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Kronecker product approximation for the total variation
regularization in image restoration
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Abstract. In this paper, we propose a new algorithm to restore blurred and noisy images

based on the total variation regularization, where the discrete associated Euler-Lagrange prob-

lem is solved by exploiting the structure of the matrices and transforming the initial problem
to a generalized Sylvester linear matrix equation by using a special Kronecker product ap-

proximation. Afterwards, global Krylov subspace methods are used to solve the linear matrix

equation. Numerical experiments are given to illustrate the effectiveness of the proposed
method.
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1. Introduction

The problem of image restoration consists in obtaining a true image from an observed
and degraded image by blur and additive noise which is assumed to be white and
Gaussian. The noisy and blurred image problem is modeled by

z = Ku + n, (1)

here, K is a known blur matrix, n is an additive Gaussian white noise, u and z are
vectors representing the true image and the degraded image, respectively.

In general the blurring matrix K is ill-conditioned, then the problem of image
restoration will be very sensitive to the noise vector. To overcome this problem we
regularize the model (1). One of the most known regularization methods is the total
variation (TV). The total variation based on the model of Rudin-Osher-Fatemi (ROF)
[16] which is one of the well known problem in image restoration due to its effectiveness
to preserve sharp features. The ROF model is given as follows

min
u

(
λ

∫
Ω

√
|∇u|dxdy +

1

2
‖Ku− z‖2L2

)
, (2)

where λ > 0 is the regularization parameter which controls the trade-off between
the smoothness of u and the goodness of fit-to-the-data. ∇u denotes the gradient
operator of u and ∫

Ω

√
|∇u|dxdy, (3)
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is the total variation semi norm [2]. Solving the corresponding partial equation of
(2) is to hard owing to the degeneracy of the diffusion coefficients on edges. For this
reason Chan, Golub and Mulet [6] replaced the norm |∇u| in (3) by the smoothed one√
|∇u|2 + β, where the real positive β is a smaller regularization parameter useful for

avoiding numerical instabilities in the minimization flow and for the differentiabily of
(3) when the ∇u = 0. Therefore the model (2) is replaced by the new one

min
u

(
λ

∫
Ω

√
|∇u|2 + βdxdy +

1

2
‖Ku− z‖2L2

)
. (4)

The functional in (4) is strictly convex, then its global minimizer is unique. The
well-posedness of problem (4) with β −→ 0+ has been discussed in [1] and [14]. The
corresponding Euler-Lagrange equation for (4) is given by:

− λ∇ ·

(
∇u√
|∇u|2 + β

)
+K∗(Ku− z) = 0, (5)

where ∇ · F denotes the divergence operator of an element F and K∗ is the adjoint
operator of K with respect to the L2 inner product. In this article, we will discuss the
denoising and the deblurring problem. We suggest a special Kronecker product ap-
proximation to the corresponding discretization of the problem (5) to yield a Sylvester
matrix equation that will be solved by using the global generalized minimum residual
(Gl-GMRES) method [3, 12]. The outline of this paper is as follows. In Section 2, we
apply the finite difference scheme and transform the problem (5) to a matrix prob-
lem. In Section 3, we review some notations, definitions and results relative to the
Kronecker product approximation and apply this approach to our problem. We show
how some linear matrix equations can be derived from TV regularization and com-
bine our approach with the global-GMRES method to generalized Sylvester matrix
equations. Section 4, is devoted to the choice of a suitable regularization parameters
using the L-curve method. Finally, in Section 5, we give some experimental results
and applications in image restoration to illustrate the effectiveness of our approach.

2. Finite difference scheme and discrete problem

Let us consider the Euler-Lagrange equation (5) with zero Neumann boundary con-
ditions.

− λ∇ ·P +K∗(Ku− z) = 0, (6)

where P denotes the term
∇u√
|∇u|2 + β

defined in (5).

To introduce the discrete problem we assume that the image is given by a matrix
of size n × n i.e., an image u is an element of the matrix space X = Rn×n. This
space X is equipped with the inner product 〈 · 〉X and the associated norm ‖ · ‖X. For
simplification, each pixel of u is denoted by u(x`, yk) or u`,k. We consider the discrete
Neumann boundary conditions:

u0,k = u1,k, un−1,k = un,k, u`,0 = u`,1 and u`,n−1 = u`,n.
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The discrete gradient ∇u is an element of Y = X × X and is given by the forward
differences [5], i.e.,

∇u(x`, yk) =

(
∂xu(x`, yk)
∂yu(x`, yk)

)
, 1 6 `, k 6 n,

where

∂xu(x`, yk) '
{
u`+1,k − u`,k if ` < n

0 if ` = n
, (7)

and

∂yu(x`, yk) '
{
u`,k+1 − u`,k if k < n

0 if k = n
. (8)

Then by considering (7) and (8) for all 0 ≤ ` < n − 1 and 0 ≤ k < n − 1, the
elements of the term P is given by

P`,k '


u`+1,k − u`,k√

(u`+1,k − u`,k)2 + (u`,k+1 − u`,k)2 + β
u`,k+1 − u`,k√

(u`+1,k − u`,k)2 + (u`,k+1 − u`,k)2 + β

 . (9)

In equation (6) we have to compute the divergence of P. Then, taking into account
the Neumann boundary, we introduce also a discrete divergence operator∇· : Y −→ X
such that, for all P ∈ Y and all u ∈ X, we have

〈−∇ ·P,u〉X = 〈P,∇u〉Y ,

where 〈·, ·〉Y denotes the inner product associated to the space Y. Thus, it is easy to

see that, for every P =
(
P (1), P (2)

)
∈ Y, the discrete divergence can be given by (see

[5]):

∇ ·P`,k =


P

(1)
`,k ` = 1

−P (1)
`−1,k ` = n

P
(1)
`,k − P

(1)
`−1,k otherwise

+


P

(2)
`,k k = 1

−P (2)
`,k−1 k = n

P
(2)
`,k − P

(2)
`,k−1 otherwise

After discretization, the equation (6), can be written as

− λA(u) u +KT (Ku− z) = 0, (10)

here, u = (u1,1, . . . , un,1, . . . , u1,n, . . . , un,n)T is the vector u = vec(U) obtained by
stacking the columns of the matrix image U = (ui,j)1≤i,j≤n from left to right. The
matrix A(u) of size n2 × n2 is a block tridiagonal matrix given by,

A(u) =



A1(u) B1(u) O · · · · · · O

B1(u) A2(u) B2(u)
. . .

...

O
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . O
...

. . . Bn−2(u) An−1(u) Bn−1(u)
O · · · · · · O Bn−1(u) An(u)


,
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where the blocks Ak(u) and Bk(u) of size n×n are, respectively, the tridiagonal and
diagonal matrices given by

Ak(u) = Tridiag(ak(u),−dk(u),ak(u)), for 1 ≤ k ≤ n
Bk(u) = Diag(bk(u)) for 1 ≤ k ≤ n− 1,

here, the vectors ak(u), bk(u) and dk(u) are given by

ak(u) = (a1,k(u), · · · , an−1,k(u))T , 1 ≤ k ≤ n
bk(u) = (b1,k(u), · · · , bn,k(u))T , 1 ≤ k ≤ n− 1

dk(u) = (d1,k(u), · · · , dn,k(u))T , 1 ≤ k ≤ n.
The coefficients d`,k(u) are given by

d`,k(u) = a`−1,k(u) + a`,k(u) + b`,k−1(u) + b`,k(u) for 1 ≤ `, k ≤ n.
where the coefficients a`,k(u) and b`,k(u) are defined as follows

a`,k(u) =


0 for ` = 0, 1, n and 1 ≤ k ≤ n

1√
(u`+1,k−u`,k)2+β

for

{
2 ≤ ` ≤ n− 1
k = 1 or k = n

1√
(u`+1,k−u`,k)2+(u`,k+1−u`,k)2+β

for 2 ≤ `, k ≤ n− 1,

and

b`,k(u) =


0 for 1 ≤ ` ≤ n and k = 0, 1, n

1√
(u`,k+1−u`,k)2+β

for

{
` = 1 or ` = n
2 ≤ k ≤ n− 1

1√
(u`+1,k−u`,k)2+(u`,k+1−u`,k)2+β

for 2 ≤ `, k ≤ n− 1.

For the sake of simplicity, when there is no risque of confusion, we write A instead
of A(u).

3. Kronecker product approximation and the associated Sylvester matrix
equation

Let A = (aij) and B = (bij) be n× p and s× q matrices respectively. The Kronecker
product of the matrices A and B is defined as the (ns)× (pq) matrix A⊗B = (aijB).
The vec operator transforms the matrix A to a vector a of size np× 1 by stacking the
columns of A. Some properties of the Kronecker product are given below [13],

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

(A⊗B)−1 = A−1 ⊗B−1, if A,B are nonsingular

vec(AXB) = (BT ⊗A)vec(X)

(A⊗B)T = AT ⊗BT

(A⊗B) is orthogonal whenever A and B are orthogonal. (11)

Let A and B be two matrices in Rn×p, we define the following inner product
〈A,B〉F = tr(AT B) where tr(Z) denotes the trace of the square matrix Z. The

corresponding well known Frobenius norm ‖ . ‖F is given by ‖A‖F =
√
〈A,A〉F and

it is equivalent to the norm ‖ · ‖X. A system of matrices in Rn×p is said to be F-
orthogonal if it is orthogonal with respect to the scalar product 〈. , .〉F .
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The Kronecker product approximation (KPA) problem was first introduced by
Pitsianis and Van Loan [15, 7]. For a matrix A of size m1m2×n1n2, the KPA problem
consists in finding two matrices B and C of size m1 × n1 and m2 × n2, respectively,
that is the Frobenius norm ||A−B⊗C||F is minimal. To this end, the authors define
the matrix B ⊗ C, which is a special rearrangement of A, relative to the blocking
parameters m1,m2, n1 and n2. For our purpose, we use a vectorizing operation which
turns a matrix into a vector by stacking the columns of the matrix. The KPA of A
consists in finding a couple of matrices (Â1, Â2) solution of the following problem

(Â1, Â2) = argmin
A1,A2

||A − A2 ⊗A1||F . (12)

Taking into account of the structure of the matrix A as a block tridiagonal matrix,
the matrices A1 and A2 must be also block tridiagonal matrices. To simplify our

problem, we can assume that the tridiagonal matrix A1 = Â is fix once for all. We
can choose this matrix in the following form

Â = Tridiag(â, d̂, â), (13)

where â = (a1, . . . , an−1)T and d̂ = (d1, . . . , dn)T . Then, we may choose the vectors

â and d̂ as the mean values of the vectors ak(u) and dk(u). Namely,

â =
1

n

n∑
k=1

ak(u), d̂ =
1

n

n∑
k=1

dk(u). (14)

It is also possible to use the quadratic mean square values as following

a` =
1

n

√√√√ n∑
k=1

a2
`,k(u), d` =

1

n

√√√√ n∑
k=1

d2
`,k(u), for 1 ≤ ` ≤ n. (15)

Now, it remain to find a tridiagonal matrix Â2 of the form

Â2 = Ê = Tridiag(b̂, ê, b̂), (16)

which is the solution of the KPA problem (12).

Theorem 3.1. Assume that the first element Â1 of the minimization (12) is given by

the formulations (13) and ((14) or (15)), then the second element Â2 is the tridiagonal
matrix (16) where

êk =
〈Ak, Â〉F
||Â||2F

, 1 ≤ k ≤ n and b̂k =
〈Bk, Â〉F
||Â||2F

, 1 ≤ k ≤ n− 1. (17)

Proof. We set ê = (e1, . . . , en)T and b̂ = (b1, . . . , bn−1)T , using the Kronecker product
properties (11), we can write

||A − Ê ⊗ Â||2F =

n∑
i=1

||Ai − eiÂ||2F + 2

n−1∑
i=1

||Bi − biÂ||2F . (18)

Then, in this case, the solution of the problem (12) is obtained by solving each qua-
dratic form in the right hand side of (18). The solution is reached for ê = (ê, . . . , ên)T
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and b̂ = (̂b1, . . . , b̂n−1)T with

êk =
〈Ak, Â〉F
||Â||2F

, 1 ≤ k ≤ n and b̂k =
〈Bk, Â〉F
||Â||2F

, 1 ≤ k ≤ n− 1.

It follows that the matrix A may be approximated in the mean-square sense by the
Kronecker product

A ≈ Ê ⊗ Â,
where Ê = Tridiag(b̂, ê, b̂). �

In the context of image restoration, when the point spread function (PSF) is sepa-
rable, the blurring matrix K given in (4) is assumed to be decomposed as a Kronecker
product K = K2⊗K1 of two blurring matrices of appropriate sizes. Finally, equation
(10) may be approximated by the following equation

−λ
(
Ê ⊗ Â

)
u +

(
K2 ⊗K1

)T (
K2 ⊗K1

)
u =

(
K2 ⊗K1

)T
z.

According to the properties of the Kronecker product and the fact that the matrix

Ê is symmetric, the last equation is equivalent to the following generalized Sylvester
matrix equation

− λÂ(U)UÊ(U) + (KT
1 K1)U(KT

2 K2) = KT
1 ZK2, (19)

where U and Z are n × m-matrices obtained from u and z respectively by using
the rechape operator [7]. To solve the problem (19), we use the following iterative
algorithm

Algorithm 1: Iterative solution of U .

1 Choose U0;

2 Solve for Uk+1 the matrix equation

−λÂ(Uk)Uk+1Ê(Uk) + (KT
1 K1)Uk+1(KT

2 K2) = KT
1 ZK2;

3 Return Uk+1;

At each iteration k, we have to solve a generalized Sylvester matrix equation:

AUk+1D − CkUk+1Bk = E. (20)

Where

A = KT
1 K1, Bk = Ê(Uk), Ck = λÂ(Uk), D = KT

2 K2 and E = KT
1 ZK2.

To solve the matrix equation (20) we use the global-generalized minimal resid-
ual (global-GMRES) method introduced by Jbilou, Mesaoudi and Sadok in [12], a
good set of references may be found in [3], where A. Bouhamidi and K. Jbilou used
the global-GMRES method which is an orthogonal projection method onto a matrix
Krylov subspace. The following theorem (see [17, 3]) gives existence and uniqueness
conditions of solution to the matrix equation (20).

Theorem 3.2. Let A−λC and B−λD be two regular matrix pencils of order n×n and
p×p, respectively. Let L(A,C) and L(B,D) denote the sets of generalized eigenvalues
for the pairs (A,C) and (B,D) respectively. Then, if

L(A,C) ∩ L(B,D) = ∅,
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the linear matrix equation (20) admits a unique solution.

Let M be the linear operator defined from Rn×n onto Rn×n as

M(U) = AUD − CkUBk.

Therefore, the problem (20) can be written as

M(U) = E.

Let V be any n× p matrix and consider the matrix Krylov subspace Kk(M, V ) =
span{V,M(V ), . . . ,Mk−1(V )} associated to the pair (M, V ). We note that Z ∈
Kk(M, V ) means that

Z =

k−1∑
i=0

αiMi−1V, αi ∈ R, for i = 0, · · · , k − 1,

where Mi(V ) is defined recursively as Mi(V ) = M(Mi−1(V )). Remark also that
the matrix Krylov subspace Kk(M, V ) is a subspace of Rn×p.

The modified global Arnoldi algorithm constructs an F-orthonormal basis V1, V2, . . . , Vk
of the matrix Krylov subspace Kk(M, V ), i.e.,

tr(V Ti Vj) = 0, for i 6= j, i, j = 1, · · · , k, and tr(V Ti Vi) = 1,

where tr(V ) denotes the trace of the matrix V . The algorithm is described as follows

Algorithm 2: Modified Global Arnoldi algorithm

1 Set V1 = V/‖V ‖F ;

2 for j = 1, . . . , k do

3 Ṽ =M(Vj);

4 for i = 1, . . . , j do

5 hi,j = 〈Vi, Ṽ 〉F ;

6 Ṽ = Ṽ − hi,jVi;
7 end

8 hj+1,j = ‖Ṽ ‖F ;

9 Vj+1 = Ṽ /hj+1,j ;

10 end

Hereafter, we need some notations to define the global-GMRES algorithm given
in [3]. For each k, let Vk denotes the n × kp matrix: Vk = [V1, V2, . . . , Vk]. H̃k is
the (k + 1) × k upper Hessenberg matrix whose nonzero entries hi,j are defined by
Algorithm 2.
Starting from an initial guess U0 ∈ Rn×p and the corresponding residual R0 = E −
M(U0), the approximate solution Uk is defined as follows

Uk = U0 + Fk with Fk ∈ Kk(M, R0)

and

Rk = E −M(Uk) ⊥F Kk(M,M(R0))
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where the symbol ⊥F denotes the orthogonality with respect to the scalar product
〈., .〉F . Observe that the residual Rk = E −M(Uk) is obtained by projecting orthog-
onaly R0 onto the matrix Krylov subspace

Kk(M,M(R0)) = span{M (R0),M2(R0), . . . ,Mk(R0)}.
This immediately shows that Uk can be obtained as the solution of the minimization
problem

min
U−U0∈Kk(M,R0)

‖E −M(U)‖F .

For the following theorem, the interest readers may consult [3] for a proof and
further details.

Theorem 3.3. At step k, the approximate solution Uk produced by the global-GMRES
method is given by Uk = U0 + Vk(yk ⊗ Ip), where yk is the solution of the following
small least-squares problem

min
y ∈ Rk

∥∥∥ ‖R0‖F e1 − H̃ky
∥∥∥

2
,

e1 being the first unit vector of Rk+1.

Consequently, The global-GMRES(m) algorithm for solving the generalized Sylvester
matrix equation (20) is summarized as follows

Algorithm 3: Global-GMRES(m) for the generalized Sylvester matrix equa-
tion

1 Input: U0, a tolerance ε and set k = 0, kmax = 100;

2 Compute: R0 = E −AU0D + CU0B, β = ‖R0‖F and V1 = R0/β;

3 while k 6 kmax do
4 Construct the F-orthonormal basis V1, V2, . . . , Vm;

5 by applying algorithm 2 to the pair (M, V1);

6 Determine ym as the solution of the least squares problem:;

7 min
y ∈ Rm

∥∥∥ ‖R0‖F e1 − H̃my
∥∥∥

2
;

8 Compute: Um = U0 + Vm(ym ⊗ Ip) and Rm = E −M(Um);

9 if ||Rm||F < ε then
10 Stop;

11 else
12 U0 = Um, R0 = Rm, β = ‖R0‖F , V1 = R0/β, k = k + 1;

13 end

14 end

Result: Return: U0;

4. Parameter selection method for the total variation problem

The choice of the regularization parameter λ is important for getting good results
in solving problem of Total Variation (4). Various techniques are available for de-
termining such a value (see [9]). In what follows, we describe the L-curve criterion.
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Since the size of the reduced Total Variation regularization problem (4) is small, the
L-curve criterion [8, 11] is a popular method for determining a suitable value of λ.
This method suggests to plot the curve

λ −→
(
‖
(
K2 ⊗K1

)
uλ − z‖2; ‖

(
Ê ⊗ Â

)
uλ‖2

)
. (21)

In this respect, we should solve the minimization problem

min
u∈Rn×n

{
‖
(
K2 ⊗K1

)
u− z‖2 + λ‖

(
Ê ⊗ Â

)
u‖2

}
. (22)

In the process of doing so, we first transform the minimization problem (22) to the
standard form

min
y∈Rn×n

{
‖
(
A2 ⊗A1

)
y− z‖2 + λ‖y‖2

}
. (23)

Let Â = Q1R1 and Ê = Q2R2 be the QR factorization of Â and Ê, respectively,
whereQ1, Q2 are orthogonal matrices and R1, R2 are upper triangular matrices. Using
the KPA properties (11) and the fact that Q1 and Q2 are orthogonal matrices, we
can write

‖
(
Ê ⊗ Â

)
u‖ = ‖(Q2R2 ⊗Q1R1)u‖,

= ‖(Q2 ⊗Q1)(R2 ⊗R1)u‖,
= ‖(R2 ⊗R1)u‖.

By setting

y = (R2 ⊗R1)u,

we have

u = (R2 ⊗R1)−1y,

and therefore,

‖
(
K2 ⊗K1

)
u− z‖ = ‖

(
K2 ⊗K1

)
(R−1

2 ⊗R
−1
1 )y− z‖,

= ‖
((
K2R

−1
2

)
⊗
(
K1R

−1
1

))
y− z‖.

And then, the required standard form (23)

min
y∈Rn×n

{
‖
(
A2 ⊗A1

)
y− z‖2 + λ‖y‖2

}
,

where

A2 = K2R
−1
2 and A1 = K1R

−1
1 .

The corresponding normal equation for this problem takes the form((
A2 ⊗A1

)T (
A2 ⊗A1

)
+ λI

)
y =

(
A2 ⊗A1

)T
z.

Thus, the L-curve in terms of quantities of the minimization (23) becomes the map

λ −→
(
‖
(
A2 ⊗A1

)
yλ − z‖2; ‖yλ‖2

)
.

Using the singular value decomposition (SVD) [7] for A1 and A2, we get

A1 = U1S1V
T
1 and A2 = U2S2V

T
2 ,
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where U1, U2 ∈ Rn×n and V1, V2 ∈ Rn×n are orthogonal and unitary matrices. The
matrices

S1 = diag[s11 , s12 , ..., s1n ] and S2 = diag[s21 , s22 , ..., s2n ],

are rectangular diagonal matrices with non-negative real numbers on the diagonal
containing singular values arranged from the largest to the smallest.

Let us set

S = S2 ⊗ S1 and Ẑ = UT1 ZU2,

pursuing [4] we get

‖
(
A2 ⊗A1

)
yλ − z‖2 =

k∑
i=1

(
λzi

s2
i + λ

)2

+

n∑
i=k+1

z2
i , (24)

and

‖yλ‖2 =

k∑
i=1

(
sizi
s2
i + λ

)2

, (25)

where s = diag(S) contains the singular values, z = vec(Ẑ) and k is the final index
of the nonzero singular values. The best regularization parameter λ should lie on
the corner of the L-curve. The L-curve method chooses the regularization parameter
corresponding to the point on the curve with maximum curvature. So, we use the
formulation (24)-(25) to determine, for each iteration k, the points

pi,k =
{
‖
(
A2 ⊗A1

)
yλi
− z‖2; ‖yλi

‖2
}

on the curve. To compute the approximation of these point, a suitable algorithm has
been defined in [18, Rodriguez and Theis].

We now give the Kronecker Product Approximation Total Variation Algorithm
(KPA-TV) to restore the blurred and noisy image

Algorithm 4: KPA-TV algorithm.

1 Input: matrices of same size U , U0;

2 and set k = 0 and itmax = 100;

3 while k ≤ itmax do

4 Construct Â(Uk) and Ê(Uk);

5 Compute the optimal λ by applying L-curve ;

6 Compute: X = GMRES(Uk) by applying algorithm 3;

7 if
‖X − Uk‖
‖X‖

< ε then

8 Uk+1 = X, k = k + 1

9 end

10 end
Result: Return Uk+1.
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5. Numerical results

In this section, we give some numerical tests to illustrate the effectiveness of the
KPA-TV algorithm 4 to restore blurred and noisy images by using the total varia-
tion regularization and the Kronecker product approximation. All computation were
carried out using MATLAB 16 on an Intel(R) core i3 CPU M370 with 4GB of RAM,
the computation were carried out with approximately 16 decimal digits of accuracy.
The exact gray scale image is denoted by U in all examples, and it is represented by
an array of 256 × 256 pixels with value in [0, 255]. To determine the effectiveness of
our approach, we evaluate the relative error,

ek =
‖U − Uk‖F
‖U‖F

,

of the computation approximation solution Uk and the peak-signal-to-noise ratio
(PSNR),

PSNR(U,Uk) = 20 log10

(
255 ∗ 256

‖U − Uk‖F

)
.

In the forthcoming examples, we looking for the optimal regularization parameter
λOpt in the interval [0, 1], and we give some maps of the L-curve and the optimal λ
value.

5.1. Example 1. We let the exact (Blur - and noise - free) image be the ” musi-
cian” from Matlab, it’s presented by an array 256× 256 pixels and is shown on the
left side of the figure 1. In this example, the blurring matrix K of size 2562 × 2562 is
determined by the Point Spread Function (PSF) [10], which defines how each pixel is
blurred, and the boundary condition, which specify our assumptions on the scene just
outside our image. We assume that the horizontal and vertical components of the PSF
can be separated. Then K can be expressed as a Kronecker product K = K2 ⊗K1;
see [10]. The blurred and noise-free image Ẑ is given by K1UK

T
2 . The contaminated

image by the blur K and a Gaussian white noise with 10−2 noise level is represented
in the middle image of the figure 1.

Also when K can not be written as a tensor product of two matrices, it may be
possible to approximate K quite accurately by such a product. The factors can be
determined by solving the minimization problem

[K̂1, K̂2] = arg min
K1,K2

‖K −K2 ⊗K1‖F

see [10].



KPA FOR TV REGULARIZATION IN IMAGE RESTORATION 95

Original image

50 100 150 200 250

50

100

150

200

250

Contaminated image

50 100 150 200 250

50

100

150

200

250

Restored image

50 100 150 200 250

50

100

150

200

250

Figure 1. True image (left), the noisy image with SNR = 12.51
and PSNR = 17.37 (center), restored image with SNR = 17.42 and
PSNR = 22.27 (right)
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Figure 2. The PSNR curve (left), the L-curve with the optimal
value of λ located in the red * (right)

Iteration Relative Error PSNR SNR λOpt.

0 6.3706e-01 17.37 12.51 1.0000e+00
1 4.7880e-01 17.6 12.72 1.0000e-02
2 1.5207e-01 21.1 16.23 4.5023e-04
3 9.0477e-02 21.89 17.02 1.0005e-05
4 8.5808e-02 21.9 17.03 1.0000e-02
5 5.6892e-02 22.27 17.42 1.6008e-04

Table 1. Relative errors, PSNR values and optimal value of λ

The figure 2 shows two curves, the left one represent the evolution of the PSNR
trough the iterations. while the right curve stand for the determination of the reg-
ularization parameter λ by L-curve algorithm at iteration k = 2, and the vertex
determined by the algorithm [18]. The vertex correspond to the regularization pa-
rameter λ2 = 4.5023e−4. The table 1 displays values of the relative errors and the
PSNR values at each iteration k. The PSNR values are seen increase from 17.37 to
22.27, and the relatives errors ek decrease, which are in accordance with the figures 1
and 2.

5.2. Example 2. In this example, we consider three benchmark images of size 256×
256 which are ”lena”, ”Moon” and ”Cameraman” from Matlab, they are shown
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in the left of the figure 3. We construct the blurring matrix K by the psfDefocus as
in the first example. The blurred and noisy images shown in the middle of the figure 3
are constracted by the blurring matrix K and a noise vector with normally distributed
random entries with zero mean and with variance chosen such that ν = 0.001. The
restored images are presented in the right of the figure 3 and they are obtained by
applying the KPA-TV algorithm 4 to the problem (4). The table 2 gives for each image
the number of iterations, the relatives errors and the PSNR of the contaminated and
the restored images. We present also in the figure 4 the increasing curves of the PSNR
values for each images.
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Figure 3. True images (left), the noisy images with ν = 0.001 (cen-
ter) and the restored images (right)
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Figure 4. The PSNR curves for ”lena” image (left), ”Camera-
man” image (center), ”Moon” image (right)

Image Iter Rz Ru PSNR(Z) PSNR(U)

Lena 12 6.3118×10−1 7.3864×10−2 23.33 30.52

Cameraman 6 5.7024×10−1 6.2212×10−2 20.96 27.59

Moon 13 4.1693×10−1 5.8502×10−2 22.48 28.05

Table 2. The computational results for some images with ν = 0.001.

6. Conclusion

A new algorithm for image restoration using the total variation regularization is
presented. The method is named Kronecker product approximation total variation
(KPA-TV) and is based on the Kronecker product approximation by transforming
the corresponding Euler equation of the initial problem to a generalized Sylvester
linear matrix equation. Then, global Krylov subspace methods are used to solve the
obtained linear matrix equation. Computed examples illustrate the effectiveness of
the proposed approach.
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