
where
| A1
b = , Ve (t),
A @
and
owl = {(’U — 1) by + 1, (1} — 1) b + 2, .., vby — 1}, Vi e <t>, Yv € <ul) .
Suppose that VI € (t), Vv € (w;), Yw € Dy p,, 3ot > 0 such that
sy ati = a7, (direct proportionality), Vi € (r) with s; € K((zl;tll))b,+1’
which, using vectors, is equivalent to
= )
(Wsi)i€<r>, SieKz(ulLl) = Qy (7T8i)7;€<r>’ Singtlf)bﬁl )
where
(lw) _ (1+1) (1+1) (1+1)
dw - )K('ufl)bﬂrl‘ + ‘K(vfl)bl+2 +ot Kw ’
VI e (t), Yv € (w), Yw € Dy, — obviously,
(7781;)‘€< ) 'EK(Z+1> = (Trsj(l U)aﬂ-sj(l v)+1,...,7'l's (1,v) ) ’
1eAT)s Si (v—1)b;+1 ’ ’ GO R L S
(7‘—&-) ie(r), sie k(D = (71'5 (v s Aoy 2 s (L) (1) ) s
1elr), Si w1 J(L,v)+dy’ (o) 4dl ) 41 J(1v)+dyy’ +d(1;_1)hl+171

Vi € (t), Yo € (w), Yw € Dyy,, where sj( . is the first element of K((fill))blﬂ,

Vie(t), Yv e (u), so,

1 if v =1,
i (l,v) =
3 (:0) ’K{“‘+’K§“‘+...+‘K§Qll+1 if v A1,
vie (t), Vv e (u).

Definition 1.6. ([19].) The probability distribution m = (ms,);c(,, having the above
property (direct proportionality) we call the wavy probability distribution (with respect
to the order relation < and partitions Ay, Ao, ..., Aytq).

For simple examples of wavy probability distributions, see [17]-[19].

In the next result, giving a wavy probability distribution, we construct a Gibbs
sampler in a generalized sense which attains its stationarity at time 1... This chain is
constructed using the G method such that Theorem 1.1 can be applied.
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Theorem 1.4. ([19].) Let m = (7,);c(,y be a wavy probability distribution (on S)
with respect to the order relation < and partitions A1, Ao, ..., Ay — for S<, ..,
see Definition 1.6 and above this definition. Consider a Markov chain with state space
S and transition matric P = Py Ps...P; (t > 1), where (the notation from Definition
1.6 and above this definition is again used)

T ) )
wiy — if &= s, qumn for someu e {0} U Dy p,,
_ ze{0}UD,, itdy
( Z)Si+dg’”)4)5 = by
0 ng 7& SH_dSav)» Yu € {0} U Dv,b“
Vie(t), Vv e (w), Vie (r) with s; € K((ql)tll))bl-l,-l? Vw € {0} U Dy, V€ € S, setting

dél"u) =0, Vl € (t), Yv € (). Then this chain is a Gibbs sampler in a generalized
sense and

P=¢n
(therefore, this chain attains its stationarity at time 1, its stationary probability dis-
tribution (limit probability distribution) being, obviously, ).

Proof. See [19]. O
Theorem 1.4 leads to the next result.

Theorem 1.5. ([19].) Let m = (ms,);¢(, be a wavy probability distribution (on S)
with respect to the order relation < and partitions A1, Ao, ..., Ayrq — for S, <, ...
see Definition 1.6 and above this definition. Suppose that

Vs,

Tsi = 75 Vi e (r),

)

where

Z is the normalization constant (Z € RT). Then

Z=v, [[ [1+ 3 afi¥

le(t) wED p,
Proof. See [19]. O

Below we define two new notions, the wavy probability distribution on a subset
and A-wavy probability distribution, both being generalizations of the notion of wavy
probability distribution.

Definition 1.7. Let S be a finite set with [S| > 2. Let 7 = (7;),.¢ be a positive
probability distribution (on S). Let A C S with |A| > 2. Equip A with an order

A
relation, <. Let Ay, Ag, ..., Aypq €Par(A4) with Ay = (A) = Ag = ... = Apyq =
({#});ca > where t > 1. We say that « is a wavy probability distribution on A (with
A
respect to the order relation < and partitions Ay, Ag, ..., Ayypq) if

"= (50) o0
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the normalized restriction of 7 to A, is a wavy probability distribution (on A) with

A
respect to the order relation < and partitions Ay, Ao, ..., Ayi1, where
P(A) =) " m.
keA

In particular, a wavy probability distribution on S (A = 5) is called wavy probability
distribution for short.

In the above definition, we considered a subset A of S with |A| > 2. If A is a subset
of S with |A| = 1, we say by convention that 7 is a wavy probability distribution on
A. We need these improper (degenerate) wavy probability distributions on subsets
for the A-wavy probability distributions, see below.

Remark 1.1. If 7 = (m;),.g is a wavy probability distribution on A, A C S with
|A] > 2, then Theorem 1.4 holds, in particular, for m|4. If, moreover, m has the
normalization constant, say, Z, then ZP (A) is the normalization constant of 7|4,
and, using Theorem 1.5, we can compute ZP (A).

Definition 1.8. Let S be a finite set with [S| > 2. Let 7 = (7;),. ¢ be a positive
probability distribution (on S). Let A € Par (S). We say that 7 is a A-wavy prob-
ability distribution (on S) if 7w is a wavy probability distribution on L, VL € A. In
particular, a (S)-wavy probability distribution is called wavy probability distribution
for short.

Consider that 7 is a wavy probability distribution on A, A C S (|J4| > 1). Obvi-
ously, when |A¢| > 2 (A€ is the complement of A), 7 is a wavy probability distribution
on A¢ with respect to the partitions (A°) and ({z}),c 4. and an order relation on A°
fixed — any order relation on A€ fixed is good when the partitions are (A¢) and
({z})geae - (When |A°| = 1, 7 is, by convention, a wavy probability distribution on
A€.) Using these things, 7 is a (A, A°)-wavy probability distribution. This is a simple
case in which from a wavy probability distribution on a subset we obtain a A-wavy
probability distribution.

The probability distributions on sets with one element are improper (degenerate).
Further, we consider finite sets with at least two elements — let .S be a finite set with
|S| > 2. Any probability distribution on S is a wavy probability distribution with
respect to (the partitions) (S) and ({i}),c g - A wavy probability distribution on S with
respect to (S) and ({i}),.g is called trivial — no order relation on S is mentioned; any
order relation on S can be used when the partitions are (S) and ({i}),.g. A probability
distribution on S with S| > 3 which is wavy only with respect to (S) and ({i});cg
is called w-irregular (warning! the notion is w-irregular probability distribution, not
w-irregular wavy probability distribution; w-irregular comes from wavy/waviness and
irregular). The class of wavy probability distributions with respect to three or more
partitions (the class of nontrivial wavy probability distributions) is the best class of A-
wavy probability distributions — the probability distributions from this class can lead
to good or very good results, see, e.g., [19] and, here (for three partitions), Theorem
2.8, the first paragraph after the proof of Theorem 2.8, the last paragraph from Section
2, and Sections 3 and 4. Any probability distribution on S is a wavy probability
distribution on A with respect to (the partitions) (A) and ({i});c4, VA € S with
|A] > 2. A wavy probability distribution on a subset, A, of S with respect to (A)
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and ({i});c 4 (this condition implies [A| > 2) is called trivial. A wavy probability
distribution on a subset, A, of S with |A| =1 (see the convention after Definition 1.7)
is by convention called trivial. A probability distribution which is wavy on a subset,
A, of S with |A| > 3 only with respect to (A) and ({i});c4 is called w-irreqular
on A. In particular, a w-irregular probability distribution on S (A4 = S) is called
w-irreqular probability distribution for short. A A-wavy probability distribution on
S is called trivial if it is a wavy probability distribution on L with respect to (L)
and ({i});cp, VL € A with L] > 2 (any ({i});cg-wavy probability distribution (on
S) is automatically trivial). A probability distribution on S is called A-w-irregular
if it is a probability distribution which is wavy on L only with respect to (L) and
({#});er, YL € A with |L| > 3; we consider that 3L € A such that [L| > 3. In
particular, a (S)-w-irregular probability distribution is called w-irregular probability
distribution for short. A probability distribution on S with |S| > 3 is called W-
complicated if it is a A-w-irregular probability distribution, VA €Par(S) with the
property that 3L € A such that |L| > 3. Excepting the case when |S] is sufficiently
small, the class of W-complicated probability distributions is, on the A-waviness, the
worst class of probability distributions. Some W-complicated probability distributions
can be transformed into good A-wavy probability distributions — do not forget this
ideal; for an example, see the example for the alias method in [10, pp. 25-27]
and [15, pp. 422—424]. For our interest (for sampling, ...), it is important that
the probability distributions on finite sets with at least two elements be A-wavy
probability distributions with |A| as small as possible — some excepted cases can
appear, see, e.g., the first paragraph after the proof of Theorem 2.5 (in Section 2).
To complete our classification on the A-waviness (the waviness is a special case of the
A-waviness; the waviness on a subset can be considered, see the previous paragraph,
as being a special case of the A-waviness), we must say one thing more. From the
above notions, using the prefix “non”, we derive others: nontrivial wavy probability
distribution, non-w-irregular probability distribution, etc.
Below we give a basic result to compute normalization constants.

Theorem 1.6. Let m = (7;);c g be a A-wavy probability distribution (S is a finite set
with |S] > 2; A € Par(S)). Suppose that © has the normalization constant, say, Z.
Then

Z=> ZP(L),
LeA
where
P(L)=> m, VL€ A.

keL

Y PL)=1,

LeA

Proof. Since

we have

Z=> ZP(L).

LeA
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Remark 1.2. If 7 = (m;),. ¢ is a A-wavy probability distribution (on S), then The-
orem 1.4 holds, in particular, for

¥ .

L = () ,VL € A with |L| > 2.
P(L))icr

Remark 1.3. Let 7 = (m;),.4 be a A-wavy probability distribution (on S) with

normalization constant Z.

(a) By Theorem 1.5 we can compute ZP (L) for some L € A with |L| > 2 or for
all L € A with |L| > 2; ZP (L) = v; if L = {i} and m; = .

(b) If we can compute ZP (L) for all L € A, then, using Theorem 1.6, we could
compute Z.

(c) If we know Z and ZP (L) for some L € A, then we can compute the probability
P (L).If we know Z and ZP (L) for all L € A, then we can compute the probabilities
P(L),LeA.

For the A-wavy probability distributions, below we give a sampling method having
one step when |A| = 1 and two steps when |A| > 1.

Let m = (m;);cg be a A-wavy probability distribution (on S). Let X be a ran-
dom variable with probability distribution 7. We generate the random variable X as
follows.

Step 1 (when |A] > 1). Sample from A according to the probability distribution
T=(TL)pea (00 A), where

7L =P(L)=) m, YLEA (7, >0, VL € A).
kel

Suppose that the result of sampling is, say, A (A € A).
Step 2. Sample from A according to the probability distribution

mla= (7;),4 - (PZ))iEA'

Suppose that the result of sampling is, say, j (j € A C 5).

Set X = j — this value of X is generated according to the A-wavy probability
distribution 7 (j is the result of sampling from S according to 7) because by general
multiplicative formula (see, e.g., [8. p. 26])

PX=j)=P(Xe{j})=P(Xe{j}nd)=P{X e{ji}n{XeAd}) =
:P(XeA)P(Xe{j}|X€A):TA-%zwj.

To use the above sampling method exactly or approximately, we must use other
exact or approximate sampling methods — examples of methods which could be used:
the inversion method, rejection method, G method, method based on our Gibbs sam-
pler in a generalized sense (Theorem 1.4 could be used at Step 2 (because 7|r is
a wavy probability distribution, VL € A with |L| > 2 — when |L| = 1, 7|y is an
improper probability distribution, so, no problem, no theorem (result) is necessary)
and at Step 1, in the latter case when 7 is a nontrivial wavy probability distribution
or, more generally, when 7 is a nontrivial I'-wavy probability distribution, |T'| being
sufficiently small), and method based on our hybrid Metropolis-Hastings chain with
P* (see [14]-[15] for this chain). The last three methods are exact when Theorem
1.1, practically speaking, can be applied. The G method is neither the method based
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on our Gibbs sampler in a generalized sense nor the method based on our hybrid
Metropolis-Hastings chain (with or without P*), but it together with the Gibbs sam-
pler in a generalized sense or, more generally, with the hybrid Metropolis-Hastings
chain can give good or very good results, see, e.g., [16] — the Gibbs sampler in a
generalized sense from there was constructed taking into account Theorem 1.1.

2. Potts model

In this section, we present a few things about graphs. We then consider the Potts
model together with some basic results about it, the best results being: 1) the Potts
model on an arbitrary but fixed graph is a A-wavy probability distribution, where
A, which depends on the fixed graph, is a partition which will be specified; 2) two
formulas for the normalization constant of Potts model (on an arbitrary but fixed
graph), one of them is simple while the other is more complicated, and based on
independent sets — we also give the steps we need to compute this constant by the
more complicated formula.

In this article, we work with nondirected simple finite graphs excepting Section
4, where we will work with nondirected simple finite graphs and nondirected finite
multigraphs without loops. (A simple graph is a graph without multiple edges and
loops.) Moreover, we work with nonempty graphs, i.e., with graphs which have at
least one edge. (For the graph theory, see, e.g., [4], [5], and [22].)

Let G = (V,€&) be a (nonempty nondirected simple finite) graph, where V is the
vertex set (|V| > 2) and & is the edge set (€] > 1). Below we give a few definitions,
the most important for the Potts model being that of maximum independent set.
Some simple and not too simple results are also considered.

Let (X,Y) €Par(V) (consequently, X, Y # (). (X,Y) is called a bipartition (of the
graph G) if each edge of G has a vertex (end) in X and a vertex (end) in Y. The graph
G is called bipartite if it has at least one bipartition. (For the notions of bipartition
and of bipartite graph and their definitions, see, e.g., [22, p. 51].) If the graph G is
connected and bipartite, then it has a unique bipartition (see, e.g., [1, p. 8]). The
graph G is bipartite if and only if it contains no odd cycles (see, e.g., [4, p. 54]). If
the graph G is bipartite, then it is isomorphic to a spanning subgraph of a complete
bipartite graph. (For isomorphic graphs, see, e.g., [4, p. 40].)

Let  # I C V. I is called an independent set (of vertices of the graph G) if each
edge of G has at most one vertex (end) in 7. This notion is a central one in the graph
theory. Obviously, if I is an independent set, then |I| < |V| (equivalently, I C V).
Obviously, the graph G has at least |V| independent sets (because if V' € V, then
{V'} is an independent set). If T is an independent set, then it is called a mazimal
independent set if VJ, I € J C V, J is not an independent set. If I is a maximal
independent set of maximum cardinality, then it is called a maximum independent
set. (For the above notions and their definitions, see, e.g., [2, pp. 70—71], [6], and [7,
pp. 461—462] — see also Internet (Wikipedia, etc.; some books are available).)

If the graph G is connected and bipartite, and has the bipartition (X,Y’), then

(i) X and Y are maximum independent sets if | X| = |Y|;

(ii) X is the maximum independent set while Y is a maximal independent set if
|X| > Y.
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An interesting example of connected and bipartite graph is G, n,.... n,, the d-
dimensional grid graph (with dimensions ny, ng, ..., ng), d > 1, ny, no, ng > 1,
ning...ng > 2.

Further, we consider a (nonempty nondirected simple finite) graph G = (V, &),
where V = {11, V5, ..., V,,} is the vertex set and £ is the edge set (|€] > 1; |€] >
1 = n > 2). Moreover, since for the Potts model the isolated vertices count, but at
least for the normalization constant it is sufficient to consider graphs without isolated
vertices (see Remark 3.1), further, we consider, for simplification, that the graph G
has no isolated vertices. (An isolated vertex is a vertex of degree 0, see, e.g., [4, p.
20].) [Vi,V;] is the edge whose ends are vertices V; and Vj, where i, j € (n) (i # j).
Consider the set of functions

()Y ={f1f:V = ()},
v

where h > 1 (h € N). Represent the functions from ((h))¥ by vectors: if f € ((h))",
Vi — f(Vi) := x;, Vi € (n), then its vectorial representation is (x1, 22, ..., %) .
(X1, %2, ..., Ty) , T1,T2,...,T, € ((h)), are called configurations (the configurations of
graph G). ({h)) can be seen as a set of colors; in this case, if (z1,22,...,2,) is a
configuration, then x; is the color of Vi, x5 is the color of Vs, ..., =, is the color of
Va

ceey

Set (see, e.g., [10, Chapter 6])
H(x)= Y 1loi#a), Ve e (B)" (z=(z1,02,.,20)),

[VL-,VJ-]ES

where
o 1 if xZ; 7é Zj,
l[x,;ézj}—{ 0 if x; =aj,
Vo € ((h))", Vi,j € (n). Extending the physical terminology, the function H is
called the energy or Hamiltonian; H (x) represents the energy (or Hamiltonian) of
configuration x.
Recall that Rt ={z|z€Rand z >0}.

Set
HH(.'L') v n
= T T € <<h>> )

Tx

where § € RT and

z= Y &'
z€((h))"
The probability distribution 7 = (74) ¢y (on ((h))™) is called, when 0 < 6 <
1, the Potts model (on the graph G), see [20], see, e.g., also [10, Chapter 6], [11],
and [23] — we extend this notion considering § € R*. In particular, if h = 1 and
0 < 6 <1, 7 is called the Ising model (on the graph G), see [9], see, e.g., also [10,
Chapter 6] and [12] (no external field is allowed in our article) — we also extend this
notion considering § € R*. Z is called the normalization constant, or normalizing
constant, or, extending the physical terminology, partition function (of (or for the)
Potts model). In the theory of Potts model, Z is a central object (see, e.g., also [3,
p. 6]), so, its computation is a fundamental problem.
In this article, & is the addition modulo A + 1.
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The next result is simple, but very useful — a basic result about H, about the
Potts model on graphs.
Theorem 2.1.
H(z1,29,..,2n) = H(@x1 @k, 20Dk, .c.yxn D k), Vr1,29,...,n, k € ((R)).
For h =1, we have
H(x1,29, .0xy) =H @1 ®Laa®1,...,x, ®1) = H (&1, T2, ..., Tp) ,
V1, X, ...,y € ((1)), where

- o 1 ifxi:O,
””_1_5”1_{ 0 ifzi=1,

Vi e (n).
Proof. See [16]. O
Let = (x1,%2,...,x,) € R™. Let a € R. Let k € (n). Set
zlelk) = (xga‘k),xgalk),...,x%“‘k)) e R",

where
glak) _ [ oz i FE
v a ifi=k,
Vi € (n). Therefore, (%) = (21,29, .... 21,0, T4 11, ..., 2n) (T1, T2, ..., 7)1 vanish

if k=1 and zg41, ..., 2, vanish if &k = n).

Let V;, Vi, €V, 4, k € (n), j # k. We say that V} is adjacent to V; if [V}, Vi] € €.
Obviously, Vj, is adjacent to V; if and only if V; is adjacent to Vi (because [V}, Vi] =
[Vk, V;] — the graph G is not directed).

Fix V; € V (i € (n)). Suppose that the vertices adjacent to V; are Viy,, Vi, s Vi, -
Consider the subgraph

Gg(Vi) =(v(vi),€ V)
of G = (V,€), where V (Vi) = {Vi, Vao,, Vo -+, Vi) } (the vertex set) and & (Vi) =
{[VZ, Virls Vis Vawa ] s ooy [V; Vi, )]} (the edge set). Obviously, G (V) is a star graph
(a star subgraph of g) V; is its internal vertex (node). We call G (V;) the V;-star
subgraph (of G). Set

Hg(vl Z 1 sz 7£ xwk] V€ << >>
ke(s(d))

(z is a configuration of the graph G; for 1[x; # z,,], see the definition of H). We
call Hgv,) the energy or Hamiltonian of (Vi-star subgraph) G (V;). Hgv,) () is the
energy (or Hamiltonian) of configuration = on G (V;).

The next result is a generalization of Theorem 2.4 in [16].

Theorem 2.2. Consider the above graph G. Let I be an independent set of G (I does
not contain isolated vertices). Suppose that I = {VZI, Vigs ey V}p} , where p € (n — 1),
i1, 12, oy Ip € (M), Gy F by, Yu,v € (p), u # v. Then

H (x(a|it)) - H (x(bﬁt)) = C(a,b)’ihzwl’me ..... Tu
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Vo € ((h)", Va,b € ((h)), Vt € (p), where, Vx € ((R))", Va,b € ((h)), Vt € (p),
is a quantity which depends on (a,b), 4 (equivalently, V;,),

c .
(avb)aztzwwl sTweg 7-4-7ww5(it)

and Tuy, s Twys s Lw,,yr Twyr Twsy o Tu,,, being the colors of vertices Vi, , Vs,
ooy Vi, respectively, Vi, Vs e Vi) being the vertices adjacent to Vi, —
is a constant when a,b, Uty Tuoy » Ty ooy Ly s,y ATE fixed. The

Vz € ((h))", Va,b € ((h)), Vt € (p), can be com-
puted using the formula — a simple formula —
_ alit blie
ot ooty = Ho) (#41)) = Hogry (+¢))
Vo € ((h)", Va,b € ((h)), Vt € (p).

Proof. Let x € ((h))". Let a,b € ((h)). Let t € (p). If [V;,V;] € € (i, j € (n), i # j)
and V;, V; # V;,, then

1 [miam) y x;a\m] 1 [wibm) ” x;-bm)}
(see the definitions of 1[x; # z;] and z(@I¥)) so,
1 {x;a\m y x;aum} 1 [wibm) y x;-bm)} _0

Now, it is easy, it is obvious — for the difference H (x(“‘it)) - H (m(b‘”)) , use the
definitions of H and 2"’
)2 use the definitions of Hg(y,) and 2" and the previous equa-
tion. O

Twgiy)

difference c(qp)

313 Twqy yPwog 7---71‘w3(it) ’

and the previous equation while, for the formula for

Remark 2.1. (a) From Theorem 2.2, we have

C(a,b),it,zw s3Tweg yeeyLaw +C(b:a)7it7ww sTwg s Lw ’
1Pwg ) 1 Pwa

s(ig
Va,b € ((h)), Vt € (p), YTw,, Ty s Tu, ;) € ((R)) -

(b) Replacing “a,b € ((h))” with “a,b € ((h)), a <’ (or with “a,b € ((h)), a > b")
and “c(qp) 7 with “cqp.4,, ” in Theorem 2.2, we obtain

s(it)

Yty Ty sTweg see s Tw Twy TwyseTwg g,y

s(it)
a version of this theorem. The reader, if he/she wishes, can use this version instead

of Theorem 2.2.

Below we generalize some things from [18, Section 5].
Set

U ooy =00 320 )| 1) € ()" nd s, =, ¥ (1),
Vi€ (n), Yit,ig,....i1 € (N), Gy # bv, Yu,v € (1), u # v, Vi, iy, ...,y € ((h)), and,

more generally,

U(’I'71 @k,miz@k,...,m”@k)
= {(ylay27 7yn) | (y17y27 7yn) € <<h>>n and Yipy = Ty, @ kv Ym € <l>}7

Vie (n), Yiy,ig, ...ty € (N), Gy F by, YU, v € (), u # v, VT4, , Tiy, ..., Tiy, k € ((R)).
Set

S(“’il igpeensiy) ke%)) U(:BilékaiZ@k,m,xilEBk)’
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VI € (n), Vit,ig,....it € (n), iy F# by, Yu,v € (1), u # v, ¥ (Tiy, Tig, ..., ;) € {0} X

()Y (warning! z;, € {0} only — Tigy ey iy € ((h))). We will construct an

order relation on S( ) VI € (n), Vi1, iz,....,i; € (n), iy # v, Yu,v € (),
1

w# v, ¥ (@i, @iy, i) € {0} x (). To make this, we need the next result, a

generalization of Theorem 5.1 from [18].

Liq s Lig sy Ti

Theorem 2.3. We have

= )@(k,k,...,k),

(wil s Lig e sTiy

Vi€ (n), Vi, ia,....,i1 € (n), Gy # iy, Yu,v € (), u # v, Vi, , Tiy, ..., iy, k € ((B)),
where

U(Ml Dk,xiy ®K,...,z;, GBk)

—{ v ) @ (Bl oK) | 1920 sw) €U, ) | =
= {(yl S¥ k7y2 S¥ k7 ey Yn S¥ k) ‘ (y17y27 ceey yn) S U(Ll 7177',27---@1‘1) } 3

VI € (n), Vi1, ig,....5 € (N), by # by, YU, v € (), u # v, YO, Tip, ..o, iy, k € ((R))
(the vector (k,k,....,k) has dimension n).
Proof. Let | € (n). Let i1, i2, ..., iy € (N), by # 1y, Yu,v € (I), u £ v. Let x4, Ty, vy
Ty s ke <<h>>

“C” Let z = (21,22, ..., 2n) € U(xil@k,zm@kw,a:il@k)' It follows that z;, = x;, ® k,
Zip = Xiy Bk, ey 25, = x4 D k. Let t € (n), t #1y, ia, ..., i;. We have

A
' (e —k) @k if 2 > k

(0 < z, k < h). Further, we have h+ 142, —k € ((h)) if zx < k and 2z, — k € ((h)) if
2 > k. We conclude that z € U(mv Cigotiy) & (k,k,.... k).
i19Tig sy Liy

“D” Let z = (21,22, ., 2n) € U(milmg,..-,wil) & (k,k,...,k). We have z;, = x;, ®k,

Zip = Xiy DKy ooy 25 = x4, @ k. Therefore, z € U(zileak,mizeak ’’’’’ wi, ®F)" d

Consider U( Tiyy Tiyy vy Tiy € ((h)), ...) equipped with the lexi-

wi17wi27'~~)$il) (
lex
cographic order, <. Let k € (h) = ((h)) — {0}. Consider U(m, Ok 21y k... 01, D)
iy ®k,Tiy Ok, ... i
k
equipped with the order relation < defined as follows (see the formula for

U($i1@kvzi2@k7n-w’5il@k) from Theorem 2.3):

k
(a1 D k,as Dk, ...,a, D k) < (b1 Dk,bsDk,...,b0n D ]f)
if
lex
(a17a27"'7an) S (b17b27~~’7bn)7

where (a1,a2,...,a,), (b1,ba,....,b,) € U(

Tiy 3 Tinyeenr T ) :
lex

0
Set <=<.
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Consider S(Iil’% vi) (xi, € {0}, iy, oy 75, € ((h)), ...) equipped with the

111111

order relation € defined as follows (see the definition of S(w_ . again):
i1 Lig sy Ly

(w1, ug, ..y p) € (V1,02 ..., Up)
if

(U1, Uy .oy Uy ) € U( ) and

Tiy) Bk1,Tiy, Ok1,...,xi; Bk

(v1, V2, .oy Up) € U( ) for some k1, ko € ((h)), k1 < ka,

Tiy Ok2,Tiy Dka,..., i k2
or if

(u17u27 7un) , (U17027 -~-avn) € U(Iil@k’wg@kwulil@k) and

k
(U1, U2y ooy tp) < (V1,02,...,0,) for some k € ((h)),

where (u1,ug, ..., up) , (v1,02,...,0,) €S
Set

(Iz‘l 1 TigseeesTiy ) ’

U(assl Ok x5y BF,...,Ts, Bk, o) =k1, 20y =ka, . T1py =k )

= {(ylay%“'vyn) ’ (ylvyZa ayn) € <<h>>n, ysg = xsg =) ku v.g € <l>7 and
yr, = @y, = ki, Vi € (m)},

Vi,m € (ny, l+m < n, Vs1,82,...,8,t1,t2, s b € (N), Sy # Sy, Yu,v € (I), u # v,
tw # by, YVw, 2z € (M), w # 2, {81, 82, .0, S1 {1, Lo, st} = 0, Vs, Tsyy vy Ty, K, K,
kay ooy b € ((R)).

Consider I = {V;,,Vi,,...Vi,} € V, an independent set of G. Consider I¢ =
{Vi,,Vjs, ..., Vj, }, the complement of I (¢ > 1, p+q = n = |V|). Fix zj,, xj,,
ey L5 Ty, Ty, ey Ti, € ((R)), x4y, Ty, ...y 34, are the colors of Vi, Vi, ..., V;

in the configurations from U(gcj1 grerig ) C S(Ijl,wjz,-u,qu)’ respectively (z;, @ k,
Tj, ® Kk, ..., z;, ®k are the colors of V;, Vj,, ..., V;_ in the configurations from
U(mh%k’%@k’w%@k) C S(mh arrzg)? respectively, where k € ((h))). Define the

partitions of S( ) S ((h))"™:

af,'jl ,ﬂé‘jz,...,qu

A5 @i r,)
1

B (S(% VT jo qu))
(A(Ijl,%,,,.’%)

1 is the improper partition of S ( ; the elements (configura-

'LJl 71']'27...,([,‘]'(1)

. ! 7
w5y gyyy) V€ 0 the order determined by <€),

tions) of S(

Aga:h,wb,...,qu) _ (U N

= (U(mjl ,mjz,...,:ch)7 U(zjl@l,ijEBl,m,a:jq@l)7 ot U(a:jl@h,mm@h,‘..,m’jq@h))

2,) contains the first ‘U(Ij1 ,z elements of S(

FDREED) I]‘q)

U(%@1’%2@17”_7%@1) contains the second U(le@l,rh@l ..... 25, ®1) elements of
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S’(zh’%y__,qu), e U(Zjl@hazjz@hv---vzjq@h) contains the last ‘U(

elements of S( see the definition of €)),

Ty @h,:tjz@h,...,:tjq @h)

wa‘pwjzww%)(

A(wjlﬁmjz"“@jq) (U ) _
3 (le@k,sz@k,...,qu@k,x,yl=k1) kek1 € ()

U, LU,

< (le,sz,...,zjq,z,‘,l:o)’ (zjl,zjz,...,zjq,zilzl)’ ) (rjl,zjz,...,qu,zﬁ:h)’
U(zh@1,%2@1,...,%@1,@1:0@1)’U(mjl@1,wj2@1,...,quea1,wil:1@1)v"'v
U(fﬂjl@1,x_72651,...,m_7q@Lmilzhe;l)’ ceey ey U(zjl@h,m_w@h,...,qu@h,mil:O@h)’

U(leeah@jzeah,...@jq@h,wil:1@h)7 R U(zh@h,zjz@h,...,zjq@hml:h@h))
) Vky € ((h)), and

( (%1790;'27»",93]‘(17%1:761) (zh T e Tg

U - U U etc.;
(zh 7zj27"'1zjq) (le’zmv""qu ’zilzkl), ’
kie((h))

contains the first ‘U ( ) ‘ elements of S (

($j1 vﬂjzv---yquvﬂﬁuzo) Ty Ty s TiqrTiy =0 le’sz""’sz)

Tj1:TihgsTig

k
(equivalently (here), of U( )), ... (see the definitions of < and <)),
almarmn) _ (i )
4 (ach@k,xh @k,...,qu @k,milzkl,xizzkz) Kk ko€ ((h))

N . . — —— 7U . . . g P LA IR
( (:vjl,atn,...,z]q,z,,l_O,z,,Z_O) (m“,mjz,...,z]q,z,l_O,m,z_l)

U(zh Sh,xjy ®h,..., 35, Oh,xi =h@h,z;, :h@h)) )

A(jjg ,:E]’Q,...,qu)
p

U ) .
( (251 @25 ey iy =h1@ip =ka,eos@iy =kp) ) k1 ko k()

Obviously,
AT = (0)) e

and ( ) ( ) ( )
L1 Loy yeeey L Loy yeeey L1 Loy yeeey
21 J1i2 Jq 22 J1:%3d2 Jq ﬁp+]21 J2 Jq .
The next two results are about two basic properties of the Potts model, about the

structure of Potts model.

Theorem 2.4. Under the above conditions the Potts model on the graph G is a wavy
probability distribution on S, = \ with respect to the order relation € and
($7 Zj Tj )
d1>%dgssLiq
partitions

Angl,rjz,...,qu)’ Agzjl,m]é’.“’zjq), " Aﬁijzl,mjz,...,qu).

Proof. We must show that 7|g is a wavy probability distribution with

(#510230%5q)
. .y LjyLjg s3T5 Lj1s%ggse-sTj
respect to the order relation € and partitions Ag e JQ)7 Ag e J"), s

Az()ijé ’ijwljg). (For =|s , see Definition 1.7.)
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Recall that (see above) Al(wjl’Ijg""’%) - Al(i?@j””’%), Vi € (p+1). The con-
ditions (cl) and (c2) also hold. (See the definition of wavy probability distribution

again.)

Consider the partitions Agmh@j?mzh) and Agz“’zm’"'@j"). The first set of
Agmnvzﬂév“'?zjq) :

isU \, the second one is U,

) (a:jl,zh,...,:r]q (a:jIEBl,wjzéBl,.‘.,zjq@l)’

one is U(zjl@hsz@h,__.’%@h). Let k € ((h)), k#0. Let z € U(mh@k@j?@k,m’z]q@k).

By Theorem 2.3, Jy € U(I_ Tigreosy ) such that z = y @ (k, k, ..., k). By Theorem
J1032° % Iq

2.1, H(z) = H (y). Suppose that z is the sth element of U(

..., the last

Tjy EB]C,IJ‘Q @k,...,zjq @k‘)’

1<s< ‘U(%@k,% Ok, @k)’ (see the definition of wavy probability distribution

again). It follows that y is the sth element of U(z]_ Tironntsy) (see the definitions of
1:%j20 5 Tiq

k

< and € again). Finally, we obtain

T pH(2)

7T"g(aﬂ' Tigrt )) " p(s ~zp(s B
J1°%ige Jq 2
( (zjl’zjw“"zjq)) ( (mj1’$12""’mj4))

N

) y = (s )
ZP (St o)) P (Stersnen)) —a

(the proportionality factor is 1).

(ij:”jzv“"zjq) (17'1@3'2"“’931'41)
41 and Al+2 , where 1 <

(szij""a:jq)
1 . We have

Now, we consider the partitions A

I<p. Let K e A

U(wj1®k,xj2®k7...,qu®k)
for some k € ((h)) ifl =1,

U(mjl@kngQ@k7~~aqu@k7mil:k1g1i2:k27~~amil_l:kl—l)
for some k, k1, k2, ..., ki—1 € ((h)) if 2 <1 <p.

(@ g seeig )

Using the order relation <, the first subset of K belonging to Aj 5 is
(xi, = k1, xi, = ko, ..., x;,_, = kj—1 vanish when [ = 1)
U(z-@km'@k zj, ®k,xi, =k1,2i,=k o =k ;= )
j1 Bk, Ok,... x5, Ok, xi) =k1, @iy =ka,... ;i = z—1,$1l—0€9k)
the second one is
U(leGakvzjz@k’”-»qu@kazil:k17$i2:k2v--a$il71:kl—lyl’ilzl@k)7 T
the last one is
U,. . . ke — R _ :
(25, ®k,2jy B,...,25, Bk,wiy =k1,i,=ka,...,x5,_ =ki_1,2,=h®k)
Let S <h> Let v € U(l'jl@kvﬂjz@kr“vqu@kaxil:k17$i2:k27~--7'73i171:kl—17$il:9@k)- Let

u € U( ) where

Tj1 Bk, Ty Bk,....Tj, Ok, xiy =k1,Tiy=k2,....x3,_ =ki—1,2;, =0k

_( ) B (Y if’i#il,
u = uziG(n}auz— O@k 1f’L:Zl,
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Vi € (n). Suppose that v is the fth element of

U(ﬂfh Bk, Ty DK,y BF, iy =h1, @iy =Ko,..,@i,_ =ki 1,35, =g®k)"
It follows that u is the fth element of
U(Ijl@k7mj2@k1-~~’$jq®k,1i1:klvmigzk%nwwil_l:kl—hl’il:O@k)
because the first element of
U(mh Ok, xj, Bk,....x5, @kyﬂcil:k17xi2:k27~~-7ri171:kl—lw’fil:O@k)
is d = (d1,da,...,dy,) , where
d;
dit = Ty, :ki“ YVt € <l—1>, 1f2§l§p,
d=0&k, Vr € (n) — F,

=z, &k, Ve € (q),

e

where
{ {j17j27"'7jq} ifl = 1,
{.717]27"‘7.7q}U{Zla’LQa'“vllfl} 1f2§l§p7
while the first element of
U(mjlGakt,mj2@k,...,a:jq@k,Ih:/ﬁ,wi2:/€27~-,$il,1:kl—hwilzg@k)

isd= (81,&2, ...,En) , where

7 dm if m £ 4y,

" gk ifm =1,

k
Vm € (n) (see the definitions of € and < again), etc. Finally, using Theorem 2.2, we
have

N - o
|s = - -
(irwinmia) )y P (5(%@]‘2““7%)) ZP (S(mjl,%,m,zjq))

H(u)+c(gok,00k),i1 2w, 2wy - o

ZP (S(zjl,xm,..qu))

Ys(ir)

Cg@BE,0BK) ] Ty T - s Buy () gH (u) B
ZP (S
(41200730
C(g®k,0BK) if,Tw s Twg - Tw T

=0 s(iy) .

P (S(le ,xn,...,qu)> )

C(gBk,0Bk) i1, 2w Twy - Tw

(the proportionality factor is 6 (1)), where Ty, , Tuwsy, -

y Law_g,
s(ir)
are the colors of vertices Vi, , Viys ooy sz(il), respectively, Vi, Vg, ooy sz(il) being

the vertices adjacent to V;,. g
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Theorem 2.5. Consider the above graph G = (V,E). Consider I = { i1y Vigs ooes Vip}
CV, an independent set of G. Consider ¢ = {le,ij,. . Jq} 1°¢ is the complement
of I, so, ¢ >1,p+q=mn=|V|). Then the Potts model on the graph G is a A-wavy
probability distribution, where

A:(S - ) :
(01@s20230) ) () 2y, oo, ) ELOD % (YT

and, as a result,

Al = (h+ 1)
— this model is a wavy probability distribution on S’(zh g reoerBiq ) with respect to the
order relation € and partitions Agzh ’ID’M’%), Agmh’mj"””"m” R Az(ijzl Tz Tig)

specified before Theorem 2.4, ¥ (le,sz, ...,qu) € {0} x (<h>>q_1 )
Proof. Definition 1.8 and Theorem 2.4 O

Concerning Theorem 2.5, there exists a one-to-one correspondence between inde-
pendent sets and partitions. It is important for the computation of normalization
constant, etc. that |A] be as small as possible, but not in all cases, see, e.g., Remark
3.2 and the proof of Theorem 4.1. |A| is minimum if and only if T is a maximum
independent set.

The next result is about the Potts model too, and is useful for sampling (see Section
6) and for the computation of normalization constant (see Theorem 2.7).

Theorem 2.6. Consider the Potts model on the (above) graph G = (V,E). Consider
I={Vi,,Viy,...Vi,} CV, an independent set of G. Consider I¢ = {V},,V,,,...,V; }
(recall that I¢ is the complement of I, so, ¢ > 1, p+q=mn=|V|). Then

)=+ 1) g ()

I (1 o o

le(p) we(h)

7P (S(

Lj1sThgsees Tjq )

V (2, 2y, o j,) € {0} x ()T, where y(“’h“]‘zww%) is the first element of

equivalently, of U(z,_ @jq)), V (2),, %, .., zj,) € {0} x ()Y,

(wh’wjzv“'!zjq) ( J10%gg0

y(wjl’wjzv'n,:rjq) = <yi(9«’j1axj2w-wqu)) < , V(le,xj2, ~-~aqu) c {0} % <<h>>q717
i€(n)
y(mjl’xj2""ﬁzjq) _ { 0 Zfl ¢ {j17j27a"'ajq}a

g xj, if i =ji for somek € (q),
V (2, @y eery,) € {0} x ()T, Vi€ (n),
= H (y(levmjz’“'@jq)(wlil)) - H (y(mjlvxjga-wzjq)(o‘il))

<y(1j1 7wj2""ﬂ$jq)(0‘il )) ,

C(wvo)vilvxwl7x11721-<~7ww5(i1)
— (Ij L j r""zjq)(wlil)> _
= Hoqv,) (41 (v,

Zl
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V(le,sz, ...,a:jq) € {0} x <<h>>q_1 ,Yw € (h), VI € (P), Tuys Tawgs -y Tu,,,) oT€ the

colors of Viyy s Vg s ooy Vo, (i)’ respectively, Vi, , Vg, - sz(il) being the vertices adja-
(x J Lo yeees zj )(w|zl )
cent to V;, (see Theorem 2.2; y\"1 %2> %iq € U(g;j1 gmrtiy) © S(wn,wjz,m,qu)

— therefore, the colors of Vj,, Vj,, ..., V;. are xzj, xj,, ..., Tj,, respectively —,
V (%), )y, nwj,) € {0} X <<h>>q_1, Yw € ((h)) = {0} U (h), VI € (p); obviously,
e mse i )00 = ylonotieetin) ¥ (2, 25, 05,) € (0 ()T, VL€ (9).

Proof. Let (zj,,2j,,...,x;,) € {0} x ((h))?"'. By Definition 1.7 and Theorem 2.4,
7|s ( is a wavy probability distribution (on S( )) with respect

TjpoTgg s qu) 2107320 % Iq
( Jl,ath,...,qu)

to the order relation € and partitions A, , 1 € {p+2), its normalization

.....

5. We have

(RO, 7 :

b= = = —h+1, Ve (p+1),
| AlFnmzoma) (1) (p+1)

o) =12 b = (B, VL€ (p+ 1),

1

and (see the proof of Theorem 2.4)

(l,l) _ (l,l),(Ijl,IjQ,u.,:L’jq) _ 1 ifl = 17
Qy, = Oy = C(w,0),i)_ 1wy Tweg s z“’s(i, D i1 e < n 1> {1}
- 1 p - )

Vie(p+1), Vw € (h), where Ty, , Tuy, - Tu,,
Vs oy Vo (1r)? respectively, Vi, , Vg, -y Vi 3
s\ —1 s\

Vi, ifle(p+1)—{1}. So, by Theorem 1.5,

H(y(mh,%,._,,%)>

are the colors of (vertices) V,,,,

) being the vertices adjacent to
-1

1+ 3 ot

le(p+1) we(h)

1+ Z HC(U/,O),ilil,mwl,mw2,...,mws(il_1)
le(p+1)—{1} we(h)

7P (S(zh P Ijq)) — ¢

le(p) we(h)

O

The next result is another main result about the Potts model, a connection between
two central notions, independent set and normalization constant.
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Theorem 2.7. Under the same conditions as in Theorem 2.6 we have

Z:(h+1) Z 9H<y(wjlij2,w,qu)>.

(21,55 )E{OF X ((R)) 271

C(w,0),4],@ayq sTawe r---s x .
I [+ DD e e ()

le(p) we(h)
(x4, Tjy, ..., xj, are the colors of vertices Vj , Vj,, ..., Vj_, respectively).
Proof. Theorems 1.6, 2.5, and 2.6. O

Based on the above result, we now can give the steps we need to compute the
normalization constant Z for the Potts model on G — an arbitrary but fixed graph
(this graph can be connected or not). Our interest is to obtain for Z a formula (an
expression) as good as possible (as simple as possible, ...) — this fact is taken into
account in these steps, the last step can be performed or not.

Step 1 (Graph level). Determine an independent set of G as large as possible (the
larger the independent set is, the smaller the numbers of terms of sum for Z from
Theorem 2.7 is), better, a maximal independent set of G as large as possible, best,
a maximum independent set of G (the last problem is NP-hard, but in some cases it
can easy be solved, see, e.g., [2, Chapter 4]).

Step 2 (Markov chain (or A-wavy probability distribution) level). For the indepen-
dent set of graph G found at Step 1, determine Z using the formula from Theorem
2.7.

Step 3 (Algebraic level, if possible). Simplify, if possible, the formula (expression)
for Z found at Step 2 — determine, if possible, the identical products, use, if possible,
algebraic identities, ...

Example 2.1. (A simple case.) Consider the Potts model on the complete bipartite
graph Kj,_o, where n > 3. Consider that the bipartition of this graph is (X,Y),
where X = {V1,Va}, Y = {V5, V4, ..., Vi,} ({W1,Va,..., V,,} is the vertex set of this
graph).

Step 1 (for the Potts model on Ko ,_2). We take I = Y. I is an independent
set (of Kgp_2) if n = 3, a maximum independent set if n = 4, and the maximum
independent set if n > 5 (if n = 3, X is a maximum independent set, and we can take
I=X).

Steps 2-3. By Theorem 2.7 we have

Z=(h+1) Z oH (v172)) H 1+ Z OCw.0).izq 2o
we (h)

I1:0,I2€<<h>> =3

Since
o <y(x1,xz)) _ { 0 if 2 =20 =0,

n—2 ifz; =0, xz2 € (h),
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and
2 if Tr1 = T = O,
C(w,0),i,x1,22 — 0 if 1 =0, z9 € <h> y Lo = W,
1 ifaxy =0, 29 € (h), x9 # w,

Yw € (h), Vi€ {3,4,...n} (I =Y ={V3,Vy,...,V,}), finally, we have

Z=(h+ 1) {6 (L+h6")" 7 4+ 102 (146" + (h-1)6]" | =

= (h+1) {(1 +h02)" L RO 2 24 (h— 1) 9]"‘2} :
For h =1 (for the Ising model), we have
Z=2|(1+6%)"+ 207

Remark 2.2. (a) Using Theorem 2.7, it is also easy to compute the normalization
constant of Potts model on an arbitrary but fixed nonempty spanning subgraph (with-
out isolated vertices) of the complete bipartite graph Ky ,,_2, or, more generally, of the
graph G = (V, &), |V| =n (|€] > 1), which has an independent set I with |I| =n—2,
where n > 3 in both cases. Note, moreover, that the Potts model on the above graph
G is a A-wavy probability distribution with |A| = h+1, where A = ... — see Theorem
2.5.

(b) Using Theorem 2.7, it is also easy to compute the normalization constant for
the Potts model on the complete bipartite graph K; ,,—1 (the star graph with n ver-
tices), where n > 2. In this case, Z = (h+ 1) (hf +1)""". This formula for Z was
also obtained in [16] and, moreover, will be also obtained in Section 3 by a different
method.

Set

(mslzal,ISQZaz,...,zsl:a,)
= {(ylayQa ayn) | (y17y27 7yn) S <<h’>>n and Ys, = Ty, = Qo Vb € <Z> }7

Vi e (n), Vs1,82,....,8 € (n), sy # Sy, Yu,v € {I), u# v, Vay,as, ...,a; € ((h)).
Below we give another general formula for the normalization constant of Potts
model.

Theorem 2.8. (Based on Theorem 2.3(vi) in [16]; see also Remark 5.1 in [18].)
Consider the Potts model on the graph G. Then

Z=(h+1) > 07" Vse(n), Vae ((h).
2€U(z3=0)

Proof. See the proof of Theorem 2.3(vi) in [16]. O

Theorems 2.7 and 2.8 are somehow related because the former is based on A-wavy
probability distributions while the latter is based on wavy probability distributions
(see Theorem 1.5 and, in [18], Theorem 5.2 and Remark 5.1). In some cases, the
above simple formula for the normalization constant is or seem better than that from
Theorem 2.7. We illustrate this fact in the next example.
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Example 2.2. Consider the Ising model on K,,, the complete graph with n vertices
(n > 2). Consider that the vertices of K,, are V1, Va, ..., V,,. By Theorem 2.8 we have
(h =1 and we work with s =1 and a = 0)

7 =2 Z oH (=)

2€U(z1=0)

=2 Z [the term of Z dues to the configurations with 0 in V4 and
i€((n—1))

i 1s in the other vertices]

=2 Y 0.
)

i€((n—1)

Now, we apply Theorem 2.7 for the independent set {V,,} (this is a maximum inde-
pendent set). Setting

T={k|lke(n—-1)—{1} and x, =1},

we have

7 = 9 Z HH(y(HLz riyl—l)) (1_"_9(:(1,0%,”7”,%2 ,,,,, ""'n—l) _

(21,02, 50 —1)€{0} X ((1))™ 3

- 9 Z Z ei(n—i) (1+9n—21—1)
1€((n—2)) (z1,22,...,xn_1)E{0} x ((1))" 2
|T|=i
= 2 Y G0 (140m ).

i€((n—2))

This formula is a bit more complicated than the former one, but its sum has n — 1
terms.

Based on the formulas from Theorems 2.7 and 2.8 we will give other ways to com-
pute normalization constants for the Potts model in the next two sections. Sometimes,
both formulas will be used, the results obtained being good or very good in some cases
— for an example, see Theorem 4.1 and its proof (see also Theorems 4.2 and 4.3);
another example is in Remark 3.2.

3. Potts model on connected separable graphs

In this section, we give a formula for the normalization constant of Potts model on a
connected separable graph. This formula can be used to compute the normalization
constant for the Ising or Potts model in many cases — we give a few examples, for
trees, for the friendship graphs, for the windmill graphs, for the bull graph, and for
others.

When we work with two or more subgraphs or graphs — sometimes, even when we
work with one graph —, we will use subscripts or superscripts in the case when the
energies are used, in that when the normalization constants are used, etc. E.g., Hg
is (denote) the energy of graph G.
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Remark 3.1. (See also Remark 4.14 in [16].) Consider the Potts model on a
nonempty graph G with connected components Gy, Gs, ..., G,,,. Suppose that Gy is
a nonempty subgraph of G, Vk € (m) . Consider the Potts model on G, Vk € (m) . It
is easy to prove that
2g = 2G,2G,---2g,,

(Zg is the normalization constant of Potts model on G, ...). The condition that Gy
be a nonempty subgraph of G, Vk € (m), can be removed. Indeed, removing this
condition and setting by convention

Zg, =h+1
when Gy, is a trivial subgraph (a vertex-subgraph) of G, where k € (m), we have
2g = 2G,2g,+-2G,,-

Due to the above remark, it is sufficient to compute the normalization constant(s)
for the Potts model on connected graphs.

Definition 3.1. (See, e.g., [22, p. 54].) Let G be a connected graph. Let H and K
be two subgraphs of G. (H, K) is called a 1-separation of Git HUK =G, HNK is a
vertex-graph, and ‘H and K have each at least one edge. The vertex of HN K is called
the cut-vertezr of 1-separation (H,K).

Definition 3.2. (See, e.g., [22, p. 54].) Let G be a (connected or not) graph. G is
called a separable graph if it is disconnected (nonconnected) or has a (at least one)
1-separation when it is connected.

Definition 3.3. (See, e.g., [22, pp. 54 and 60].) Let G be a (connected or not)
graph. Let B be a subgraph of G. B is called a block of (graph) G if it is a maximal
nonseparable subgraph of G. (If B is a block of G, it follows from Definition 3.2 that
it is a connected subgraph of G.)

Definition 3.4. (See, e.g., [22, p. 64].) Let G be a graph. Let B be a block of G. B
is called an extremal block (of G) if it includes exactly one cut-vertex of G.

Theorem 3.1. (See, e.g., [22, p. 64].) Let G be a connected separable graph. Then
it has at least two extremal blocks.

Proof. See, e.g., [22, p. 64]. (This result is based on the fact that Blk(G), the block-
graph of G, is a tree, see, e.g., 22, pp. 63-64].) O

Below we give the main result of this section on the Potts model.

Theorem 3.2. Consider a connected separable graph G = (V,E) with V = {V1, Va, ...
s Vo } (n > 3). Consider that its blocks are By, Ba, ..., By, where m > 2. Consider
the Potts model on G. Consider the Potts model on By, Yk € (m). Then
1
Jg=————7B 783,285, -
g (h I 1)m71 By 4B2 Bm

Proof. Induction on m.
m = 2. In this case, 3j; € (n) such that (By,Bs) is a l-separation of G with
cut-vertex Vj,. Consider that By, = (Vi, &), Vk € (2) . We have

Hg (vg) = Hp, (v5,) + Hp, (v5,), Yzg € ((h))",



A-WAVY PROBABILITY DISTRIBUTIONS AND POTTS MODEL 233

where, setting
Ty ={i|i€(n) and V; € Vy } ,Vk € (2),
obviously (see our convention when we use two or more subgraphs or graphs again),
zg = (Ti)ie(ny » Tg € (",
and
w5, = (t)ier, » Yh € (2), @i, € (M) = ()™, vk € (2).
By Theorem 2.8 we have

Zo = (h+1) Z gHo(zg) _ (h+1) Z gHs, (25, )+Hs, (25,)
x g x 5
* o) =0
CEEQGUBZ

(".7’1:0)
T SR U I SR

By Ba

(@1‘1:0) (z.fl :“)
= ey Y el g

By

(#3,=0)

zp, €U T, €U

h+1

zp, €U

- Z 1 Bl(xsl) = —
py12e | () XB: ’ h+1

(11'1 :0)
m — 1 +— m. By Theorem 3.1, 3i; € (m), Jk1 € (n) such that B;, is an extremal

block of G with cut-vertex Vi, . It follows that (B;,,Bx;,) is a 1-separation of G with
cut-vertex Vj, , where

4B, 2B,

zp, €U

Bx# = |J B
i€ (m) iy
Consider, besides the Potts model on B;, , the Potts model on B;, (B;, and B;, are
subgraphs of G). Finally, using the case (step) m = 2, we have

1 1 1
Zg = —7p Zp, =—-"Jp, |———s Zg, | =
’ R e R e AT ke<1:[k¢‘ -
m), 11
1
== m261282...23m.

O

Let G; and G5 be two graphs. We write G; = G, if G; and G, are isomorphic — for
isomorphic graphs and this notation, see, e.g., [4, p. 40].
Further, we give a few examples for Theorem 3.2.

Example 3.1. Let 7 = (V,€) be a tree with V = {1, V4, ..., V,,} (n > 2). Consider
the Potts model on 7. If n = 2, by Theorem 2.8 we have
Zr=(h+1) > 07T = (h41)(1+h0).

~
ST
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Now, we consider that n > 3. In this case, 7 is a connected separable graph with
n — 1 blocks, By, Ba, ..., Bp_1, B1 2 By = ... 2 B,,_1 & Ps, P> is the path graph with
2 vertices. Consider the Potts model on By, Vk € (n — 1). Consider the Potts model
on Ps. By Theorem 3.2 we have

1 n—1

Zr = TR (Zp,)" =

]. n—1 _ n—1
= W[(hﬂ)(uhm] = (h+1)(1+ho)"" .

Therefore,

Zr = (h+1)(1+ho)""" ¥n>2.
This result was also obtained in [16], but by a different method. For h = 1 and
T =P, (for the 1-dimensional Ising model), P, is the path graph with n vertices, we
have

Zp, =2(1+6)""" ¥n>2

(a known result, see, e.g., [12, p. 36] or [16] — in [12], it is considered a different
formula for energy, but each of the two formulas can be obtained from the other).

Example 3.2. Let G = (V,€) be a connected separable graph (|V| > 3). Let
G1 = (V1,&1) be a connected graph with [Vi| > 2. Consider that the blocks of G are
By, Ba, ..., By, (m>2),and By 2 By & ... 2 B, 2 G;. Consider the Potts model on
each of these graphs (the blocks are graphs). Then (by Theorem 3.2)

1

Zg = W (Zg,)™ .

If h =1 and Gy = Cy, Cx is the cycle graph with k vertices, we have

! ((1 )+ (1+ 9)’“>m

29 =51

because
Zey =(1—0)"+(1+0)"
(for Z¢, , see, e.g., [12, p. 35|, [18], or, here, Theorem 4.3).
If h =1, G; = Cs, and the graph G has a cut-vertex only (therefore, all blocks By, Ba,

..., By, are extremal), then G = F,,, (by definition), F,, is the friendship graph (with
m blocks, each block being isomorphic to C3), and

1 m
1 2 m 2 m
= 27”—_1[2(1+39)] =2(1+436°)".
If h=1and G, = K;, K; is the complete graph with [ vertices, then, by Example 2.2,
L i pi(l—i i pi(l—i
Zg = 27_"1771 2 Z Cl—19 (l ) == 2 Z Cl_19 (l )
{1=1)) ie{(1-1))

If h =1, G; = K, and the graph G has a cut-vertex only, then G=Wd(l, m) (by defi-
nition), Wd(l,m) is the windmill graph (with m blocks, each block being isomorphic
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to K;), and

m

Zwa,m) =2 Z Cl 19” i)
((1-1))

Example 3.3. Let G = (V,&) be a connected separable graph (|V| > 3). Consider
that the blocks of G are By, Ba, ..., B, (m > 2). Suppose that By 2 By & ... 2 B, &
Py and Byy1 = Byujo & ... & By, & Cy, where u € (m — 1). Consider the Potts model
on each of these graphs. Then (by Theorem 3.2)

1

Z = Gy ) )"
1
= ——[(h+ 1) A+ hO))" (Ze)™ "= ————— (1 + hO)" (Zc, )" "
) [( ) ( N (Ze,,) (h+1)’”‘“‘1( )" (Zey)
If h=1and k = 3, we have
1 u m—u u m—u
Zg = Grmamy (140) [2(1+30%)]" "=2(1+0)"(1+306%)

If h =1, m =3, u =2, the blocks By and B, are extremal, and & = 3, then G = the
bull graph (by definition) and

Zg=2(1+0)"(1+36%).

Remark 3.2. The case of Theorem 3.2 when we have at least m—1 blocks isomorphic
to Py can be proved by induction by a different method, using Theorems 2.7 and 2.8.
The proof is based on the fact that there exists an extremal block isomorphic to Ps
both for the step m = 2 and for the step m — 1 — m. We do the proof for the step
m = 2 only. Suppose that By = Ps and has the vertices V; and V5. Suppose that
V4 is the cut-vertex of 1-separation (B1, By). Consider the independent set {V;}. By
Theorems 2.7 and 2.8 we have

1(2 z3, ‘En)g
Zg = (h—|—1) Z HHQ(JQ 1+ Za(wo)llg —

(@203 )g €0} x{ ()2 welh)

= (ht1) Y oMm(em) (14 he) =
a:BQGU(T2 0)

= (1+h8) |(h+1 oHss (v8,) | — T T = —— e T

(1+n0) |(h+1) 21552 h+17>282 128 2
ZL’BQEU(IQ 0)

4. Potts model on graphs with a vertex of degree 2

In this section, under certain conditions, we give a formula for the normalization
constant of Potts model on a graph with a vertex of degree 2. This formula leads to
a recurrence relation for the normalization constant of Potts model on C,, the cycle
graph with n vertices (n > 3), and, further, we compute the normalization constant
of Ising model on C,,.
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In this section, besides the Potts model on graphs, we must work with the Potts
model on multigraphs — we work with nondirected finite multigraphs without loops.
If G is a nonempty nondirected finite graph with loops or a nondirected finite multi-
graph with loops and G’ is the graph or multigraph obtained from it by delet-
ing/removing the loops, we set by convention

Hg () = Hg (), Yz € ((h))",

supposing that G’ is nonempty when it is a graph, where n = the order of G (=
the number of vertices of G, see, e.g., [4, p. 19]), ((h)) = the set of colors of G, ...
So, we can work with G’ instead of G. The definition of Potts model on multigraphs
(nondirected finite multigraphs without loops) is the same as that from Section 2 for
the Potts model on graphs, with the difference that the edge set from there is replaced
with an edge multiset. E.g., considering the multigraph G = (V, &),V = {V1, V5, V3},
& = {1, W], [V, Va], [Va, V3], [V3, V4]}, and the Potts model on G, we have, e.g.,
H(0,1,0) = 3 (x1 = 0 (0 is the color of V1), 3 = 1, 3 = 0), not H (0,1,0) = 2,
because V; and V> are joint by two edges, and m(g,1,0) = g.

It is easy to see that Theorem 2.8 can be extended for the Potts model on multi-
graphs. Moreover, Theorems 2.1, 2.2, and 2.4-2.7 can also be extended for the Potts
model on multigraphs — good exercises for the reader! Moreover, Theorem 3.2 can
also be extended for the Potts model on connected separable multigraphs —another
good exercise for the reader!

In the next result, we introduce a new method, a “superposition” method, to
compute the normalization constants for the Potts model, and which is based on
Theorems 2.7 and 2.8, and the extension of Theorem 2.8 for the Potts model on
multigraphs.

Theorem 4.1. Let G = (V,E) be a graph with V = {V1,Va, ..., V. } , where |[V| =n > 4
and |E| > 3. Suppose that degV,, = 2 (degV;,, = the degree of V,,). Suppose that the
vertices adjacent to Vy, are V,_o and Vi,—1 (Viu—o and V,_1 are adjacent or not).
Further, we construct a graph and a graph or multigraph. We delete the vertex V,
and edges [Vy,—2, V] and [Vi,—1,V,] (these edges are the incident edges with V,,), and
obtain the graph, say, G1, G1 = (V1,&1),

Vi=V-— {Vn} ; 51 =&~ {[Vn727 Vn] ; [V’I’L717 Vn]} .
We then “superpose” V,,_o on V,_1 in Gy, i.e., we remove (delete) V,,—1 from Vy and,
in &1, each edge [X,V,,_1] with X # V,,_o, if any, is replaced with the edge [ X, V,_a],
then, if [Vp—2,Va_1] € &1, this edge is removed from &, and obtain the graph or
multigraph (without loops), say, Ga, Go = (Va, &),

V2 = Vl - {Vn—l} =V - {Vn—lavn}a

52 = {[X,YH [X,Y] S 51 and X,Y 75 Vi—1 }U{[X, Vn72]| [X,anl] S 51, X 75 anz},

&y is a set or a multiset, U is the union of sets or multisets. Consider the Potts model
on each of G, G1, Go. Then

Zg =012+ (h—1)0]Zg, + (1 —06)°Zg,.
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Proof. Consider the independent set {V,,} of G. By Theorem 2.7 we have

(z1,22,.s Tp_1)
ZgZ(h+1) Z 9H9<ygl 2 1g>.

(@1,22,..,80—1) g €((h))" 2 x {0}

9
1 + g 9 (w,0),m,2p _g,2pn_1
we(h)

(21,22, %p_1)
—(h+1) > gt ’) (1+h6%) +

(@1,22,,8n—1) g €((h)) " 3% {0}?

(21,29, 2p_1)
. Z HHg(yg 9) [2+(h—1)9]

(21,22, Tn—1) g €((h)) "~ x (k) x {0}

(below, in the second term, the factor 6 is due to the fact that z,_o € (h), z,—1 =

0, (yéxl’m’”"m"*l)g) = 0 (see the definition of y(x“ ’$-7’2""’x-7'q) in Theorem 2.6;

(Z1,%2,..,Tn—1)g

(yg ) is the nth component of y(gml’m’""z"*l)g), and (the graph) G;
will be used instead of G)

=(h+1) (1 + h92) Z GHgl ((21,22,...,zn—1)gl)+
(21,22,‘..,Z7L71)g1E<<h>>"_3><{0}2
+(h+1) 2+ (h—1)0]0 > gtior (2122200, )
(211227'”7‘271—1)91E<<h>>n73><<h>><{0}
= (h+1) (1+ho?) > mbe)y
zgl€Ugl

(2n—2=2p—1=0)

+(h+1)2+ (h-1)60 > 3 gHo1 (201).

a€(h) zg,y EUgl

(2n—2=a,2p_1=0)
By Theorem 2.8 we have
Zg,=(h+1) Y pfale) =

91
z2gy EU(ZN71=O)

= (h + 1) Z 9H91 (291) + Z Z 9H91 (Zgl) ’

g1 ac(h g1
91 eU(zan:znfl:O) ( >Zg1€U(Zn72:avzn71:0)

S0,

(h+1) Z Z 9Hoy (29,) =Zg, — (h+1) Z 9Ha (26, )

a€(h) 25 €U zg, €UCT
9155 (2 _n=a,2,_1=0) 915 (2 g =2 _1=0)
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For the Potts model on Ga, using Theorem 2.8 (when Gz is a graph) or its extension
(when G5 is a multigraph), we have

Zg,=(h+1) Y 0fea(w) = (ht) 3 o11o1 (01,

go 91

ZngU(zn72:O) ZglEU(Zn—2:zn71:0)

Finally, we have

Zg = (14+h6*) Zg,+012+ (h—1)0](Zg, — Zg,) =
= 02+ (h—1)601Zg, +(1-0)" Zg,.
O
It is easy to see — a good exercise for the reader! — that Theorem 4.1 can

be generalized — if G is either a graph with a vertex of degree 2 or a multigraph
whose underlying graph (see, e.g., [4, p. 30] for this graph) has a vertex of degree
2, and we then construct a graph or multigraph, G;, and we then construct a graph
or multigraph, Ga, ... (for the completion, see Theorem 4.1, see also its proof —
some things will be similar to those from Theorem 4.1), we obtain a generalization of
Theorem 4.1.

Below we give an application of the above result. This application is for the Potts
model on C,, (the cycle graph with n vertices). One reason to study this model is the
following: the Potts model on C,, can be seen as a 1-dimensional Potts model with
cyclic boundary condition as the Ising model on C,, is seen, see, e.g., [12, pp. 31—32],
as a 1-dimensional Ising model with cyclic boundary condition. For another reason,
see the next section (Theorem 5.2, Remark 5.1, ...).

Theorem 4.2. Consider the Potts model on C,,, ¥Yn > 3. Then
Zepo =(h+1)0124 (h—1)0](1+h0)"" +(1-6)°Zc, ,,¥n> 4.

Proof. Let n > 4. By Theorem 4.1, taking G = C,41, we have G; = P, (the path
graph with n vertices) and G = C,,—1, and, further,

Ze =02+ (h—-1)0)1Zp, +(1—0)Zc,_, =
(see Example 3.1 for Zp,)
=(h+1)02+(h—-1)01(1+hr)"" +(1-60)7>Z,_,.

n+1

O

Using the recurrence relation from Theorem 4.2, below we compute the normaliza-
tion constant for the Ising model on C,,. For other two computation methods for this
constant, see [12, pp. 31—35] (in this book, for this constant, it is given an equivalent
formula to the formula from our article) and [18].

Theorem 4.3. Consider the Ising model on Cy, ¥n > 3. Then
Ze, =(1-0)"+(1+60)", Vn > 3.

Proof. Induction on n.
n = 3. By Theorem 2.8 we have (h = 1)

Ze, =2 (1+36°).
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(Theorem 2.7 can also be used.) Since
1-0)°+(1+0)°=2(1+36%),
we have
Ze, =(1—0)°+(1+6)°.

n = 4. Similar to the case n = 3.
n— 1~ n+ 1. By Theorem 4.2 we have

Zeyw = 400+ +(1-07 (10" +(1+0)"] =
= 40O+ (-0 (-0 (1+0)" " =
Q—0)"" +(40+1-20+6*)(1+0)" " =
= 1-0"" +(1+20+6%)(1+0)" " =
= 1-0"" A+ 0" =1 -0 (10"

5. Bounds

Simple expressions, closed-form expressions for the normalization constant of Potts
model in concrete cases are possible — we think so — in a small number of such cases
(see, e.g., Examples 3.1, 3.2, and 3.3). Such expressions are also possible in the limit in
some cases. We do not hope more. So, for this constant, we must find approximations
and lower and upper bounds — if possible, good and very good approximations, good
and very good lower and upper bounds. In this section, we present two ways to obtain
bounds for the normalization constant of Potts model. One of these ways is for lower
bounds, and is based on Theorem 2.7, while the other is for lower and upper bounds,
and is based on connected separable spanning subgraphs and Theorem 3.2. We will
illustrate these two ways — moreover, for one of the illustrative examples, two upper
bounds for the free energy per site are given, one of them being in the limit.

Each term of the sum from Theorem 2.7 is a lower bound for the normalization
constant of Potts model. Several such terms by summing up lead to a better lower
bound for this constant — the larger the number of terms is, the better the lower
bound is. We give just one result here — computing a “big” term of the sum from
Theorem 2.7, below it is given a lower bound for the normalization constant of Potts
model.

Theorem 5.1. Under the same conditions as in Theorem 2.7 we have

Z>(h+1) J] (14 hoteva),
le(p)

where degV;, is the degree of Vi, VI € (p) .



240 U. PAUN

Proof. By Theorem 2.7 we have

z > (h+1) 9H(y<0’0""’0)) H 1+ Z OC(w,0),i,0,0,....0 | —
)

le(p) we(h

(h+1) JT (1 + notes"u).
le(p)
O

Let G = (V,€) be a graph. Let Ji,Jo C R be two nonempty finite sets. Suppose
that
V= {‘/(21722) ‘ (21,2’2) S Jl X J2}
Let (a,b) € R?. Consider the graph G + (a,b) = (V + (a,b),€ + (a, b)), where

V+ (avb) = {W21+a722+b) | Vv(m,m) S V}a

&+ (a,b) = {[V(U1+a,u2+b)’ V(Z1+a,22+b)} ’ [V(ulxuz)’ V(217Z2)] € E} :
We call the graph G + (a,b) the (a,b)-translated graph of G.

Consider the 2-dimensional grid graph G, n, = (Viyne, Enyon,) of dimensions n4
and ng, where ny, ng > 1 (n1, no € N), nyng > 2,
Virns = {Viinia) | (i1,2) € (n1) x (na) },
and
Envnz = U Viinin)s Virgm ] | (i1,42) 5 (G1,52) € (n1) x (n2) and
either j3 =41 and jo —is = 1 or j; —4; =1 and jo = io}.
Further, we construct a connected separable spanning subgraph of G,, ,, when

n1 = ng = 6k, where k > 1. The blocks of this subgraph are isomorphic to C4 or Pa,
and are constructed as follows.

Bl - (V1781) = C47

where
Vi = {Vi: Ve, Ve, Vi }
and
&1 ={[Va: Vel Ve, Ve Ve Vool Vo, Vool
By =B+ (1,1),
Bs = By + (1,—1) =B+ (270),
By :Bng(l,l),

Bs = By + (1,—1),

Bei—2 = Ber—3 + (1,1),
Ber—1 = Ber—2 + (1, -1).
Using the blocks By, Ba, ..., Bsr—1, we construct (consider) the blocks
Bi6k—1)41 = B1 + (0,3t) ,
Bisk—1)+2 = B2 + (0, 3t) ,
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Bi(sk—1)+6k—1 = Bor—1 + (0,3t),
Vi, 1<t<2%—1(1+3t<6k—2=>t<2k—1).
All the above blocks (By, Ba, ..., Bgk—1, -..) are isomorphic to C4, and the number
of them is (equal to) 2k (6k — 1) because
6k — 1+ (6k—1) max ¢=6k—1+ (6k—1)(2k—1)=2k(6k—1).

1<t<2k—1

Now, we construct the blocks which are isomorphic to Ps. The subgraph

({‘/(1’“)7 ‘/(1)u+1)} ’ { I:‘/(l)u)’ ‘/v(l’u+1)] }) ’

where 2 < u < 6k — 1, is considered to be a block if [V(1,4), V(1,u+1)] is not an edge
of any above block which is isomorphic to Cy.

For each u € {2,3,5,6,8,9,...,6k — 4,6k — 3,6k — 1}, we obtain such a block. For
u = 3, we have V(1 y41) = Vi14) € Bi.(6k—1)41 (here, t = 1); for u = 6, we have
Vit,u+1) = V1) € Bagr—1)+1 (here, t = 2); ...; for u = 6k — 3, we have Viq ,41) =
Vii,6k—2) € Bak—1)6k—1)+1 (here, t = 2k—1). So, the number of these blocks is 4k —1
(because

2 max t4+1=202k—1)+1=4k—2+1=4k—1).
1<t<2k—1

The subgraph
B' = ({Vior.2, Viers b {[Vier.2) Vi3] })

is considered to be a block. The subgraphs B’ + (0,3t), 1 <t <2k —1 (2+3t <
6k —1 = t < 2k — 1) are also considered blocks. The number of these blocks, B’
and B’ + (0,3t), 1 <t <2k — 1, is 2k. We finished the construction of blocks which
are isomorphic to Py. The number of these blocks is 4k — 1 + 2k, i.e., 6k — 1.

For the next result, we need to compute (to know) Zp, and Z¢,. By Theorem 2.8,

Zp, = (h+1) (14 hb).
To compute Z¢,, consider Cy = (V, &),
V= {Vi, V2, Vi, Va} and & = {[VA, V2] ,[Va, V&) , [V&, Vil , [V, A}

By Theorem 2.7 for the maximum independent set {Va, V,} we have

e, = (h+1) Z [91{&; (yézl’%m) .

(21,25)c, €40} x((h))

Since
(z1,23)¢ 0 ifxy = z3 =0,
te. (ve, ") =
Ca \Yes { 2 ifa; =0, 23 € (h)
and
2 if Ir1 = T3 = 0,
Cs c .
Cla,0) 201,05 = c(fU’O)A’zth =< 0 ifx; =0, z3€(h), 3 =w,

1 ifxy =0, 23 € (h), x3 # w,
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Yw € (h), it follows that
Zey = (h+1) {(1 +h62)% + hO2[2+ (h — 1)9]2}.

Theorem 5.2. Let n = 6k, where k > 1. Consider the Potts model on (the grid
graph) G n.
(i) If 0 < 0 < 1, then

2(n—1)

Zg. . < (h+1) {(1 +162)% £ hO% 2+ (h— 1) 9]2} (1+h0)" .

(i) If 0 > 1, then
2\ 2 2 2 3(n-1) n—1
Zg,o = (h+ ) {(1+16%)" + he2[2+ (h— 1) 6]} (1+ho)" .

Proof. Denote by G the connected separable spanning subgraph of G, ,, constructed
above. It is easy to prove that (a similar case is in the proof of Theorem 4.1 in [16])

Hg, (x) > Hg (x), Va € ((h))"

(x =g, , = xg; ©g, , = xg because G, ,, and G have the same vertices, n? vertices).
By Theorem 3.2 we have

1 2k (6k—1) 6k—1
o - (h+ 1)@FDER-D-1 (Ze.) (ZP.) -

2(n—1)
= (h+1) {(1 +h62)% + hO2[2+ (h — 1)9}2}3 (1+ho)" "
(1) Since 0 < 0 < 1, we have
Zgn,n — Z gHGn n (2) < Z gHa (@) — Zg =

ze((h))™* ze((h))™*
2\ 2 2 2 g(n—1) n—1
- (h+1){(1+h9) +ho [2+(h—1)0]} (1+ho)" "

(ii) Since 6 > 1, we have

Zg,., = Z gHgn,n(l')Z Z gHg(x):Zg:
ze((h))™* ze((h))™*

= (h+1) {(1+h92)2 +RO2[2+ (h — 1)9]2}

2(n—1)

(14 ho)" " .

O

Remark 5.1. (a) In Theorem 5.2, n = 6k. The other cases, n = 6k + 1, n = 6k + 2,
..., n =6k 4+ 5, can also be studied.

(b) The spanning trees of connected separable spanning subgraph G of G,, ,, from the
proof of Theorem 5.2 are also spanning trees of G, ,,. Consider such a spanning tree,
say, 7. By Theorem 4.1 from [16] or proceeding as in the proof of Theorem 5.2 we
have

Zg<Zr=(h+1)1+h9)" " if0<h<1
and
Zg>Zr=(h+1)(1+h0)" " if0>1.
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Further, we have (see the proof of Theorem 5.2)

Zg,, < Zg< Zrif0<0<1
and

Zg, > Zg > Zr it > 1.

Therefore, in Theorem 5.2, we obtained bounds for Zg, , better than those from
Theorem 4.1 in [16].
(¢c) If we know the normalization constant for the Potts model on a given graph,
G = (V' &, or bounds — if possible, good and very good bounds for it —, we can
compute other things on this model (see, e.g., [16]; see, e.g., also [3, p. 6]). Consider,
e.g., the free energy per site, f i
In Zg/

!

g _
fr =—
(see, e.g., [16]), where n’ = |V'|. Further, we consider G, ,,, G, and T from (b).
Consider that 0 < 6 < 1; the case when 0 > 1 is left to the reader. By (b) we have
(n = 6k)
o = ang,,L,,,L <9 ang < _InZz
n n? n?

It follows that
limsupf s < hmsupf < limsup f-

n— oo n—0o0
(n — 0o = n? — 00). From Theorem 4 12(111) [16], we have
limsup . = hm £l =In(hO +1);

n—oo

lim f7, is the limit free energy per site, see [16], of (or for the) Potts model on 7.

n—oo
lim sup fn2 can be computed;

n— o0
lim sup ffz = lim sup nfg =
n—oo n—oo
2(n—1) _
1n(h+1){(1+h92)2+h«92 [2+(h—1)9]2} (1+ ho)" !
=lim sup 5 =
n—00 n
212 2 2\ 8D
(it 1) 1n{(1+h9) + 622+ (h—1)0] }
= lim —+ lim 5 +
n—o00 n2 n—o0 n
. ln(1+h9)n ! . %_% 22 2 2
+ dim T i S S (14 0%)" 6?24 (- 1))+
. n—l 1 2 2
+ lim 1n(1+h9):§1n{(1+h92) + 6% 2+ (h—1)0] }

( lim f exists; hmsupfg = hm fg) Finally, we have

n—00 n—o0

limsup £ < 1n{(1 +6%)° + h62 2+ (h = 1) 6]} <In(ho +1).

n— oo

Therefore, we obtained a bound (an upper bound) for limsup ff;"" better than
n—oo

In (h8 + 1) (recall that we considered the case when 0 < 6 < 1 only; the bound
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In (h6 + 1) also appears in Theorem 4.12(i) in [16]; Theorem 4.12(i) in [16] can be

generalized replacing “lim” with “limsup”). If we know or can prove — mathemati-
cal proof, not (physical or not) arguments or postulates —that lim fgg"'” exists — for
n—oo

the Potts (not Ising) model on G,, , —, then, in the above inequality and other places,

lim sup fg; g;””". We call lim sup fgg"’"
n—oo n—oo

free energy per site of (or for the) Potts model on G, .

the superior limit

can be replaced with lim f
n—oo

Recall that the bounds given in this section are, first of all, illustrative — if they
are useful or not, this is another story. This subject can much be developed. The
reader, if he/she wants, can try, e.g., to give bounds for the normalization constant
of Potts model on the 3-dimensional grid graph.

6. Sampling

In this section, we give a method for sampling from ((h))" according to the Potts
model and some comments for it. For the Potts model on G, n,,....n,, the d-dimensional
grid graph, d > 1, ny, na, ..., ng > 1, nins..ng > 2, we obtain an exact sampling
method for half or half+1 vertices.

Consider the Potts model m = (7). ((5y,» on the graph G = (V, &),V = {V1, V3, ...
o, Vo } (n > 2), from Section 2. Recall that the graph G has no isolated vertices (see
Section 2 again). In fact, on sampling, it is sufficient to consider only this case
because in the case when the graph G has isolated vertices we can proceed as follows:
each isolated vertex is colored with the color ¢ with the probability h%rl, Vi e ((h)) .
Recall that (z1,22,...,Zn), T1, T2, ..., Tn € ((h)), are the configurations of (graph)
G; z € ((h)™, ((h))" is the set of configurations.

Let I = {Vil,Vig,...,V}p} be an independent set of G, p>1 (I £ 0;p> 1= 1 #
(), better, a maximal independent set of G, best, a maximum independent set of G.
Consider I¢ = {le,VjZ, - qu} , the complement of I, where p+q=n=|V| (¢ > 1).
The Potts model on G is a A-wavy probability distribution, where

R CE) ’
31T G250 9a) ) (25, ,@jg 00T ) €O} X ((R))T 71
see Theorem 2.5. Using the sampling method for the A-wavy probability distributions

from Section 1, we obtain the following sampling method for the Potts model on G
— this method can also be used exactly or approximately.

Step 1. Sample from

A=1(S
( (zil’mjz*""rjq))(zjl,:1;]-2,...,ach)e{o}x<(h>)q_1

(A €Par({(h))")) according to the probability distribution

T=\Ts ’
( (251750 qu))(z @iy )E{0}x ((R))a~"
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where, see Step 1 from Section 1 and Theorem 2.6,

TS :P(Sz_ o ):
(mjl'sz """ qu) ( FAREY PRRE) ]q)

)

:h;aH(y()> T 1+ S oo

le(p) we (h)

V (2, x4y, xj,) € {0} % (R, where... — for the completion, see Theorem 2.6.
Suppose that the result of sampling is, say, S(b ) where (bj1 N S qu) €
{0} x ()"

Step 2. Sample from S(bj

417032 5-5big

L brarebsy) according to the probability distribution
T

b ba b, Ts

J1°7d2 ]q) (bjl’ij """ qu) IGS(

Ty
P (S(bjlvbjzv-"qu)> zES

Suppose that the result of sampling is, say, z, where z € ((h))

(b1 b3 +++b4q )

n
)y Zj1 = bj17 Rjy = bjw

ceey qu = qu.

z is the result of sampling from ((h))" according to the Potts model 7 (see the
sampling method from Section 1 again).

Step 1 is a challenging problem because |A| = (h + 1)q_1 ,q=n—p (p=II], so,
we need an independent set as large as possible), and the components of 7 are not
too simple (Z is known or not, ...). We could obtain good results at Step 1 using
Theorem 1.4 if 7 is a nontrivial wavy probability distribution or, more generally, if
7 is a nontrivial I-wavy probability distribution, |T'| being sufficiently small. At first
glance, the worst case for Step 1 is when G 2 K,, (K,, = the complete graph) because
{Vi} is a maximum independent set, so, p =1, Vi € (n).

As to Step 2, if we use the Gibbs sampler in a generalized sense from Theorem 1.4,
this chain attains its stationarity at time 1, so, we have an exact sampling method
having, see Theorem 2.4, p 4+ 1 steps (p + 1 substeps of Step 2) — 2 < p+1 < n;
p+1=2when G = K,,, and a maximum independent set of this graph is considered;
p+1=n when G is the star graph (with n vertices), and the maximum independent
set of this graph is considered.

For Step 2, we consider the case when G = Gp, n,....n Gnina,...ng 18 the d-

a°

dimensional grid graph of dimensions ny, na, ..., ng,
gn17n21~~7nd = (angn27~~~gnd7gnlgn27~~~gnd)7
where d > 1, ny, na, ..., ng > 1, n1ng..ng > 2,

Vn1,n2,-~.,nd = {‘/(il,ig,...,id) | (il,ig,...,id) S <’I’L1> X <n2> X ... X <nd> },
and

gnlun27~~und, -

={[Viirsizssia)s Viirsgoroj) )| (1152, o) 5 (1, J2, ooy Ja) € (n1) X (n2) X ... X (ng)
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and Jk € (d) such that ji —ip =1 and j, = iy, Yu € (d) — {k}}
(3! = there exists a unique).
Gnyons....m, 1S & bipartite graph, its bipartition is (X,Y), where

{Viirsinsia) | Viirsinsoiia) € Virinay.mg @0d i1 + iz + ... 4 iq is even }
if d is even,

{Viirsinria) | Viirsiniia) € Virinay.omg @0d i1 + g + ... 4 iq is odd }
if d is odd,

and Y = X¢ (any edge of Gy, n,,...n, has one end in X and one end in Y so, (X,Y)
is a bipartition of G, ns.... na this is unique because Gy, n,,..n, is a connected
graph).

Some of the above things on G, n,.. .. n, and the next result, on G,, n,.. n, toO,
could be known to the reader, but this fact is not too important, it is important the
fact that we need them.

Theorem 6.1. (i) V{11, 1) € X.

(ii) | X| = Y| if nina...ng is even.

(iii) | X| = Y|+ 1 if nino...ng is odd.

Proof. (i) Obvious.

(ii) Suppose that nins...ng is even. Then 3k € (d) such that ny, is even. Set
Ar = {V(ilyiz»-<<7id) | V(ilﬂ'z,--wid) € V"17n27--~7nd and i; =1, Vs € <d> - {k} }

Therefore,

Ap :{V(1,1,...,1) (i, = 1), V(1,1,.A.,1,2,1,...,1) (ir, = 2)3"'7‘/(1,1,..4,1,71;6,1,.4.,1) (i = nk)}
ng

The set Ay has ny elements (vertices), %= of them belong to X and the other

ng
2
belong to Y’ (V(1,1 ..... n€eX (see (i), Vat,.a21,...0 €Y, s Var, im0 €Y
(because ny, is even)).
Further, we denote elements of (d) — {k} by k1, ko, ..., ka—1. Suppose that k; < ko <
e <kgo1 (k1 =1ifk#£1k =2if k=1, etc.). Set
Ak ey k.o ke = {‘/(il,ig,,..,id) } Viir,iz,oyia) € Viu,na,...ona

and ig =1, Vs € (d) — {k, k1, ko, ...,k }},
Vt € (d —1). The condition “is =1, Vs € (d) — {k, k1, k2, ..., k:}” from the definition
of Ak ky ks, k, vanishes when ¢t = d — 1, 80, Ak gy ko, by 1 = Vnina,...ng- 1t follows
that

Akl kg, ke = U {V(il,ig,..,,id) ’ Viir,iz,osia) € Vama,..onas Uy = 0,
b6<nkt>

and is =1, Vs € <d> — {k,kl, ko, ,k’t}} =
= Ap ki ko, keey U U {V(zlzzzd) ’ Viirsin,.oia) € Varna,onas ik, = b,
be (ny, ) —{1}
and ig =1, Vs € (d) — {k, k1, k2, ..., Kt} },
YVt € <d — 1> (Ak:,k17kf27---,k'f, = Ak,kl,kQ,...,kt,1 if ng, = 1 (t S <d — 1>)) and
| Ak e ookt | = [{Virizssia) | Viirsinssia) € Virinosonas ik = b,
and iy =1, Vs € (d) — {k, k1, ko, . e}
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Vte(d—1),Vbe (ng,)— {1} (k1, ko, ..., kt—1 vanish when t = 1).
The set Aj, has ngpny, elements (ngng, is even), DEZRL of them belong to X and

2

the other nk;’” belong to Y because Ay, = Ar U... and |Ay| = ... (see above), and
Aj, has 7 elements belonging to X and %+ elements belonging to Y.
Proceeding in this way for Ay g, ks, for Ak, ks ksy - fO8 Ak ki ks, kg s, We obtain

that the set Vg no,ny (Akkiks,kas = Voine,..ng) 188 Npng, ...ng,_, elements,

% of them belong to X and the other % belong to Y. Therefore,

ning...Nnyq
2

(iii) Suppose that nins...ng is odd. In this case, ny, no, ..., ng are odd numbers. We
can use the above sets Ay and Ag g, ks, k., t € (d — 1), with only the difference that
k is chosen from (d) by us (here, ny is odd). Further, we use the above sets and take
k=1.

The set A; has ny elements, L%IJ + 1 of them belong to X and the other L%J belong
toY (Vi) € AiNX; [z =max{z|z€Zand z <x},Vr € R). It follows that
the set A; o has niny elements, V“Q”zj + 1 of them belong to X and the other L"l—z"?J
belong to Y. Proceeding in this way for Ay o3, for Ay 234, ..., for A1 2 4, we obtain
that Vi, ns...ma (A12,..d = Vnyns,...ny) Das ning...ng elements, LLQMJ +1 of

them belong to X and the other LWJ belong to Y. Therefore,

Lmng...ndJ Tllng...ndJ
2

(X =1Y]=

x| = +1>|v]=|

Since | X| > |Y| (by Theorem 6.1), we take I = X, and have

p=1I=|X|= 2 if nino...ng is even,
| mlzend | 41 if nyng...ng is odd.

Therefore, for Step 2, using the Gibbs sampler in a generalized sense from Theorem
1.4, we have an exact sampling method for the Potts model on Gy, n,,....n, having,
see Theorem 2.4, ™72=1d 4 1 steps (substeps of Step 2) if niny...ng is even and
LWJ + 2 steps if nyng...ng is odd — an exact sampling method for half or

half+1 vertices of the grid graph.

It remains to find, if any, a fast exact sampling method for the Potts model on
Gni na,...nq- For the Potts model on G,,, , we have a fast exact sampling method having
ny steps — ny vertices, ny steps, one-to-one correspondence — leaving the inversion
of a bijective function aside, see [16].

At present we know that our sampling method for the Potts model with Steps 1
and 2 is — using Theorem 1.4, ... — fast and exact in some cases, such as, when the
graph is KCa ,, n > 2 (the more general case when the graph is /C,, ,,, the complete
bipartite graph, 1 < m < n, could be analyzed), because, in this case, we have good
things both for Step 1 and for Step 2; for Step 1, P (S(OJ-)) =P (S(o,k)) , Vi, k € (h)
(hint: use bijective functions and @; due these equations, 7 is a nice probability
distribution, it is an almost uniform probability distribution, so, the computation
of probabilities P (S(O,i)) , i € (h), is not necessary (see, e.g., [19, Comment 4] for
the almost uniform probability distributions...)), P (5(070)) can easy be computed,
P (5(070)) + hP (5(0,1)) = 1 (we can use this equation if we want to compute the
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probabilities P (S(O,i))v i € (h)), Z is computed in Example 2.1 (for Ky ,_2), and
we can take I' X IV = ({S(o,o)} , {S(O’l),S(O’Q), ---,S(o,h)}) such that 7 be a I'-wavy
probability distribution — and we can use the sampling method from Section 1 (not
from this section) for the I'-wavy probability distribution 7 —, we can take I' = I
when h is not too large, considering, in this latter case, that 7 is a trivial wavy
probability distribution on (the subset) {5(071), 500,2)5 S(Oﬁ)} (7 is a trivial wavy
probability distribution on {S(0)} (by convention)) while, as to Step 2, using the
Gibbs sampler in a generalized sense (Theorems 1.4 and 2.4), our method has n + 1
steps (n + 1 substeps of Step 2; n — n + 1 is a very good polynomial function (in
n)). For the case when the graph is Ky ,,, see [16] — the fast exact sampling method
from there, which is for the Potts model on K; ,,—1 (we worked with the star graph
with n vertices in [16]), is, in fact, the sampling method from here for the Potts model
on Ky ,—1 using Theorem 1.4, ...

Note that, mathematically speaking — the technology is not taken into account
—, our sampling method for the Potts model depends on 6, h, and (the graph) G.
For the case when the graph is Ky, ., it depends on 6, h, m, and n — the smaller h,
m, and n are, the faster our sampling method is; as to 6, 8" is the quantity with the
greatest exponent we need for Step 1. Note, moreover, that KC,, ,, has no cycles when
m =1 (n > 1) while it has cycles when 2 < m < n (Kg2 = Ga2 = C4), s0, we can
have fast exact sampling both when the graphs have no cycles and when they have
cycles. The graphs which have no cycles are the trees (G,, is a tree, Vn; > 2 ) and
their generalizations, the forests, see [16] for fast exact sampling (and other things)
for the Potts model on these graphs.

What is the fastest exact sampling method we can have (obtain) for the Potts model,
in particular, for the Potts model on Gy, ny... . ny?
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