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Existence of solutions to a class of second order differential
inclusions

Vasile Lupulescu

Abstract. In this paper we prove a existence result for a second order differential inclusion

x′′ ∈ F
(
x, x′) , x (0) = x0, x′ (0) = y0,

where F is an upper semicontinuous, compact valued multifunction, such that F (x, y) ⊂
∂V (y), for some convex proper lower semicontinuous function V .
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1. Introduction

The existence of solutions to a Cauchy problem

x′ ∈ F (x) , x (0) = ξ,

where F is an upper semicontinuous, cyclically monotone multifunction, whose com-
pact values are contained in the subdifferential ∂V of a proper convex, lower semi-
continuous function V , was proved by Bressan, Cellina and Colombo([4]). For some
extensions of this result we refer to ([1], [7], [12], [13]).

In this paper we prove a similar existence result for a second order differential
inclusion

x′′ ∈ F (x, x′) , x (0) = x0, x
′ (0) = y0,

where F (., ) is an upper semicontinuous, compact valued multifunction, such that
F (x, y) ⊂ ∂V (y) , for some convex proper lower semicontinuous function V.

Second order differential inclusions were studied by many authors, mainly the case
when the right-hand side is convex valued. For some existence results we refer to [3],
[8], [9], [11].

2. Preliminaries and statement of the main result

Let R
m be the m-dimensional euclidean space with norm ‖.‖ and scalar product

〈., .〉 .For x ∈ R
m and ε > 0 let

Bε (x) = {y ∈ R
m : ‖y − x‖ < ε}
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be the open ball centered at x and with radius ε, and let Bε (x) be its closure. For
x ∈ R

m and for a closed subsets A ⊂ R
m we denote by d (x,A) the distance from x

to A given by
d (x,A) = inf {‖x − y‖ ; y ∈ A} .

Let V : R
m → R be a proper lower semicontinuous convex function. The multifunction

∂V : R
m → 2R

m

defined by

∂V (x) = {ξ ∈ R
m : V (y) − V (x) ≥ 〈ξ, y − x〉 ,∀y ∈ R

m}
is called subdifferential (in the sense of convex analysis) of the function V.

We say that a multifunction F : R
m → 2R

m

is upper semicontinuous if for every
x ∈: R

mand every ε > 0 there exists δ > 0 such that

F (y) ⊂ F (x) + Bε (0) , ∀y ∈ Bδ (x) .

For a multifunction F : Ω ⊂ R
2m → 2R

m

and for any (x0, y0) ∈ Ω we consider Cauchy
problem

x′′ ∈ F (x, x′) , x (0) = x0, x
′ (0) = y0, (1)

under the following assumptions:
(H1) Ω ⊂ R

2m is an open set and F : Ω → 2R
m

is an upper semicontinuous compact
valued multifunction;

(H2) There exists a proper convex and lower semicontinuous function V : R
m → R

such that
F (x, y) ⊂ ∂V (y) ,∀ (x, y) ∈ Ω. (2)

Definition 2.1. By solution of the problem (1) we mean any absolutely continuous
function x : [0, T ] → R

m with absolutely continuous derivative x′ such that x (0) = x0,
x′ (0) = y0 and

x′′ (t) ∈ F (x (t) , x′ (t)) , a.e. on [0, T ] .

Our main result is the following:

Theorem 2.1. If F : Ω → 2R
m

and V : R
m → R satisfy assumptions (H1) and (H2)

then for every (x0, y0) ∈ Ω there exist T > 0 and x : [0, T ] → R
m,a solution of the

problem (1) .

3. Proof of the main result

Let (x0, y0) ∈ Ω. Since Ω is open, there exists r > 0 such that the compact set
K := Br (x0, y0) be contained in Ω. Moreover, by the upper semicontinuity of F in
(H1) and by Proposition 1.1.3 in [2], the set

F (K) :=
⋃

(x,y)∈K

F (x, y)

is compact, hence there exists M > 0 such that

sup {‖v‖ : v ∈ F (x, y) , (x, y) ∈ K} ≤ M.

Set

T := min
{

r

M
,

√
r

M
,

r

2 (‖y0‖ + 1)

}
.

We shall prove the existence of a solution of the problem (1) defined on the interval
[0, T ] .
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For each n ≥ 1 natural and for 1 ≤ j ≤ n we set tjn := jT
n , Ij

n = [tj−1
n , tjn] and for

t ∈ Ij
n we define

xn (t) = xj
n + (t − tjn)yj

n +
1
2
(t − tjn)2vj

n, (3)

where x0
n = x0, y0

n = x0, and, for 0 ≤ j ≤ n − 1, and vj
n ∈ F (xj

n, yj
n),⎧⎨

⎩
xj+1

n = xj
n + T

n yj
n + 1

2

(
T
n

)2
vj

n

yj+1
n = yj

n + T
n vj

n.

(4)

We claim that (xj
n, yj

n) ∈ K for each j ∈ {1, 2, ..., n} . By the choice of T one has
∥∥x1

n − x0

∥∥ ≤ T

n
‖yn

0 ‖ +
1
2
(
T

n
)2

∥∥v0
n

∥∥ < T ‖y0‖ +
1
2
MT 2 < r

and ∥∥y1
n − y0

∥∥ ≤ T ‖y0‖ < r,

hence the claim is true for j = 1.
We claim that for each j > 1 one has

⎧⎨
⎩

xj
n = x0

n + tjny0
n + 1

2

(
T
n

)2
[(2j − 1) v0

n + (2j − 3) v1
n + ... + vj

n]

yj
n = y0

n + T
n [v0

n + v1
n + ... + vj−1

n ].
(5)

The statement holds true for j = 0. Assume it holds for j, with 1 ≤ j < n. Then by
(4) one obtains that

xj+1
n = xj

n +
T

n
yj

n +
1
2
(
T

n
)2vj

n

= x0
n +

jT

n
y0

n +
1
2
(
T

n
)2[(2j − 1) v0

n + (2j − 1) v1
n + ... + vj−1

n ] +

+
T

n
y0

n + (
T

n
)[v0

n + v1
n + ... + vj−1

n ]vj
n +

1
2
(
T

n
)2vj

n

= x0
n + tj+1

n y0
n +

1
2
(
T

n
)2[(2j + 1) v0

n + (2j − 1) v1
n + ... + vj

n],

and

yj+1
n = yj

n +
T

n
vj

n +
1
2
(
T

n
)2vj

n = y0
n +

T

n
[v0

n + v1
n + ... + vj

n].

Therefore the relations in (5) are satisfied for each j,with 1 ≤ j ≤ n and our claim
was proved.

Now, by (5) it follows easily that

‖xj
n − x0‖ ≤ jT

n
‖yn

0 ‖ +
1
2
(
T

n
)2 [(2j − 1) + (2j − 3) + ... + 3 + 1]M

=
jT

n
‖y0‖ +

1
2
M(

jT

n
)2 < T ‖y0‖ +

1
2
MT 2 < r.

and

‖yj
n − y0‖ ≤ jT

n
M < r,

proving that (xj
n, yj

n) ∈ K := Br (x0, y0) ,for each j, with 1 ≤ j ≤ n.
By (3) we have that

x′
n (t) = yj

n + (t − tjn)vj
n, x′′

n (t) = vj
n ∈ F (xj

n, yj
n),∀t ∈ Ij

n,
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hence ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖x′′
n (t)‖ ≤ M,∀t ∈ [0, T ] ,

‖x′
n (t)‖ ≤ ‖y0‖ + 2r,∀t ∈ [0, T ]

‖xn (t)‖ ≤ ‖x0‖ + (T + 2) r,∀t ∈ [0, T ]

(6)

Moreover, for all t∈ [0, T ] we have that

d ((xn (t) , x′
n (t) , x′′

n (t)) , graph (F )) ≤ r (T + 2) M

n
. (7)

Then, by (6) we obtain that (x′′
n)n is bounded in L2 ([0, T ] , Rm) , (xn)n and (x′

n)n are
bounded in C ([0, T ] , Rm) and equi-Lipschitzian, hence, by Theorem 0.3.4 in [2] there
exist a subsequence (again denoted by) (xn)n and an absolutely continuous function
x : [0, T ] → R

m such that
(i) (xn)n converges uniformly to x;

(ii) (x′
n)n converges uniformly to x′;

(iii) (x′′
n)n converges weakly in L2 ([0, T ] , Rm) to x′′.

By (H2) and Theorem 1.4.1 in [2] we get then that

x′′ (t) ∈ coF (x (t) , x′ (t)) ⊂ ∂V (x′ (t)) , a.e. in [0, T ] , (8)

where co stands for the closed convex hull.
By (8) and Lemma 3.3 in [5] we obtain that

d

dt
V (x′ (t)) = ‖x′′ (t)‖2

,

hence,

V (x′ (T )) − V (x′ (0)) =
∫ T

0

‖x′′ (t)‖2
dt. (9)

On the other hand, since

x′′
n (t) = vj

n ∈ F (xj
n, yj

n) ⊂ ∂V (x
′
n(tjn)),∀t ∈ Ij

n,

it follows that
V (x′

n(tj+1
n )) − V (x′

n(tjn)) ≥ 〈x′′
n (t) , x′

n(tj+1
n ) − x′

n(tjn)〉
= 〈x′′

n (t) ,
∫ tj+1

n

tj
n

x
′′
n (s) ds〉 =

∫ tj+1
n

tj
n

‖x′′ (t)‖2
dt.

By adding the n inequalities from above, we get

V (x′
m (T )) − V (y0) ≥

∫ T

0

‖x′′
n (t)‖2

dt,

and passing to the limit for n → ∞,we obtain

V (x′ (T )) − V (y0) ≥ lim sup
n→∞

∫ T

0

‖x′′
n (t)‖2

dt. (10)

Therefore, by (9) and (10) ,∫ T

0

‖x′′ (t)‖2
dt ≥ lim sup

n→∞

∫ T

0

‖x′′
n (t)‖2

dt (11)

and, since (x′′
n)n converge weakly in L2 ([0, T ] , Rm) to x′′, by applying Proposition

III.30 in [6], we obtain that (x′′
n)n converge strongly in L2 ([0, T ] , Rm) to x′′, hence a

subsequence again denoted by (x′′
n)n converge pointwise to x′′.
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Since by (H1) the graph of F is closed and, by (7) ,

lim
n→∞ d ((xn (t) , x′

n (t) , x′′
n (t)) , graph (F )) = 0,

we obtain that
x′′ (t) ∈ F (x (t) , x′ (t)) , a.e. on [0, T ] .

Since x satisfies obviously the initial conditions, it is a solution of the problem (1) .

4. An application

For D ⊂ Rn and x ∈ D denote by TD (x) the Bouligand’s contingent cone of D at
x, defined by

TD (x) = {v ∈ Rm; lim inf
h→0+

d(x + hv,D)
h

= 0}.
Also, ND (x) is the normal cone of D at x, defined by

ND (x) = {v ∈ Rm; 〈y, v〉 ≤ 0, (∀) v ∈ TD (x)}.
In what follows we consider that D is closed subset such that θ ∈ D and θ /∈ int(D),

where θ is the zero element of Rm.
Suppose that the following condition is satisfied

(H) int (ND (x)) �= ∅
We set K = TD (θ), Q = int (ND (θ)), Ω = B1 (θ) × Q and denote by πK (y) the

projection a best approximation on K from y, defined by

πK (y) = {u ∈ K; d(y, u) = d(y,K)}.
Lemma 4.1. Suppose that (H) is satisfied. Then there exists a convex function
V : Rm → R such that

(1 − ‖x‖) πK (y) ⊂ ∂V (y), (∀) (x, y) ∈ Ω.

Proof. By Proposition 2 in [4] there exists a convex function V such that

πK (y) ⊂ ∂V (y), (∀) y ∈ Q.

We recall (see [4]) that the function V is defined by

V (y) = sup{ϕu(y);u ∈ K},
where

ϕu(y) = 〈u, y〉 − 1
2
‖u‖2, y ∈ Q.

Also, we observe that the following assertions are equivalent:
⎧⎨
⎩

(i) u ∈ πK (y) ;
(ii) ‖y − u‖ ≤ ‖y − v‖, (∀) v ∈ K;
(iii) ϕu(y) ≥ ϕv(y), (∀) v ∈ K.

(12)

Let (x, y) ∈ Ω by z ∈ F (x, y). Then there exists u ∈ πK (y) such that z =
(1 − ‖x‖) u. We have that

ϕ(1−‖x‖)u(y) = 〈(1 − ‖x‖) u, y〉 − 1
2

(1 − ‖x‖)2 ‖u‖2

≥ 〈(1 − ‖x‖) u, y〉 − 1
2

(1 − ‖x‖) ‖u‖2

= 〈u, y〉 − 1
2
‖u‖2 − ‖x‖(〈u, y〉 − 1

2
‖u‖2),
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hence
ϕ(1−‖x‖)u(y) ≥ (1 − ‖x‖) ϕu(y). (13)

Since u ∈ πK (y) then ϕu(y) ≥ ϕv(y), for every v ∈ K, by (13) we have

ϕ(1−‖x‖)u(y) − ϕv(y) ≥ (1 − ‖x‖) ϕu(y) − ϕv(y)
≥ (1 − ‖x‖) ϕv(y) − ϕv(y) = −‖x‖ϕv(y),

hence
ϕ(1−‖x‖)u(y) − ϕv(y) ≥ −‖x‖ϕv(y) (14)

for every v ∈ K.
Since y ∈ Q = int (ND (θ)) we have that

〈y, v〉 ≤ 0 for every v ∈ K = TD (θ) ,

hence
ϕv(y) = 〈y, v〉 − 1

2
‖v‖2 ≤ 0 for every v ∈ K. (15)

By (14) and (15) follows that

ϕ(1−‖x‖)u(y) ≥ ϕv(y) for every v ∈ K. (16)

Then (16) and the equivalent assertions in (12) imply that

z = (1 − ‖x‖) u ∈ πK (y) ⊂ ∂V (y).

�

Proposition 4.1. Suppose that (H) is satisfied. Then there exist T > 0 and x(.) :
[0, T ] → Rm a solution for the following Cauchy problem

x′′ ∈ (1 − ‖x‖) πK (x′) , (x(0), x′(0)) = (x0, y0) .

Proof. If we define the multifunction F : Ω → 2Rm

by

F (x, y) = (1 − ‖x‖) πK (y) ,

then F is with compact valued and upper semicontinuous and there exists a convex
function V : Rm → R such that

F (x, y) ⊂ ∂V (y), (∀) (x, y) ∈ Ω.

Therefore, F satisfies assumptions (H1) , (H2) and Proposition is proved. �
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