Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 30(2), 2003, Pages 126-132
ISSN: 1223-6934

Existence of solutions to a class of second order differential
inclusions

VASILE LUPULESCU

ABSTRACT. In this paper we prove a existence result for a second order differential inclusion
2 eF (z,ﬁ) , z(0) = z0, x' (0) = yo,
where F' is an upper semicontinuous, compact valued multifunction, such that F (z,y) C

OV (y), for some convex proper lower semicontinuous function V.
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1. Introduction

The existence of solutions to a Cauchy problem

o' € F(z),2(0) =¢,

where F' is an upper semicontinuous, cyclically monotone multifunction, whose com-
pact values are contained in the subdifferential 0V of a proper convex, lower semi-
continuous function V', was proved by Bressan, Cellina and Colombo([4]). For some
extensions of this result we refer to ([1], [7], [12], [13]).

In this paper we prove a similar existence result for a second order differential
inclusion

2" € F(x,2"),2(0) = z9,2" (0) = yo,
where F'(.,) is an upper semicontinuous, compact valued multifunction, such that
F (z,y) C 9V (y), for some convex proper lower semicontinuous function V.

Second order differential inclusions were studied by many authors, mainly the case

when the right-hand side is convex valued. For some existence results we refer to [3],
8], [9], [11].

2. Preliminaries and statement of the main result

Let R™ be the m-dimensional euclidean space with norm ||.|| and scalar product
(.,.) .For £ € R™ and € > 0 let

Be(z) ={y e R™ : [ly — x| < e}
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be the open ball centered at = and with radius e, and let B, () be its closure. For
x € R™ and for a closed subsets A C R™ we denote by d (z, A) the distance from x
to A given by

d(z,A) = inf {||lz —yll;y € A}.
Let V : R™ — R be a proper lower semicontinuous convex function. The multifunction
OV : R™ — 28" defined by

OV (2) = {€ € R™: V (y) — V() > (. — ), Vy € R™}

is called subdifferential (in the sense of convex analysis) of the function V.
We say that a multifunction F' : R™ — 28" is upper semicontinuous if for every
x €: R™and every € > 0 there exists § > 0 such that

F(y) C F(x)+ B:(0), Vy € Bs ().

For a multifunction F : Q € R*™ — 28" and for any (z¢,0) € Q we consider Cauchy
problem
2" € F(x,2'),2(0) = z0,2" (0) = yo, (1)
under the following assumptions:
(Hy) © C R?™ is an open set and F : Q — 2R™ is an upper semicontinuous compact
valued multifunction;
(Hz) There exists a proper convex and lower semicontinuous function V' : R™ — R
such that
F(z,y) OV (y),V(z,y) € Q. (2)

Definition 2.1. By solution of the problem (1) we mean any absolutely continuous
function x : [0,T] — R™ with absolutely continuous derivative x’' such that x (0) = xo,
2’ (0) = yo and
2 (t) e F(z(t),z (t)), a.e on [0,T].
Our main result is the following:
Theorem 2.1. If F: Q — 28" and V : R™ — R satisfy assumptions (Hy) and (Hy)

then for every (zo,yo) €  there exist T > 0 and x : [0,T] — R™,a solution of the
problem (1) .

3. Proof of the main result

Let (x0,y0) € Q. Since  is open, there exists r > 0 such that the compact set

K := B, (x0,y0) be contained in . Moreover, by the upper semicontinuity of F' in
(Hy) and by Proposition 1.1.3 in [2], the set

F(K):= |J Fl(ay)
(z,y)EK
is compact, hence there exists M > 0 such that

sup{||v| : v € F(z,y), (x,y) € K} < M.

T mi { r r r }
=ming —,4/—, ——— 5.
MV M7 2(llyoll +1)

We shall prove the existence of a solution of the problem (1) defined on the interval
[0,7].

Set
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For each n > 1 natural and for 1 < j < n we set til =1

! =1L 17 = [ti71,¢]] and for
t € I’ we define

i a1 , .
wa(t) = o+ (0 = Bl + 5t = )]

(3)
where 20 = x¢, y0 = g, and, for 0 < j <n —1, and v} € F(zJ,yl),
. . . 2 .
ot =ah+ S+ 3 ()
I )
1=yl + Tof,

We claim that (24,y)) € K for each j € {1,2,...,n}. By the choice of T' one has

T 1.7 1
2z, = woll < - llyg | + 5 () lohll < Tligoll + 5 MT? < r
and

llum = wol| < T llwoll <,
hence the claim is true for j = 1.

We claim that for each j > 1 one has

, . 2 , ;
wd =28 +t0y0 + 1 (D)7 [(25 — 1) vd + (2 — 3) v} + ... +vd)

‘ ‘ ()
J=y0 + Ll + ol + ...+ 0i7].

The statement holds true for j = 0. Assume it holds for j, with 1 < j < n. Then by
(4) one obtains that

A= b+ ()
9+ %yﬁ + %(%)2[(23' D+ (2 - Dol + . i+
+gy2 + (%)[Ug +ol + ool el + Q(Z)zv%
= 20 iyl 4 %(%)2[(2]' + 100 + (25 — 1)l + ...+ 0],
and
yitt =yl + %vﬁl + %(%)21)% =y0 + %[vg + vk + .+l

Therefore the relations in (5) are satisfied for each j,with 1 < j < n and our claim
was proved.

Now, by (5) it follows easily that

j T 1T , .
o —woll < Tl + 5[5~ 1)+ (25— 3) o+ 31 M

iT 1. 4T, 1,
— —M(— T ~MT )
" ||yo|\+2 (n) < ||Z/0||+2 <r
and

. 3T
I~ oll < Z-ar <,

proving that (z,y)) € K := B, (z0,y0) ,for each j, with 1 < j < n.
By (3) we have that

al, () =yl + (t—th)v), il (t) =] € F(x,y)),Vt € I},
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hence
|y, (£)|| < M, Vt € [0,T],

7, (DI < llyoll + 2r, vt € [0, T (6)

[0 I < llzoll + (T +2) 7, ¥t € [0,T]
Moreover, for all te [0,T] we have that

A (1), 1), 1)) graph (1)) < "2 g
Then, by (6) we obtain that (z/),, is bounded in L? ([0,T],R™), (z,),, and (z},), are
bounded in C ([0, T],R™) and equi-Lipschitzian, hence, by Theorem 0.3.4 in [2] there
exist a subsequence (again denoted by) (z,), and an absolutely continuous function
x:[0,T] — R™ such that
(¢) (zp),, converges uniformly to z;
(1) (x},), converges uniformly to ';
(i3i) (x!), converges weakly in L? ([0,7],R™) to 2.

By (Hz) and Theorem 1.4.1 in [2] we get then that

2" (t) € coF (z (), 2’ (t)) C OV (' (1)), ae. in [0,T], ®)

where co stands for the closed convex hull.
By (8) and Lemma 3.3 in [5] we obtain that

d ’ _ " 2
5V @ @) =l" O,
hence,
V(ir’(T))—V(w’(O))=/O 2" (£)]* dt. (9)

On the other hand, since
@y (1) = v, € F(ah,y}) C OV (w, (). Vt € I},
it follows that

n

Vi@, (65) = V(zp(th)) = (o (), @ (87) — 2, (#)

tit i+t 2
=G (t), [ (s)ds) = [ [l ()] dt.

By adding the n inequalities from above, we get

T 2
V (@, (T)) = V (y0) > / et ()] dt,

and passing to the limit for n — co,we obtain

V(@ (T)) - V () > lim sup / e (0))) dt. (10)

n—oo

Therefore, by (9) and (10),

T T
/ o (8)]2 dt > lim sup / et (1) dt (11)
O n—oo O

and, since (7)), converge weakly in L? ([0,7],R™) to z”, by applying Proposition

I11.30 in [6], we obtain that (z]), converge strongly in L? ([0,7],R™) to z”, hence a
subsequence again denoted by (z],), converge pointwise to z”.



130 V. LUPULESCU

Since by (H7) the graph of F is closed and, by (7),
lim d ((zn (t), 2, (), 2, (), graph (F)) = 0,
we obtain that
2" (t) € F(x(t),z' (t)), a.e. on [0,7T].
Since x satisfies obviously the initial conditions, it is a solution of the problem (1).

4. An application

For D C R™ and x € D denote by Tp (x) the Bouligand’s contingent cone of D at
x, defined by
. . d(x+hv,D)
= m. nxr T, Y
Tp(z)={veER ,I}Lrg(ljrif .
Also, Np () is the normal cone of D at x, defined by
Np (z) ={ve R™;(y,v) <0,(V)v e Tp(x)}.

In what follows we consider that D is closed subset such that § € D and 0 ¢ int(D),
where 6 is the zero element of R™.

Suppose that the following condition is satisfied
(H) int (Np (2)) # 0

We set K =Tp (6), Q@ = int (Np (0)), 2 = By (0) x Q and denote by 7k (y) the
projection a best approximation on K from y, defined by

Lemma 4.1. Suppose that (H) is satisfied. Then there exists a convex function
V : R™ — R such that

(L= [lz[]) mx (y) € OV (y), (V)(z,y) € Q.
Proof. By Proposition 2 in [4] there exists a convex function V' such that
i (y) COV(y), (Vy€Q.
We recall (see [4]) that the function V is defined by
V(y) = sup{pu(y);u € K},

= 0}.

where )
puly) = (uy) = 5llull®, y € Q.

Also, we observe that the following assertions are equivalent:

(1) u € 7K (y);
(id) ly —ull < fly —vll, (V)ve K; (12)
(ii1) u(y) = pu(y), (V)v e K.
Let (z,y) € Q by z € F(x,y). Then there exists u € 7w (y) such that z =
(1 = |jz||) u. We have that

Pa-llehu(®) = (1= llz])u y) - % (1 = ll)* flull®
z (= l2l) u,y) = % (L=l [full®

= (wy) — lhull? ~ G ) — 5,
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hence

P—paihu(y) = (1 = [lz[]) eu(y).- (13)
Since u € T (y) then ¢, (y) > ¢, (y), for every v € K, by (13) we have
Pa-lehu(®) —euly) = (1= Illz]) puly) —eul(y)
> (= llzl) eu(y) = euly) = —llzlleu(y),

hence

P—lzlhu(y) — eo(y) = —[lzllen(y) (14)
for every v € K.
Since y € Q = int (Np (6)) we have that

(y,v) <0 for every v € K =Tp (0),

hence )
wu(y) = (y,v) — §HU||2 <0 for every v € K. (15)
By (14) and (15) follows that
P elu(®) > 90(y) for every v € K. (16)

Then (16) and the equivalent assertions in (12) imply that
z=(1—|z|)u e mk (y) C IV(y).

Proposition 4.1. Suppose that (H) is satisfied. Then there exist T > 0 and x(.) :
[0,T] — R™ a solution for the following Cauchy problem

a” € (1= |lzl)) 7k (27), (2(0),27(0)) = (2o, yo) -
Proof. If we define the multifunction F : Q — 28" by
F(x,y) =(1- ||Z‘H)7TK (y)’

then F' is with compact valued and upper semicontinuous and there exists a convex
function V' : R™ — R such that

F(z,y) coV(y), (v)(z,y) €.
Therefore, F' satisfies assumptions (H;), (Hz2) and Proposition is proved. O
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