Existence of solutions to a class of second order differential inclusions

VASILE LUPULESCU

Abstract. In this paper we prove a existence result for a second order differential inclusion

\[x'' \in F(x, x'), \ x(0) = x_0, \ x'(0) = y_0, \]

where \(F \) is an upper semicontinuous, compact valued multifunction, such that \(F(x, y) \subset \partial V(y) \), for some convex proper lower semicontinuous function \(V \).

2000 Mathematics Subject Classification. Primary 34A60; Secondary 49J52.

Key words and phrases. differential inclusions, upper semicontinuous, contingent cone.

1. Introduction

The existence of solutions to a Cauchy problem

\[x' \in F(x), \ x(0) = \xi, \]

where \(F \) is an upper semicontinuous, cyclically monotone multifunction, whose compact values are contained in the subdifferential \(\partial V \) of a proper convex, lower semicontinuous function \(V \), was proved by Bressan, Cellina and Colombo([4]). For some extensions of this result we refer to ([1], [7], [12], [13]).

In this paper we prove a similar existence result for a second order differential inclusion

\[x'' \in F(x, x'), \ x(0) = x_0, \ x'(0) = y_0, \]

where \(F(., .) \) is an upper semicontinuous, compact valued multifunction, such that \(F(x, y) \subset \partial V(y) \), for some convex proper lower semicontinuous function \(V \).

Second order differential inclusions were studied by many authors, mainly the case when the right-hand side is convex valued. For some existence results we refer to [3], [8], [9], [11].

2. Preliminaries and statement of the main result

Let \(\mathbb{R}^m \) be the m-dimensional euclidean space with norm \(\| \cdot \| \) and scalar product \(\langle \cdot, \cdot \rangle \). For \(x \in \mathbb{R}^m \) and \(\varepsilon > 0 \) let

\[B_\varepsilon (x) = \{ y \in \mathbb{R}^m : \| y - x \| < \varepsilon \} \]

Received: 23 September 2003.

This paper was performed while the author visited the Department of Mathematics of Aveiro University, supported by a Post-doctoral fellowship of the Research unit "Mathematics and Applications" (Control Theory Group).

126
be the open ball centered at x and with radius ε, and let $\overline{B}_\varepsilon(x)$ be its closure. For $x \in \mathbb{R}^m$ and for a closed subsets $A \subset \mathbb{R}^m$ we denote by $d(x,A)$ the distance from x to A given by

$$d(x,A) = \inf \{ \|x - y\| : y \in A \}.$$

Let $V : \mathbb{R}^m \to \mathbb{R}$ be a proper lower semicontinuous convex function. The multifunction $\partial V : \mathbb{R}^m \to 2^{\mathbb{R}^m}$ defined by

$$\partial V(x) = \{ \xi \in \mathbb{R}^m : V(y) - V(x) \geq \langle \xi, y-x \rangle, \forall y \in \mathbb{R}^m \}$$

is called subdifferential (in the sense of convex analysis) of the function V.

We say that a multifunction $F : \mathbb{R}^m \to 2^{\mathbb{R}^m}$ is upper semicontinuous if for every $x \in \mathbb{R}^m$ and every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$F(y) \subset F(x) + B_\varepsilon(0), \forall y \in B_\delta(x).$$

For a multifunction $F : \Omega \subset \mathbb{R}^{2m} \to 2^{\mathbb{R}^m}$ and for any $(x_0, y_0) \in \Omega$ we consider Cauchy problem

$$x''(t) \in F(x(t), x'(t)), x(0) = x_0, x'(0) = y_0,$$ \hspace{1cm} (1)

under the following assumptions:

(H_1) $\Omega \subset \mathbb{R}^{2m}$ is an open set and $F : \Omega \to 2^{\mathbb{R}^m}$ is an upper semicontinuous compact valued multifunction;

(H_2) There exists a proper convex and lower semicontinuous function $V : \mathbb{R}^m \to \mathbb{R}$ such that

$$F(x, y) \subset \partial V(y), \forall (x, y) \in \Omega.$$ \hspace{1cm} (2)

Definition 2.1. By solution of the problem (1) we mean any absolutely continuous function $x : [0, T] \to \mathbb{R}^m$ with absolutely continuous derivative x' such that $x(0) = x_0$, $x'(0) = y_0$ and

$$x''(t) \in F(x(t), x'(t)), \text{ a.e. on } [0, T].$$

Our main result is the following:

Theorem 2.1. If $F : \Omega \to 2^{\mathbb{R}^m}$ and $V : \mathbb{R}^m \to \mathbb{R}$ satisfy assumptions (H_1) and (H_2) then for every $(x_0, y_0) \in \Omega$ there exist $T > 0$ and $x : [0, T] \to \mathbb{R}^m$, a solution of the problem (1).

3. Proof of the main result

Let $(x_0, y_0) \in \Omega$. Since Ω is open, there exists $r > 0$ such that the compact set $K := \overline{B}_r(x_0, y_0)$ be contained in Ω. Moreover, by the upper semicontinuity of F in (H_1) and by Proposition 1.1.3 in [2], the set

$$F(K) := \bigcup_{(x,y) \in K} F(x,y)$$

is compact, hence there exists $M > 0$ such that

$$\sup \{ \|v\| : v \in F(x,y), (x,y) \in K \} \leq M.$$

Set

$$T := \min \left\{ r \sqrt{\frac{r}{2M}}, \frac{r}{2(\|y_0\| + 1)} \right\}.$$

We shall prove the existence of a solution of the problem (1) defined on the interval $[0, T]$.

For each \(n \geq 1 \) natural and for \(1 \leq j \leq n \) we set \(t_j^i := \frac{jT}{n}, \quad I_j^i := [t_j^{i-1}, t_j^i] \) and for \(t \in I_j^i \) we define
\[
x_n(t) = x_n^j + (t - t_j^i) y_n^i + \frac{1}{2} (t - t_j^i)^2 v_n^i,
\]
where \(x_n^0 = x_0, \quad y_n^0 = x_0 \), and, for \(0 \leq j \leq n - 1 \), and \(v_n^i \in F(x_n^j, y_n^j) \),
\[
\begin{cases}
x_n^{j+1} = x_n^j + \frac{T}{n} y_n^j + \frac{1}{2} \left(\frac{T}{n} \right)^2 v_n^j \\
y_n^{j+1} = y_n^j + \frac{T}{n} v_n^j.
\end{cases}
\]

We claim that \((x_n^j, y_n^j) \in K\) for each \(j \in \{1, 2, ..., n\} \). By the choice of \(T \) one has
\[
\|x_n^1 - x_0\| \leq \frac{T}{n} \|y_0^0\| + \frac{1}{2} \left(\frac{T}{n} \right)^2 \|v_0^0\| < T \|y_0\| + \frac{1}{2} MT^2 < r
\]
and
\[
\|y_n^1 - y_0\| \leq T \|y_0\| < r,
\]
hence the claim is true for \(j = 1 \).

We claim that for each \(j > 1 \) one has
\[
\begin{cases}
x_n^j = x_n^{j-1} + t_j^i y_n^0 + \frac{1}{2} \left(\frac{T}{n} \right)^2 [(2j - 1) v_n^0 + (2j - 3) v_n^1 + ... + v_n^{j-1}]
\\y_n^j = y_n^{j-1} + \frac{T}{n} [v_n^0 + v_n^1 + ... + v_n^{j-1}] + v_n^j.
\end{cases}
\]
The statement holds true for \(j = 0 \). Assume it holds for \(j \), with \(1 \leq j < n \). Then by (4) one obtains that
\[
\begin{align*}
x_n^{j+1} &= x_n^j + \frac{T}{n} y_n^j + \frac{1}{2} \left(\frac{T}{n} \right)^2 v_n^j \\
&= x_n^0 + jT n y_n^0 + \frac{1}{2} \left(\frac{T}{n} \right)^2 [(2j - 1) v_n^0 + (2j - 3) v_n^1 + ... + v_n^{j-1}] + \\
&\quad + \frac{T}{n} y_n^0 + \left(\frac{T}{n} \right)[v_n^0 + v_n^1 + ... + v_n^{j-1}] v_n^j + \frac{1}{2} \left(\frac{T}{n} \right)^2 v_n^j \\
&= x_n^0 + jT n y_n^0 + \frac{1}{2} \left(\frac{T}{n} \right)^2 [(2j + 1) v_n^0 + (2j - 1) v_n^1 + ... + v_n^{j}] \\
\end{align*}
\]
and
\[
y_n^{j+1} = y_n^j + \frac{T}{n} [v_n^0 + v_n^1 + ... + v_n^j].
\]
Therefore the relations in (5) are satisfied for each \(j \), with \(1 \leq j \leq n \) and our claim was proved.

Now, by (5) it follows easily that
\[
\|x_n^j - x_0\| \leq \frac{jT}{n} \|y_0^0\| + \frac{1}{2} \left(\frac{T}{n} \right)^2 [(2j - 1) + (2j - 3) + ... + 3 + 1] M
\]
\[
= \frac{jT}{n} \|y_0\| + \frac{1}{2} M (\frac{jT}{n})^2 < T \|y_0\| + \frac{1}{2} MT^2 < r.
\]
and
\[
\|y_n^j - y_0\| \leq \frac{jT}{n} M < r,
\]
proving that \((x_n^j, y_n^j) \in K := B_r (x_0, y_0), \) for each \(j \), with \(1 \leq j \leq n \).

By (3) we have that
\[
x_n^j(t) = y_n^j + (t-j^i) v_n^j, \quad x_n^m(t) = v_n^j \in F(x_n^j, y_n^j), \forall t \in I_j^i.
\]
Therefore, by (9) and (10) and passing to the limit for \(n \to \infty \), we obtain that \((x_n')_n \) converge pointwise to \(x' \). However, since \((x_n'')_n \) are bounded in \(L^2([0,T],\mathbb{R}^m) \) and equi-Lipschitzian, hence, by Theorem 0.3.4 in [2] there exist a subsequence (again denoted by) \((x_n')_n \) and an absolutely continuous function \(x : [0,T] \to \mathbb{R}^m \) such that

(i) \((x_n')_n \) converges uniformly to \(x \);
(ii) \((x_n'')_n \) converges uniformly to \(x'' \);
(iii) \((x_n''')_n \) converges weakly in \(L^2([0,T],\mathbb{R}^m) \) to \(x''' \).

By (11) and Theorem 1.4.1 in [2] we get then that

\[
x''(t) \in \text{co} F(x'(t),x'(t)) \subseteq \partial V(x'(t)), \text{ a.e. in } [0,T],
\]

where \(\text{co} \) stands for the closed convex hull.

By (8) and Lemma 3.3 in [5] we obtain that

\[
\frac{d}{dt} V(x'(t)) = \|x''(t)\|^2,
\]

hence,

\[
V(x'(T)) - V(x'(0)) = \int_0^T \|x''(t)\|^2 dt.
\]

On the other hand, since

\[
x_n'(t) = v_n(t) \in F(x_n',y_n') \subseteq \partial V(x_n'(t_n^j)), \forall t \in I_n^j,
\]

it follows that

\[
V(x_n'(t_{n+1}^j)) - V(x_n'(t_{n}^j)) \geq \langle x_n''(t_{n}^j), x_n'(t_{n+1}^j) - x_n'(t_{n}^j) \rangle
\]

\[
= \langle x_n''(t_n^j), \int_{t_n^j}^{t_{n+1}^j} x_n(s) ds \rangle = \int_{t_n^j}^{t_{n+1}^j} \|x''(t_n^j)\|^2 dt.
\]

By adding the \(n \) inequalities from above, we get

\[
V(x_n'(T)) - V(y_0) \geq \int_0^T \|x''(t_n^j)\|^2 dt,
\]

and passing to the limit for \(n \to \infty \), we obtain

\[
V(x'(T)) - V(y_0) \geq \limsup_{n \to \infty} \int_0^T \|x''(t_n^j)\|^2 dt.
\]

Therefore, by (9) and (10),

\[
\int_0^T \|x''(t)\|^2 dt \geq \limsup_{n \to \infty} \int_0^T \|x''(t_n^j)\|^2 dt
\]

and, since \((x''')_n \) converge weakly in \(L^2([0,T],\mathbb{R}^m) \) to \(x''' \), by applying Proposition III.30 in [6], we obtain that \((x''')_n \) converge strongly in \(L^2([0,T],\mathbb{R}^m) \) to \(x''' \), hence a subsequence again denoted by \((x''')_n \) converge pointwise to \(x''' \).
Since by \((H_1)\) the graph of \(F\) is closed and, by \((7)\),
\[
\lim_{n \to \infty} d((x_n(t), x'_n(t), x''_n(t)), graph(F)) = 0,
\]
we obtain that
\[
x''(t) \in F(x(t), x'(t)), \text{ a.e. on } [0,T].
\]
Since \(x\) satisfies obviously the initial conditions, it is a solution of the problem \((1)\).

4. An application

For \(D \subset R^n\) and \(x \in D\) denote by \(T_D(x)\) the Bouligand’s contingent cone of \(D\) at \(x\), defined by
\[
T_D(x) = \{ v \in R^n; \liminf_{h \to 0} \frac{d(x + hv, D)}{h} = 0 \}.
\]
Also, \(N_D(x)\) is the normal cone of \(D\) at \(x\), defined by
\[
N_D(x) = \{ v \in R^n; \langle y, v \rangle \leq 0, (\forall) v \in T_D(x) \}.
\]

In what follows we consider that \(D\) is closed subset such that \(\theta \in D\) and \(\theta \notin int(D)\), where \(\theta\) is the zero element of \(R^n\).

Suppose that the following condition is satisfied \((H)\)
\[
\text{int}(N_D(x)) \neq \emptyset
\]
We set \(K = T_D(\theta), Q = int(N_D(\theta)), \Omega = B_1(\theta) \times Q\) and denote by \(\pi_K(y)\) the projection a best approximation on \(K\) from \(y\), defined by
\[
\pi_K(y) = \{ u \in K; d(y, u) = d(y, K) \}.
\]

Lemma 4.1. Suppose that \((H)\) is satisfied. Then there exists a convex function \(V: R^n \to R\) such that
\[
(1 - ||x||) \pi_K(y) \subset \partial V(y), \quad (\forall) (x, y) \in \Omega.
\]

Proof. By Proposition 2 in [4] there exists a convex function \(V\) such that
\[
\pi_K(y) \subset \partial V(y), \quad (\forall) y \in Q.
\]

We recall (see [4]) that the function \(V\) is defined by
\[
V(y) = \sup \{ \varphi_u(y); u \in K \},
\]
where
\[
\varphi_u(y) = \langle u, y \rangle - \frac{1}{2} ||u||^2, \quad y \in Q.
\]

Also, we observe that the following assertions are equivalent:
\[
\begin{align*}
(i) & \quad u \in \pi_K(y); \\
(ii) & \quad ||y - u|| \leq ||y - v||, \quad (\forall) v \in K; \\
(iii) & \quad \varphi_u(y) \geq \varphi_v(y), \quad (\forall) v \in K.
\end{align*}
\]

Let \((x, y) \in \Omega\) by \(z \in F(x, y)\). Then there exists \(u \in \pi_K(y)\) such that \(z = (1 - ||x||)u\). We have that
\[
\varphi_{(1-||x||)u}(y) = \langle (1 - ||x||)u, y \rangle - \frac{1}{2} (1 - ||x||)^2 ||u||^2 \\
\geq \langle (1 - ||x||)u, y \rangle - \frac{1}{2} (1 - ||x||) ||u||^2 \\
= \langle u, y \rangle - \frac{1}{2} ||u||^2 - ||x||((u, y) - \frac{1}{2} ||u||^2),
\]
hence
\[\varphi(1-\|x\|)u(y) \geq (1-\|x\|)\varphi_u(y). \] \hspace{1cm} (13)

Since \(u \in \pi_K(y) \) then \(\varphi_u(y) \geq \varphi_v(y) \), for every \(v \in K \), by (13) we have
\[\varphi(1-\|x\|)u(y) = \varphi_u(y) \geq (1-\|x\|)\varphi_u(y) - \varphi_v(y) \geq (1-\|x\|)\varphi_u(y) - \varphi_v(y) = -\|x\|\varphi_v(y), \]
hence
\[\varphi(1-\|x\|)u(y) \geq -\|x\|\varphi_v(y) \] \hspace{1cm} (14)
for every \(v \in K \).

Since \(y \in Q = \text{int}(N_D(\theta)) \) we have that
\[\langle y, v \rangle \leq 0 \] \hspace{1cm} (15)
for every \(v \in K \).

By (14) and (15) follows that
\[\varphi(1-\|x\|)u(y) \geq \varphi_v(y) \] \hspace{1cm} (16)
for every \(v \in K \).

Proposition 4.1. Suppose that \((H)\) is satisfied. Then there exist \(T > 0 \) and \(x(.) : [0, T] \to \mathbb{R}^m \) a solution for the following Cauchy problem
\[x'' \in (1-\|x\|)\pi_K(x'), \quad (x(0), x'(0)) = (x_0, y_0). \]

Proof. If we define the multifunction \(F : \Omega \to 2^{\mathbb{R}^m} \) by
\[F(x, y) = (1-\|x\|)\pi_K(y), \]
then \(F \) is with compact valued and upper semicontinuous and there exists a convex function \(V : \mathbb{R}^m \to \mathbb{R} \) such that
\[F(x, y) \subset \partial V(y), \quad \forall (x, y) \in \Omega. \]

Therefore, \(F \) satisfies assumptions \((H_1), (H_2)\) and Proposition is proved. \(\square \)

References

(Vasile Lupulescu) Universitatea ”Constantin Brâncusi”
Bulevardul Republicii Nr.1,
1400 Târgu-Jiu, Romania

E-mail address: vasile@mail.utgjiu.ro