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Transform Method
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Abstract. In this paper, a mixed high order finite difference scheme-Padé approximation

method is applied to obtain numerical solution of the Riesz space fractional advection-dispersion
equation(RSFADE). This method is based on the high order finite difference scheme that de-

rived from fractional centered difference and Padé approximation method for space and time

integration, respectively. The stability analysis of the proposed method is discussed via theo-
retical matrix analysis. Numerical experiments are presented to confirm the theoretical results

of the proposed method.
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1. Introduction

Fractional partial differential equations have been increasingly attracting interest over
the last two decades because of its demonstrated applications in numerous apparently
diverse and widespread fields of science and engineering, including viscoelasticity,
fluid mechanics [15], finance [24], medical imaging [34], analytical chemistry, frac-
tional multi-polar [13], formulating physical, chemical and biological sciences [16],
and hydrology [25, 26].

Various explanations were offered for fractional-order derivatives and integrals can
be mentioned such as the Riemann-Liouville, Caputo, Grünwald-Letnikov and other
approaches [3, 4, 5]. The Riesz fractional derivative in the article dealing with this
type of derivative which combined on the left and right Riemann-Liouville derivatives
with coefficients with respect to the corresponding order [31]. This type derivative
is showcased in the fractional advection-dispersion equation that is applied to model
the transport of passive tracers carried by fluid flow in a porous medium.

According to importance of subject, a number of mathematicians and researchers
have done theoretical studies in the field of fractional calculus. Abbas and Ragusa
[1] scrutinized the solvability of Langevin equations with two Hadamard fractional
derivatives via Mittag-Leffler functions. Zada and Dayyan [35] studied stability anal-
ysis for a class of implicit fractional differential equation with instantaneous impulses
and Riemann-Liouville fractional integral boundary condition in view of Schafer’s
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fixed point theorem. The regularity properties of solutions of elliptic, parabolic and
ultraparabolic equations of second order with discontinuous coefficients have been
discussed in depth [20]. Al-Khaled [2] obtained approximate solution for of the non-
linear fractional Burger’s equation via sinc-Legendre collocation method. Safdari et
al. [23] applied the second kind Chebyshev wavelet to the numerical solution of the
fractional delay differential equations. Ragusa and Scapellato [21] obtained regularity
results for solutions of partial differential equations of parabolic type. Valizadeh et
al. [30] surveyed optimal feedback control for fractional semilinear integro-differential
equations in an arbitrary Banach space. Review, analyze and solve these equations is
a concern for researchers. To obtain a closed form solution to these problems is not
always possible and in many cases impossible. Therefore, approximate methods must
be used to resolve these issues.

Many researchers have presented algorithmic approaches to solve the Riesz frac-
tional advection-dispersion equations (RFADE). Shen et al. [28] examined funda-
mental solution and numerical solution for the Riesz fractional advection-dispersion
equation and also [27] proposed explicit and implicit difference approximations for
the space-time Riesz-Caputo fractional advection-diffusion equation with initial value
and boundary conditions in a finite domain and by using mathematical induction
proved that the implicit difference approximation is unconditionally stable and con-
vergent, but the explicit difference approximation is conditionally stable and conver-
gent and further the Richardson extrapolation method has been handled to remedy
the shortcomings of this method. Yang et al. [32] considered L2-approximation,
shifted Grünwald approximation and matrix transform methods for fractional partial
differential equations with Riesz space fractional derivatives. Ding and Zhang [11]
applied matrix transform method for Riesz fractional diffusion equation(RFDE) and
RFADE by powering to half-order of fractional derivative of Toeplitz matrix corre-
sponding to the second derivative also [37] used improved matrix transform method
for the Riesz space fractional reaction dispersion equation. Çelik and Duman [6] uti-
lized a mixed fractional centered difference that defined by Ortigueira [17] for the
discreting of the Riesz fractional derivative and Crank-Nicolson method for solving
the fractional diffusion equation with the Riesz fractional derivative. Chen et al.
[7] examined superlinearly convergent algorithms for the two-dimensional space-time
Caputo-Riesz fractional diffusion equation. Popolizio [19] discussed the discretization
of Riesz derivatives by fractional centered difference schemes and described the co-
efficients of this discretization scheme and then obtained the explicit expression of
the resulting discretization matrix. Rahman et al. [22] estimated the RFADE with
respect to the space variable via improved matrix transform method and after [3, 1]
Padé approximation used construct the numerical computation of exponential matrix
in the analytical form of the out coming ordinary differential equation(ODE).

The aim of the current study is to provide a generalized matrix transform method
for solving the Riesz space fractional advection-dispersion equation. In order to, we
consider the following fractional partial differential equations with the Riesz space
fractional derivatives:

∂u(x, t)

∂t
= Kα

∂αu(x, t)

∂|x|α
+Kβ

∂βu(x, t)

∂|x|β
, 0 < x < L, 0 ≤ t ≤ T, (1)
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subject to the initial value and zero Dirichlet boundary conditions given by

u(x, 0) = ψ(x), 0 ≤ x ≤ L, (2)

u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T (3)

where u is a solute concentration, ∂α

∂|x|α for 1 < α ≤ 2 and ∂β

∂|x|β for 0 < β < 1 are

Riesz space fractional operators on a finite domain [0, L] and Kα > 0 and Kβ ≥ 0
represent the dispersion coefficient and the average fluid velocity, respectively.

The layout of this paper is organized as follows: In Section 2, preliminaries, basic
definitions, essential theorems and lemmas are presented that need in the proceeding
of this paper, Section 3 contains the introduce of numerical method via Padé approx-
imate and fractional centered scheme in novel form, In section 4, the stability of the
proposed method for the Riesz fractional advection-dispersion equation is discussed,
and the accuracy and efficiency of the iterative scheme are checked by numerical
experiments in Sections 5. Finally, we end up this paper by conclusion in Section 6.

2. Preliminaries

In this section, we consider some important definitions and lemmas that will be nec-
essary for encouraging process the aims of paper.

Definition 2.1. The left- and right-sided Riemann-Liouville fractional derivatives
of order ν of f(x) that be a continuous and necessary function on [0, L] are defined
respectively as [18],

0D
ν
xf(x) =

1

Γ(n− ν)

dn

dxn

∫ x

0

f(ξ)

(x− ξ)ν−n+1
dξ, (4)

xD
ν
Lf(x) =

(−1)n

Γ(n− ν)

dn

dxn

∫ L

x

f(ξ)

(ξ − x)ν−n+1
dξ, (5)

where n− 1 < ν ≤ n, n ∈ N and n is the smallest integer greater than ν.

Definition 2.2. The Riesz fractional derivatives of order ν of f(x) on a finite interval
[0, L] is defined as [12],

dνf(x)

d|x|ν
= −cν{0Dν

xf(x) +x D
ν
Lf(x)}, (6)

where cν = 1
2cos( πν

2 ) , n− 1 < ν ≤ n and ν 6= 1.

Here we consider the approximation with step h of the Riesz fractional derivative
that obtained by calculating the appropriate coefficients for the fractional central
difference by applying Fourier transform [9]

dνu(x)

d|x|ν
= −h−ν

∑
s∈Z

ϑ(ν)
s,pH(ν)

s u(x) +O(hp), n− 1 < ν ≤ n and ν 6= 1, (7)

where

H(ν)
s u(x) =

∞∑
k=−∞

ω
(ν)
k u(x− (k + s)h), (8)
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and all coefficients ω
(ν)
k are defined by

ω
(ν)
k =

(−1)kΓ(ν + 1)

Γ(ν2 − k + 1)Γ(ν2 + k + 1)
, k = 0,±1,±2, ..., (9)

We survey the properties of the coefficients ω
(ν)
k that are appeared at the approximate

formula for Riesz fractional derivatives.

Lemma 2.1. [6]The coefficients ω
(ν)
k for k ∈ Z in (9) satisfy:

(a) ω
(ν)
0 ≥ 0, ω

(ν)
−k = ω

(ν)
k ≤ 0 for all | k |≥ 1,

(b)
∑∞
k=−∞ ω

(ν)
k = 0,

(c) For any positive integer n and m with n < m, we have
∑n
k=−m+n ω

(ν)
k > 0.

By considering references [8] and [9], the coefficients for various indices p = 2, 4, 6, 8, 10
and 12 are regularly given below
for p = 2,

ϑ
(ν)
0,2 = 1,

for p = 4,

ϑ
(ν)
−1,4 = ϑ

(ν)
1,4 = − ν

24
, ϑ

(ν)
0,4 =

ν

12
+ 1,

for p = 6,

ϑ
(ν)
−2,6 = ϑ

(ν)
2,6 = (

ν

1152
+

11

2880
)ν, ϑ

(ν)
−1,6 = ϑ

(ν)
1,6 = −(

ν

288
+

41

720
)ν,

ϑ
(ν)
0,6 =

ν2

192
+

17ν

160
+ 1

for p = 8,

ϑ
(ν)
−3,8 = ϑ

(ν)
3,8 = −(

ν2

82944
+

11ν

69120
+

191

362880
)ν,

ϑ
(ν)
−2,8 = ϑ

(ν)
2,8 = (

ν2

13824
+

7ν

3840
+

211

30240
)ν,

ϑ
(ν)
−1,8 = ϑ

(ν)
1,8 = −(

5ν2

27648
+

3ν

512
+

7843

120960
)ν, ϑ

(ν)
0,8 =

5ν3

20736
+

29ν2

3456
+

5297ν

45360
+ 1,

for p = 10,

ϑ
(ν)
−4,10 = ϑ

(ν)
4,10 = (

ν3

7962624
+

11ν2

3317760
+

10181ν

348364800
+

2497

29030400
)ν,

ϑ
(ν)
−3,10 = ϑ

(ν)
3,10 = −(

ν3

995328
+

ν2

25920
+

17111ν

43545600
+

1469

1209600
)ν,

ϑ
(ν)
−2,10 = ϑ

(ν)
2,10 = (

7ν3

1990656
+

137ν2

829440
+

32861ν

12441600
+

68119

7257600
)ν,

ϑ
(ν)
−1,10 = ϑ

(ν)
1,10 = −(

7ν3

995328
+

19ν2

51840
+

46631ν

6220800
+

252769

3628800
)ν,

ϑ
(ν)
0,10 =

35ν4

3981312
+

157ν3

331776
+

51941ν2

4976640
+

118829ν

967680
+ 1,
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for p = 12,

ϑ
(ν)
−5,12 = ϑ

(ν)
5,12 = −(

ν4

955514880
+

11ν3

238878720
+

6361ν2

8360755200
+

11693ν

2090188800
+

14797

958003200
)ν,

ϑ
(ν)
−4,12 = ϑ

(ν)
4,12 = (

ν4

95551488
+

7ν3

11943936
+

9133ν2

836075520
+

5563ν

65318400
+

230371

958003200
)ν,

ϑ
(ν)
−3,12 = ϑ

(ν)
3,12 = −(

ν4

21233664
+

49ν3

15925248
+

13529ν2

185794560
+

449171ν

696729600
+

203257

106444800
)ν,

ϑ
(ν)
−2,12 = ϑ

(ν)
2,12 = (

ν4

7962624
+

ν3

110592
+

17869ν2

69672960
+

24041ν

7257600
+

299093

26611200
)ν,

ϑ
(ν)
−1,12 = ϑ

(ν)
1,12 = −(

7ν4

31850496
+

133ν3

7962624
+

20953ν2

39813120
+

431513ν

49766400
+

11639731

159667200
)ν,

ϑ
(ν)
0,12 =

7ν5

26542080
+

203ν4

9953280
+

22061ν3

33177600
+

2303ν2

194400
+

6742753ν

53222400
+ 1,

and the remaining coefficients that are not mentioned, are zero.
Now we provide the features of the new coefficients which are achieved from the

rigorous scrutiny of these coefficients and which are in the general state.

Lemma 2.2. The coefficients ϑ
(ν)
s,p for s ∈ Z and p = 2k, k ∈ N in (7) satisfy:

(a) ϑ
(ν)
0,p ≥ 1, ϑ

(ν)
−s,p = ϑ

(ν)
s,p for all | s |≥ 1,

(b) (−1)sϑ
(ν)
s,p ≥ 0 for all s (alternately being the positive and negative sentences),

(c) | ϑ(ν)
s,p |≥| ϑ(ν)

s+1,p | for each even number p and fix positive integer s,

(d) | ϑ(ν)
s,p |≥| ϑ(ν)

s,p+2 | for each positive number s and fix even number p,

(e)
∑∞
s=−∞ ϑ

(ν)
s,p = 1,

(f) For any positive integer n and m with n < m, we have
∑n
s=−m+n ϑ

(ν)
s,p > 0.

Theorem 2.3. [33] If A is a real symmetric matrix with non-negative diagonal el-
ements which is irreducible and has weak diagonal dominance, then A is positive
definite.

Lemma 2.4. The transformation

ϕ(z) =
120− 60z + 12z2 − z3

120 + 60z + 12z2 + z3

maps the right half of the complex plane onto inner unit disk.

Proof. We assume a > 0 for z = a + ib, i =
√
−1 and because of size of z, we have

a2 + b2 > 0 and also we are able to write by following manner in [10, 22]

48a[600 + 70a2 + (a2 + b2)2] > 0,

to apply a few calculating on recently relation, the outcome is the following inequality

14400(z + z) + 240(z3 + z3) + 1440zz(z + z) + 24(zz)2(z + z) > 0,

then

14400z + 240z3 + 14400z + 1440zz2 + 1440z2z + 24z2z3 + 240z3 + 24z3z2 > 0,

hence

(120−60z+12z2−z3)(120−60z+12z2−z3) < (120+60z+12z2+z3)(120+60z+12z2+z3),



6 A. BORHANIFAR AND S. VALIZADEH

therefore

| 120− 60z + 12z2 − z3

120 + 60z + 12z2 + z3
|< 1,

this shows the prove of the lemma is finished. �

Lemma 2.5. [29] Suppose M is symmetric, then ρ(M) ≤ 1 + C∆t for some non-
negative C is a necessary and sufficient condition for stability of difference scheme

Uk+1 = MUk

with respect to the `2,∆x norm, where ρ(M) denotes the spectral radius of the matrix
M .

3. Numerical scheme for RSFADE

In this section, we will obtain a new high order finite difference scheme for solving
equation (1) based upon matrix transform method.
Here we consider the domain of the problem, which includes space and time direction
and we divide it via spatial and temporal step sizes. Let

xi = ih, i = 0, 1, 2, ...m, tj = kj, j = 0, 1, 2, ..., n,

where h = L
m and k = T

n are space and time steps, respectively. The values of the
finite difference approximations of u(x, t) at the grid are denoted by

ui,j = u(xi, tj). (10)

Assume that u(x, t) is sufficiently smooth function and replace the fractional partial
derivatives stated in (1) with respect to x by the approximated formula (7)

∂αu(xi, t)

∂|x|α
= −h−α

∞∑
s=−∞

ϑ(α)
s,p

∞∑
k=−∞

ω
(α)
k u(xi−k−s, t) +O(hp), 1 < α ≤ 2, (11)

and

∂βu(xi, t)

∂|x|β
= −h−β

∞∑
s=−∞

ϑ(β)
s,p

∞∑
k=−∞

ω
(β)
k u(xi−k−s, t) +O(hp), 0 < β < 1, (12)

Let ui(t) = u(xi, t), for i = 1, 2, ...,m− 1, then the RSFADE (1) can be cast into the
following system of time ordinary differential equations by considering formulas (11)
and (12) based on mesh sizes in spatial direction.

∂ui(t)

∂t
= −(

i∑
s=−m+i

ϑ(α)
s,p

i∑
k=−m+i

Kαω(α)
k

hα
+

i∑
s=−m+i

ϑ(β)
s,p

i∑
k=−m+i

Kβω(β)
k

hβ
)ui−k−s(t), (13)

Denote

U(t) = [u1(t), u2(t), ..., um−1(t)]T ,

U0 = U(0) = [u1(0), u2(0), ..., um−1(0)]T ,

then the equation (13) can be rewritten as the following matrix form:{
dU(t)
dt = −(A(α)M (α) +A(β)M (β))U(t),

U(0) = U0.
(14)



HIGH ORDER NUMERICAL TREATMENT OF THE RSFADE 7

in which matrices A(α), M (α), A(β) and M (β) are defined the following form

A
(ν)
i,j = ϑ

(ν)
|i−j|,p, for ν = α, β, and i, j = 1, 2, ...,m− 1,

M
(ν)
i,j = Kνh−νω(ν)

|i−j|, for ν = α, β, and i, j = 1, 2, ...,m− 1.

With respect to Lemma 2.1 and Lemma 2.2, these follow that the diagonal entry
of all four matrices are positive and also these matrix are symmetric and strictly
diagonally dominant. Therefore, these matrices are symmetric positive definite and
so we’ll conclude the matrix A(α)M (α)+A(β)M (β) is also a symmetric positive definite
matrix.

Let S = A(α)M (α) + A(β)M (β). Due to being symmetric positive definite of the
Matrix S, the exact solution of the equation (14) can be written as follow

U(t) = exp(−tS)U0,

By rewriting the exact answer for the time steps tj and tj+1, the following formulas
are obtained

U(tj+1) = exp(−(j + 1)kS)U0,

and

U(tj) = exp(−(j)kS)U0,

Thus, we can obtain a recurrence formula for solving equation (14) by emerging the
two last formulas

U(tj+1) = exp(−kS)U(tj). (15)

Now we approximate exp(−z) by using [3, 3] Padé approximation [36]

exp(−z) =
120− 60z + 12z2 − z3

120 + 60z + 12z2 + z3
+O(z7). (16)

equation (15) takes the following form with the aid of above cited Padé approximation
scheme

U(tj+1) = (120 + 60kS + 12(kS)2 + (kS)3)−1(120− 60kS + 12(kS)2 − (kS)3)U(tj). (17)

According to Formula (16), the local error in each time step is of the order of seven.
Therefore, the total error for time calculations (for n time steps) will be of the order
of six.

4. Stability analysis for numerical method

In this section, we prove the unconditional stability of the numerical method.

Theorem 4.1. The iterative scheme defined by (17) to solve the RFADE (1)-(3) is
unconditionally stable.

Proof. According to the being symmetric positive definite of matrix S and positivity
of the diagonal entry of the matrix S, we consequence based on Theorem 2.3 that all
of the eigenvalues of matrix S have positive real parts. Let

M = (120 + 60kS + 12(kS)2 + (kS)3)−1(120− 60kS + 12(kS)2 − (kS)3),



8 A. BORHANIFAR AND S. VALIZADEH

The spectral radius of the matrix M is given by

ρ(M) = max | µi |, i = 1, 2, ...,m− 1,

where µi are the eigenvalues of the matrix

(120 + 60kS + 12(kS)2 + (kS)3)−1(120− 60kS + 12(kS)2 − (kS)3).

It is easy to conclude that the eigenvalues of the matrix [14]

(120 + 60kS + 12(kS)2 + (kS)3)−1(120− 60kS + 12(kS)2 − (kS)3),

are given by

µi =
120− 60kλi(S) + 12k2(λi(S))2 − k3(λi(S))3

120 + 60kλi(S) + 12k2(λi(S))2 + k3(λi(S))3
, i = 1, 2, ...,m− 1,

by using the Lemma 2.4 and being positive of the λi(S), we have

| µi |< 1, i = 1, 2, ...,m− 1.

It follows from above mentioned inequality that the spectral radius of matrix M is
smaller than 1. Hence, based on the Lemma 2.5 the iterative scheme (17) is uncondi-
tionally stable. �

5. Numerical results

In order to verify the validity of the theoretical topics mentioned in this article,
the maximum error and the approximate convergence rate are considered for the
following two examples. For this purpose, the necessary formulas have been defined.
We consider L2 norm resembling as the device for error between the analytical solution
and approximate solution showing via e(h, k). The experimental convergence order
in spatial direction Rs(h, k) computed by the formula

Rs(h, k) = log
e(2h, k)

e(h, k)
/log 2, for small values k

and another one in temporal direction Rt(h, k) calculated by the formula

Rt(h, k) = log
e(h, 2k)

e(h, k)
/log 2, for small values h

Example 5.1. Consider the following Riesz space fractional advection-dispersion
equation

∂u(x, t)

∂t
= Kα

∂αu(x, t)

∂|x|α
+Kβ

∂βu(x, t)

∂|x|β
, 0 < x < π, t > 0, (18)

associated with the initial value and zero Dirichlet boundary conditions

u(x, 0) = x2(π − x), 0 < x < π, (19)

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T. (20)

With using separation of variables method, we obtained eigenvalue λn = n and eigen-
function ϕn(x) = sin(nx) for n = 1, 2, ... due to Dirichlet boundary conditions and
hence the analytical solution of equations (18)-(20) would be at following formula:

u(x, t) =

∞∑
n=1

[
8

n3
(−1)n+1 − 4

n3
] sin(nx) exp(−[Kα(n2)

α
2 +Kβ(n2)

β
2 ]t),
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In this example, the approximation formulas (11) and (12) for the p = 6 are used for
the approximation of the Riesz fractional derivative of order α and β, respectively, and
the [3, 3] Padé approximation is presented for the solution of the time ODE obtained
from the previous approximation. Here, Kα = Kβ = 0.25. Table 1. shows the

Table 1. Maximum errors and corresponding rates for solving RS-
FADE (18)-(20) with k = 0.001.

α = 1.8, β = 0.9 α = 1.6, β = 0.7
h Max Error Error Rate Max Error Error Rate

0.10000π 9.10145E − 04 - 8.44135E − 04 -
0.05000π 1.91731E − 05 5.56894 1.83810E − 05 5.52119
0.02500π 3.99604E − 07 5.58437 3.66746E − 07 5.64729
0.01250π 7.83920E − 09 5.67172 7.02208E − 09 5.70674
0.00625π 3.26552E − 11 5.81562 1.26130E − 10 5.79892

magnitude of the maximum error and estimated convergence order, at time t = 1.0,
between the analytical solution and the numerical solution obtained by the proposed
method for solving RSFADE (18)-(20) in which considered different order values such
as α = 1.8, β = 0.9 and α = 1.6, β = 0.7 with halved spatial step sizes and k = 0.001.
Table 1. demonstrates that the convergence rate of error in the spatial direction is
approximately equal to sixth.

Table 2. Maximum errors and corresponding rates for solving RS-
FADE (18)-(20) with h = 0.001π.

α = 1.8, β = 0.9 α = 1.6, β = 0.7
k Max Error Error Rate Max Error Error Rate

0.10000 4.62484E − 05 - 3.52977E − 05 -
0.05000 9.67009E − 07 5.57973 7.59453E − 07 5.53847
0.02500 1.93074E − 08 5.64630 1.54910E − 08 5.61546
0.01250 3.69215E − 10 5.70855 3.10036E − 10 5.64285
0.00625 6.45402E − 12 5.83812 5.65678E − 12 5.77631

Table 2. displays the magnitude of the maximum error and estimated convergence
order, at time t = 1.0, between the analytical solution and the numerical solution
obtained by the proposed method for solving RSFADE (18)-(20), where α and β
pairs are corresponding to two distinct values: α = 1.8, β = 0.9 and α = 1.6, β = 0.7
with halved temporal step sizes and h = 0.001π. Table 2. demonstrates that the
convergence rate of error in the temporal direction is approximately equal to sixth.

Figure 1 presents the comparison of the numerical solution obtained by mixed high
order fractional centered difference scheme with [3, 3] Padé approximation method
and analytical solution with h = π

100 , k = 0.01 for α = 1.7 and β = 0.8. The graph
corresponding to the approximate solution and the analytical solution is overlapping.

Figure 2 displays the approximate solution (Left) and analytical solution (Right)
profiles of RSFADE (18)-(20) over space for 0 < t < 1 when α = 1.6, β = 0.7. Figures
1 and 2, and Tables 1 and 2 illustrate that the numerical experiments are in excellent
agreement with analytical results.
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Figure 1. The comparison of the numerical solution and analytical
solution of RSFADE (18)-(20).

Figure 2. 3D plot of the numerical solution and analytical solution
for RSFADE (18)-(20).

Example 5.2. Consider the following Riesz space fractional advection-dispersion
equation

∂u(x, t)

∂t
= Kα

∂αu(x, t)

∂|x|α
+Kβ

∂βu(x, t)

∂|x|β
, 0 < x < 1, t > 0, (21)

associated with the initial value and zero Dirichlet boundary conditions

u(x, 0) = x(1− x), 0 < x < 1, (22)

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T. (23)
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With using separation of variables method, we reached eigenvalues λn = (2n−1)π and
eigenfunctions ϕn(x) = sin((2n− 1)πx) for n = 1, 2, ... because of Dirichlet boundary
conditions and hence the analytical solution of equations (21)-(23) would be following
the series:

u(x, t) =

=

∞∑
n=1

8

((2n− 1)π)3
sin((2n− 1)πx) exp(−[Kα(((2n− 1)π)2)

α
2 +Kβ(((2n− 1)π)2)

β
2 ]t),

In this example, the approximation formulas (11) and (12) for the p = 4 are applied
for the approximation of the Riesz fractional derivative of order α and β respectively,
and the [3, 3] Padé approximation is considered for the solution of the time ODE
obtained from the previous approximation. Here, Kα = Kβ = 0.25.

Table 3. Maximum errors and corresponding rates for solving RS-
FADE (21)-(23) with k = 0.001.

α = 1.8, β = 0.9 α = 1.7, β = 0.8
h Max Error Error Rate Max Error Error Rate

0.10000 1.39882E − 03 - 1.44234E − 03 -
0.05000 1.11466E − 04 3.64953 1.31934E − 04 3.45052
0.02500 8.44864E − 06 3.72174 1.15595E − 05 3.51267
0.01250 5.74142E − 07 3.87924 8.58159E − 07 3.75169
0.00625 3.76350E − 08 3.93126 5.80712E − 08 3.88535

Table 3. gives details of the maximum error and approximated convergence order,
at time t = 1.0, between the analytical solution and the numerical solution obtained by
the suggested method for solving RSFADE (21)-(23) for different order values α = 1.8,
β = 0.9 and α = 1.7, β = 0.8 with halved spatial step sizes and k = 0.001. Table
3. confirms that the convergence rate of error in the spatial direction is numerically
equal to fourth.

Table 4. Maximum errors and corresponding rates for solving RS-
FADE (21)-(23) with h = 0.001.

α = 1.8, β = 0.9 α = 1.7, β = 0.8
k Max Error Error Rate Max Error Error Rate

0.10000 4.82904E − 04 - 4.66929E − 04 -
0.05000 9.69414E − 06 5.63848 1.03693E − 05 5.49281
0.02500 1.84807E − 07 5.71302 2.04733E − 07 5.66243
0.01250 3.32526E − 09 5.79641 3.93496E − 09 5.70125
0.00625 5.48630E − 11 5.92149 6.87941E − 11 5.83792

Table 4. exhibits the maximum error and experimented convergence rate, at time
t = 1.0, between the analytical solution and the numerical solution obtained by the
proposed method for solving RSFADE (21)-(23), where α and β pairs are correspond-
ing to two distinct values: α = 1.8, β = 0.9 and α = 1.7, β = 0.8 with halved temporal
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Figure 3. The comparison of the numerical solution and analytical
solution of RSFADE (21)-(23).

Figure 4. 3D plot of the numerical solution and analytical solution
for RSFADE (21)-(23).

step sizes and h = 0.001. Table 4. verifies that the convergence rate of error in the
temporal direction is approximately equal to sixth.

Figure 3 depicts the comparison of the numerical solution obtained using mixed
high order fractional centered difference scheme with [3, 3] Padé approximation method
and analytical solution with h = 0.01, k = 0.01 for α = 1.8 and β = 0.9. The approx-
imate solutions obtained by the proposed method are consistent with the analytical
solutions.

Figure 4 displays the approximate solution (Left) and analytical solution (Right)
profiles of RSFADE (21)-(23) over space for 0 < t < 1 when α = 1.7, β = 0.8. Figures



HIGH ORDER NUMERICAL TREATMENT OF THE RSFADE 13

3 and 4, and Tables 3 and 4 exemplify the validity and accuracy of the numerically
proposed method.

6. Conclusion

In this paper, we considered a novel finite difference method based on a fractional
centered difference formula from an arbitrary order for the discretisation of the Riesz
fractional derivatives coupled with a [3, 3] Padé approximation method for time step-
ping strategy for the numerical solution of the Riesz fractional advection-dispersion
equation in a finite domain with an initial value and homogeneous Dirichlet boundary
conditions. It is proved that the proposed method is unconditionally stable in view of
the matrix analysis method. Numerical results obtained from solving the Riesz frac-
tional advection-dispersion equation demonstrates the theoretical results and verify
the efficiency of the proposed method.
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