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Viability for functional differential inclusions without
convexity

Myelkebir Aitalioubrahim

Abstract. The aim of this paper is to prove the existence result of viable solutions for the

differential inclusion ẋ(t) ∈ F (t, T (t)x) where F is a set-valued map with closed graph. We

consider the case when the constraint is moving.
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1. Introduction

The aim of this paper is to prove the existence of solutions for the following nonconvex
functional differential inclusions ẋ(t) ∈ F (t, T (t)x) a.e. on [0, τ ],

x(t) = ϕ(t), ∀t ∈ [−a, 0],
x(t) ∈ C(t), ∀t ∈ [0, τ ],

(1)

where F and C are two set-valued maps and ϕ is a function.
Bressan, Cellina and Colombo, in [7], have first established the existence of local

solution, in finite dimensional space and the nonconvex case, for the differential in-
clusions ẋ(t) ∈ F (x(t)), where F is upper semicontinuous and the values of F are
contained in the subdifferential (in the sense of analysis convex) of convex lower semi-
continuous function. Ancona and Colombo (see [4]), under the same hypotheses,
extend this result to the perturbed problem ẋ(t) ∈ f(t, x(t)) +F (x(t)) where f(·, ·) is
a Carathéodory function. In this framework, consult [1, 2, 11, 17] and the references
therein for other related results concerning the extension of the main result in [4, 7].
Moreover, in all the above works, the values of the set-valued map is contained in
the subdifferential (in the sense of analysis convex or in the sense of Clarke), and the
convexity or the uniformly regularity assumption of V were widely used in the proof.

On the other hand, Kannai and Tallos [15] and Cernea [10] proved the existence
of solutions to the following differential inclusion ẋ(t) ∈ F (t, x(t)), x(t) ∈ K, where
K is a convex subset and F is measurable with respect to the first argument and
upper semicontinuous with respect to the second argument. The proof in [10, 15]
bases on Scorza-Dragoni type results for upper semicontinuous maps and the results
are obtained under the following assumption F (t, x) ∩ TK(x) ∩ ∂cV (x) 6= ∅, where V
is lower regular in [15] and is convex in [10]. TK(x) is the Bouligand tangent cone of
K at x and ∂cV (x) denotes the Clarke subdifferential of V at x.
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In [3], we have established a viable solutions of the problem of Bressan, Cellina
and Colombo, but with weaker hypotheses, namely, F is upper semicontinuous with
compact values such that

F (x) ∩ ∂cV (x) ∩ TK(x) 6= ∅, ∀x ∈ K, (2)

where V is regular.
This work extends results which are presented in [3, 7]. Indeed, we get an existence

result, in Hilbert space, for functional differential inclusions, with a constraint which
depends on time. The right-hand side is not necessary upper semi-continuous with
compact values. It remains to notice that the methods used in this paper and in [3, 7]
are different.

The paper is organized as follows. In Section 2, we recall some preliminary facts
that we need in the sequel. In Section 3, we prove the existence of solutions for (1).

2. Notations, definitions and the main result

Let H be a real separable Hilbert space with the norm ‖ · ‖ and the scalar product
〈·, ·〉. For x ∈ H and r > 0, let B(x, r) be the open ball centered at x with radius
r and B(x, r) be its closure. Put B = B(0, 1). For I a segment in R, we denote by
C(I,H) the Banach space of continuous functions from I to H equipped with the
norm ‖x(.)‖∞ := sup

{
‖x(t)‖; t ∈ I

}
. For any set-valued map F, we denote Gr(F )

its graph. For a a positive number, we put Ca := C([−a, 0], H) and for any t ∈ [0, τ ],
τ > 0, we define the operator T (t) from C([−a, τ ], H) to Ca with (T (t)(x(.)))(s) :=
(T (t)x)(s) := x(t + s), s ∈ [−a, 0]. For x ∈ H and for nonempty subset A of H, we
denote dA(x) := inf

{
‖y − x‖; y ∈ A

}
.

We shortly review some notions used in this paper (see [12, 13, 16] as general
references).

Let V : H → R be a lower semi-continuous function and x be any point where V
is finite. The generalized Rockafellar directional derivative V ↑(x, .) is

V ↑(x, v) := lim sup
x′→x,V (x′)→V (x),t→0+

inf
v′→v

V (x′ + tv′)− V (x′)

t
.

The upper generalized Clarke directional derivative V o(x, .) is

V o(x, v) := lim sup
h→0+ y→x

V (y + hv)− V (y)

h
.

Analogously the lower generalized Clarke directional derivative Vo(x, .) is

Vo(x, v) := lim inf
h→0+ y→x

V (y + hv)− V (y)

h
.

If V is Lipschitz around x, then V ↑(x, v) coincides with V o(x, v) for all v ∈ H. We
also recall that the Clarke subdifferential of V at x is defined by

∂cV (x) :=
{
y ∈ H : 〈y, v〉 ≤ V ↑(x, v), for all v ∈ H

}
.

In the following proposition we summarize some useful properties of Clarke gener-
alized directional derivatives.
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Proposition 2.1. [12, 13] Let V : H → R be locally Lipschitz. Then the following
conditions holds:

(i) ∂cV (x) =
{
p ∈ H : V o(x, v) ≥ 〈p, v〉,∀v ∈ H

}
=
{
p ∈ H : Vo(x, v) ≤ 〈p, v〉,∀v ∈ H

}
;

(ii) V o(x, v) = max
{
〈p, v〉, p ∈ ∂cV (x)

}
and

Vo(x, v) = min
{
〈p, v〉, p ∈ ∂cV (x)

}
= −V o(x,−v).

Let us recall the definition of the concept of the regularity (in the sense of Clarke).

Definition 2.1. [12] Let V : H → R be a locally Lipschitz function. We say that
V is regular at x if for all v ∈ H, the usual directional derivative V ′(x, v) exists and
V ′(x, v) = V o(x, v). We say that V is regular over a set S if it is regular at any point
in S.

If S is a bounded set of H, then the Kuratowski’s measure of noncompactness of
S, β(S), is defined by

β(S) = inf
{
d > 0 :

S can be covered by a finite number of sets with diameter less than d
}
.

In the following lemma we recall some useful properties for the measure of noncom-
pactness β. For instance see Proposition 9.1 in [14].

Lemma 2.2. Let X be an infinite dimensional real Banach space and D1, D2 be two
bounded subsets of X.
(i) β(D1) = 0⇔ D1 is relatively compact.

(ii) β(λD1) = |λ|β(D1); λ ∈ R.
(iii) D1 ⊆ D2 ⇒ β(D1) ≤ β(D2).
(iv) β(D1 +D2) ≤ β(D1) + β(D2).
(v) If x0 ∈ X and r is a positive real number then β(B(x0, r)) = 2r.

The following lemma is widely used in the sequel.

Lemma 2.3. [8] Let � be a given preorder on the nonempty set B and let φ : B →
R ∪ {+∞} be an increasing function. Suppose that each increasing sequence in B is
majorated in B. Then, for each x0 ∈ B, there exists x1 ∈ B such that x0 � x1 and
φ(x1) = φ(x) if x1 � x.

The above function φ, in [8], is supposed to be finite and bounded from above, but
this restriction can be removed by replacing φ by the function x 7→ arctanφ(x) (see
[9]).

Now let us introduce the following hypotheses which we shall use throughout this
paper.

(H1) C : [0, b] → 2H is a set-valued map with locally closed graph such that C([0, b])
is locally compact, and K : [0, b]→ Ca is a set-valued map defined by

K(t) =
{
ϕ ∈ Ca : ϕ(0) ∈ C(t)

}
, ∀t ∈ [0, b],

(H2) V : H → R is a locally Lipschitz function and regular over C([0, b]),
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(H3) F : Gr(K)→ 2H is a set-valued map with closed graph satisfying

F (t, ϕ) ∩ TC(t)(ϕ(0)) ∩ ∂cV (ϕ(0)) 6= ∅, for all (t, ϕ) ∈ Gr(K),

where

TC(t)(ϕ(0)) =
{
v ∈ H, lim inf

h7→0+

1

h
dC(t+h) (ϕ(0) + hv) = 0

}
.

We are now ready to state the main result of this paper.

Theorem 2.4. If assumptions (H1)-(H3) are satisfied, for all ϕ ∈ K(0), there exist
τ > 0 and a map x(.) ∈ C([−a, τ ], H) which is absolutely continuous on [0, τ ] such
that x(.) is a solution of (1).

3. Proof of the main result Theorem 2.4

Let ϕ ∈ K(0) and set x0 = ϕ(0). By assumptions, there exists r > 0 such that
C([0, b]) ∩ B(x0, r) is compact, Gr(C) ∩ B((0, x0), r) is closed and V is Lipschitz
continuous on B(x0, r) with Lipschitz constant λ > 0. Then ∂cV (x) ⊂ λB for every
x ∈ B(x0, r). Put

τ = inf
{ r

2(2 + λ)
, 1, b

}
.

For all 0 < ε < 1, set B(ε) the set of all (x, θ)d where d ∈]0, τ ], x(.) : [−a, d] → H is
a continuous function and θ(.) : [0, d[→ [0, d[ is a step function such that
(i) x(θ(t)) ∈ C(θ(t)), 0 ≤ t− θ(t) ≤ ε, for all t ∈ [0, d[;

(ii) x(d) ∈ C(d), x(.) = ϕ(.) on [−a, 0] and x(t) ∈ B(x0, r) for all t ∈ [0, d];
(iii) ẋ(t) ∈ [F (θ(t), T (θ(t))x) + εB] ∩ [∂cV (x(θ(t))) + εB] for almost all t ∈ [0, d];

(iv) V (x(d))− V (ϕ(0)) ≥
∫ d

0
‖ẋ(s)‖2ds− dε(3λ+ 4).

Proposition 3.1. If assumptions (H1)-(H3) are satisfied, then for all 0 < ε < 1,
there exists at least one (x, θ)τ ∈ B(ε).

Proof. Let 0 < ε < 1. Put

x(t) = ϕ(t), ∀t ∈ [−a, 0].

Select u0 ∈ F (0, ϕ) ∩ TC(0)(ϕ(0)) ∩ ∂cV (ϕ(0)). There exists 0 < ρ < inf{τ, ε} such
that for all 0 < h < ρ

V (ϕ(0) + hu0)− V (ϕ(0)) ≥ hV ′(ϕ(0), u0)− εh.
By the regularity of V, we rewrite this last inequality as

V (ϕ(0) + hu0)− V (ϕ(0)) ≥ h〈u0, w〉 − εh, ∀w ∈ ∂cV (ϕ(0)).

Hence

V (ϕ(0) + hu0)− V (ϕ(0)) ≥ h〈u0, u0〉 − εh, ∀h ∈]0, ρ[. (3)

Moreover, there exists h0 ∈]0, ρ[ satisfying

1

h0
dC(h0)

(
ϕ(0) + h0u0

)
≤ ε

2
.

Then there exists x1 ∈ C(h0) such that

1

h0

∥∥∥x1 − ϕ(0)− h0u0

∥∥∥ ≤ ε.
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Set

u1 =
x1 − ϕ(0)

h0
.

So, we get x1 = ϕ(0)+h0u1 and ‖u1−u0‖ ≤ ε. Set d0 = h0, θ0(t) = 0 for all t ∈ [0, d0[
and x(t) = x0 + tu1 for all t ∈ [0, d0]. Remark that, for all t ∈ [0, d0]

‖x(t)− x0‖ ≤ h0‖u1‖ ≤ h0(ε+ ‖u0‖) ≤ τ(1 + λ) ≤ r,
then x(t) ∈ B(x0, r) for all t ∈ [0, d0]. On the other hand, set u0 = u1 + εb where
b ∈ B. By (3), one has

V (ϕ(0) + h0u1 + h0bε)− V (ϕ(0)) ≥ h0〈u1 + bε, u1 + bε〉 − εh0

≥
∫ d0

0

‖ẋ(s)‖2ds− (2λ+ 4)d0ε

because |〈u1, bε〉| ≤ (λ+ 1)ε and |〈bε, bε〉| ≤ ε. We deduce that

V (ϕ(0) + h0u1)− V (ϕ(0))

= V (ϕ(0) + h0u1)− V (ϕ(0) + h0u1 + h0bε) + V (ϕ(0) + h0u1 + h0bε)− V (ϕ(0))

≥ V (ϕ(0) + h0u1)− V (ϕ(0) + h0u1 + h0bε) +

∫ d0

0

‖ẋ(s)‖2ds− (2λ+ 4)d0ε

Since
‖ϕ(0) + h0u1 − x0‖ ≤ h0(λ+ 1) ≤ r

and
‖ϕ(0) + h0u1 + h0bε− x0‖ ≤ h0(λ+ 2) ≤ r,

we get ∣∣∣V (ϕ(0) + h0u1)− V (ϕ(0) + h0u1 + h0bε)
∣∣∣ ≤ d0λε.

Using the above inequality, we obtain

V (x(d0))− V (ϕ(0)) ≥
∫ d0

0

‖ẋ(s)‖2ds− (3λ+ 4)d0ε.

We conclude that (x, θ)d0 ∈ B(ε) and hence B(ε) 6= ∅. Now, consider the following
preorder:

(x1, θ1)d1 � (x2, θ2)d2 ⇔ d1 ≤ d2, x1 = x2|[0,d1] and θ1 = θ2|[0,d1[.

Let φ : B(ε)→ R be the function defined by

φ((x, θ)d) = d, ∀(x, θ)d ∈ B(ε).

By definition, φ is increasing on B(ε). On the other hand, if
(

(xi, θi)di

)
i∈N

is an

increasing sequence in B(ε), we construct a majorant (x, θ)d of
(

(xi, θi)di

)
i∈N

as

follows:
d = lim

i
di, θ(t) = θi(t) for all t ∈ [0, di[,

x(.) = ϕ(.) on [−a, 0], x(t) = xi(t) for all t ∈ [0, di].

We claim that (x, θ)d ∈ B(ε). Indeed, for all i ∈ N, we have x(di) = xi(di) ∈ C(di).
Then (di, x(di)) ∈ Gr(C) ∩ B((0, x0), r), for all i ∈ N. Since Gr(C) ∩ B((0, x0), r) is
closed, we conclude that (d, x(d)) ∈ Gr(C) ∩ B((0, x0), r). The other assertions are
obvious. Next, for applying Lemma 2.3, we need the following Claim.
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Claim: For all (x, θ)d ∈ B(ε) with d < τ, there exists (x̄, θ̄)d̄ ∈ B(ε) such that (x, θ)d �
(x̄, θ̄)d̄ and φ((x, θ)d) < φ((x̄, θ̄)d̄).

Proof. Let (x, θ)d ∈ B(ε) with d < τ. Select

u0 ∈ F (d, T (d)x) ∩ TC(d)(x(d)) ∩ ∂cV (x(d)).

There exists 0 < ρ < inf{τ − d, ε} such that for all 0 < h < ρ

V (x(d) + hu0)− V (x(d)) ≥ hV ′(x(d), u0)− εh.

By the regularity of V, as above, we get

V (x(d) + hu0)− V (x(d)) ≥ h〈u0, u0〉 − εh, ∀h ∈]0, ρ[. (4)

Moreover, there exist h0 ∈]0, ρ[ and x1 ∈ C(d+ h0) satisfying

1

h0

∥∥∥x1 − x(d)− h0u0

∥∥∥ ≤ ε.
Set

u1 =
x1 − x(d)

h0
.

So, we get x1 = x(d) + h0u1 and ‖u1 − u0‖ ≤ ε. Set d̄ = d + h0, θ̃(t) = d for all
t ∈ [d, d̄[ and x̃(t) = x(d) + (t− d)u1 for all t ∈ [d, d̄]. We have for all t ∈ [d, d̄]

‖x̃(t)− x0‖ ≤ ‖x(d)− x0‖+ (t− d)‖u1‖

≤
∫ d

0

‖ẋ(s)‖ds+ (t− d)(λ+ 1)

≤ d(λ+ 1) + (t− d)(λ+ 1)

≤ τ(λ+ 1)

≤ r

then x̃(t) ∈ B(x0, r) for all t ∈ [d, d̄]. On the other hand, set u0 = u1 + εb where
b ∈ B. Since

‖x(d) + h0u1 − x0‖ ≤
∫ d

0

‖ẋ(s)‖ds+ (d̄− d)(λ+ 1)

≤ d(λ+ 1) + (d̄− d)(λ+ 1)

≤ τ(λ+ 1)

≤ r

and

‖x(d) + h0u1 + h0bε− x0‖ ≤
∫ d

0

‖ẋ(s)‖ds+ (d̄− d)(λ+ 2)

≤ d(λ+ 1) + (d̄− d)(λ+ 2)

≤ τ(λ+ 2)

≤ r

we get ∣∣∣V (x(d) + h0u1)− V (x(d) + h0u1 + h0bε)
∣∣∣ ≤ h0λε.
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Using the last inequality and (4), as above, we obtain

V (x̃(d̄))− V (x̃(d)) ≥
∫ d̄

d

‖ ˙̃x(s)‖2ds− (3λ+ 4)(d̄− d)ε.

Now, we define θ̄ and x̄ as follows:

θ̄(t) = θ(t), for all t ∈ [0, d[, θ̄(t) = θ̃(t) for all t ∈ [d, d̄[,

x̄(.) = ϕ(.) on [−a, 0], x̄(t) = x(t) for all t ∈ [0, d] and x̄(t) = x̃(t) for all t ∈ [d, d̄].

Finally, it is clair that (x̄, θ̄)d̄ ∈ B(ε), (x, θ)d � (x̄, θ̄)d̄ and φ((x, θ)d) < φ((x̄, θ̄)d̄). �

Now, we are ready to complete the proof of Proposition 3.1. From Lemma 2.3,
there exists (x, θ)d ∈ B(ε) such that φ((x, θ)d) = φ((x̄, θ̄)d̄) and (x, θ)d � (x̄, θ̄)d̄ for
all (x̄, θ̄)d̄ ∈ B(ε). Moreover, if φ((x, θ)d) < τ, by the last Claim, there exists (x̄, θ̄)d̄ ∈
B(ε) such that (x, θ)d � (x̄, θ̄)d̄ and φ((x, θ)d) < φ((x̄, θ̄)d̄). Hence φ((x, θ)d) = τ. The
proof is complete. �

In the next, we will prove our Theorem 2.4. Let (εn)n≥1 be a strictly decreasing

sequence of positive scalars such that 0 < εn < 1 for all n ≥ 1 and
∞∑
n=1

εn < ∞. In view

of Proposition 3.1, we can define inductively sequences (xn(.))n≥1 ⊂ C([−a, τ ], H), and
(θn(.))n≥1,⊂ S([0, τ [, [0, τ [) where S([0, τ [, [0, τ [) denotes the space of step functions
from [0, τ [ into [0, τ [ such that
(a) xn(θn(t)) ∈ C(θn(t)), 0 ≤ t− θn(t) ≤ εn, for all t ∈ [0, τ [;
(b) xn(τ) ∈ C(τ), xn(.) = ϕ(.) on [−a, 0] and xn(t) ∈ B(x0, r) for all t ∈ [0, τ ];
(c) ẋn(t) ∈ [F (θn(t), T (θn(t))xn) + εnB] ∩ [∂cV (xn(θn(t))) + εnB] for almost all

t ∈ [0, τ ];
(d) V (xn(τ))− V (ϕ(0)) ≥

∫ τ
0
‖ẋn(s)‖2ds− τεn(3λ+ 4).

In the rest of this paper, we take θn(τ) = τ for all n ≥ 1. By (c), for a.e. t ∈ [0, τ ],
we have

‖ẋn(t)‖ ≤ λ+ 1. (5)

Hence the sequence (xn(.))n is equicontinuous. In order to apply Arzelà-Ascoli’s
theorem, we are going to show that for every t ∈ [0, τ ], the set

S(t) = {xn(t) : n ≥ 1},

is relatively compact in H. By (a), for all t ∈ [0, τ ], xn(θn(t)) ∈ C([0, b]) ∩ B(x0, r).
Thus for all t ∈ [0, τ ], the set {xn(θn(t)) : n ≥ 1} is relatively compact in H, hence
by Lemma 2.2,

β
(
{xn(θn(t)) : n ≥ 1}

)
= 0.

Next, for all t ∈ [0, τ ]

β(S(t)) = β
(
{xn(t) : n ≥ 1}

)
= β

(
{xn(t)− xn(θn(t)) + xn(θn(t)) : n ≥ 1}

)
.
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Then by Lemma 2.2 and Relation (5), we obtain

β(S(t)) ≤ β
(
{xn(t)− xn(θn(t)) : n ≥ 1}

)
+ β

(
{xn(θn(t)) : n ≥ 1}

)
≤ β

(
{xn(t)− xn(θn(t)) : n ≥ 1}

)
= β

({∫ t

θn(t)

ẋn(s)ds : n ≥ 1

})

≤ β

(
B

(
0,

∫ t

θn(t)

(λ+ 1)ds

))

= 2

∫ t

θn(t)

(λ+ 1)ds.

Since
t∫

θn(t)

(λ+ 1)ds converges to 0 as n→∞,

we get β(S(t)) = 0. Hence S(t) is relatively compact in H. Therefore, by Arzelà-
Ascoli’s theorem (see [5]), we can select a subsequence, again denoted by (xn(.))n
which converges uniformly to an absolutely continuous function x(.) on [0, τ ],moreover
ẋn(.) converges weakly to ẋ(.) in L2([0, τ ], H). Since all functions xn(.) agree with ϕ
on [−a, 0], we can obviously say that xn(.) converges uniformly to x(.) on [−a, τ ], if we
extend x(.) in such a way that x(.) ≡ ϕ on [−a, 0]. Also, by the following inequality

‖xn(θn(t))− x(t)‖ ≤ ‖xn(θn(t))− xn(t)‖+ ‖xn(t)− x(t)‖

≤
∫ t

θn(t)

‖ẋn(s)‖ds+ ‖xn(t)− x(t)‖

≤ (t− θn(t))(λ+ 1) + ‖xn(t)− x(t)‖
≤ (λ+ 1)εn + ‖xn(t)− x(t)‖

we deduce that xn(θn(.)) converges uniformly to x(.) on [0, τ ]. By construction, we
have (θn(t), xn(θn(t))) ∈ Gr(C) ∩ B((0, x0), r) for every t ∈ [0, τ ], then x(t) ∈ C(t)
for all t ∈ [0, τ ]. Now, let t ∈ [0, τ ]. We have

‖T (θn(t))xn − T (t)x‖∞
= sup

−a≤s≤0
‖xn(θn(t) + s)− x(t+ s)‖

≤ sup
−a≤s≤0

‖xn(θn(t) + s)− x(θn(t) + s)‖+ sup
−a≤s≤0

‖x(θn(t) + s)− x(t+ s)‖

≤ sup
0≤s≤τ

‖xn(s)− x(s)‖+ sup
−a≤s≤0

‖x(θn(t) + s)− x(t+ s)‖

Using the fact that x(.) is absolutely continuous on [0, τ ] and xn(.) converges uniformly
to x(.) on [−a, τ ], we deduce that T (θn(t))xn converges to T (t)x in Ca.

Proposition 3.2. For almost every t ∈ [0, τ ], we have ẋ(t) ∈ ∂cV (x(t)).
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Proof. The weak convergence of ẋn(.) to ẋ(.) in L2([0, τ ], H) and the Mazur’s Lemma
entail

ẋ(t) ∈
⋂
n

c̄o{ẋm(t) : m ≥ n},

for almost every t ∈ [0, τ ]. Then for all y ∈ H and for almost every t ∈ [0, τ ],

〈y, ẋ(t)〉 ≤ inf
m

sup
n≥m
〈y, ẋn(t)〉

which together with ẋn(t) ∈ ∂cV (xn(θn(t))) + εnB gives for all m

〈y, ẋ(t)〉 ≤ sup
n≥m

σ
(
y, ∂cV (xn(θn(t))) + εnB

)
,

from which we deduce that

〈y, ẋ(t)〉 ≤ lim sup
n→+∞

σ
(
y, ∂cV (xn(θn(t))) + εnB

)
.

Next, by Proposition 6.4.9 in [6], the function x 7→ σ
(
y, ∂cV (x)

)
is upper semi-

continuous and hence we get

〈y, ẋ(t)〉 ≤ σ
(
y, ∂cV (x(t))

)
.

So, the convexity and the closedness of the set ∂cV (x(t)) ensure ẋ(t) ∈ ∂cV (x(t)). �

Now, we use the regularity of the function V to prove the following proposition.

Proposition 3.3. The set
{
〈p, ẋ(t)〉, p ∈ ∂cV (x(t))

}
is reduced to the singleton{

d
dtV (x(t))

}
for almost every t ∈ [0, τ ].

Proof. Since x(.) is absolutely continuous function and V is locally Lipschitz contin-
uous. The function V ox(.) is absolutely continuous and then for almost all t there
exists d

dtV (x(t)). Let t ∈ [0, τ ] be such that there exists both ẋ(t) and d
dtV (x(t)).

There is δ > 0 such that for every |h| < δ

x(t+ h) ∈ B(x0, r), (x(t) + hẋ(t)) ∈ B(x0, r)

and

x(t+ h)− x(t)− hẋ(t) = r(h) where lim
h→0
‖r(h)‖/h = 0.

Since V is Lipschitz continuous on B(x0, r) with Lipschitz constant λ > 0, we have

|V (x(t+ h))− V (x(t) + hẋ(t))| ≤ λ‖r(h)‖,

whenever |h| < δ. Consequently, the function h→ V (x(t) + hẋ(t)) is differentiable at
h = 0, and its derivative is the same as the derivative of h → V (x(t + h)) at h = 0.
Hence

d

dt
V (x(t)) = lim

h→0

V (x(t) + hẋ(t))− V (x(t))

h
. (6)

Since V is regular over C([0, b]) and x(t) ∈ C([0, b]), we obtain

V o(x(t), ẋ(t)) = lim
h→0

V (x(t) + hẋ(t))− V (x(t))

h
. (7)
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In addition, one has

V o(x(t),−ẋ(t)) = lim
h→0

V (x(t) + h(−ẋ(t)))− V (x(t))

h

= − lim
h→0

V (x(t) + hẋ(t))− V (x(t))

h
.

By Proposition 2.1, V o(x(t),−ẋ(t)) = −Vo(x(t), ẋ(t)), then

Vo(x(t), ẋ(t)) = lim
h→0

V (x(t) + hẋ(t))− V (x(t))

h
. (8)

By (6), (7) and (8), we deduce that

V o(x(t), ẋ(t)) =
d

dt
V (x(t)) = Vo(x(t), ẋ(t)).

This means, by Proposition 2.1, that for almost all t the set{
〈p, ẋ(t)〉, p ∈ ∂cV (x(t))

}
reduces to the singleton

{
d
dtV (x(t))

}
. �

Proposition 3.4. The application x(.) is a solution of the problem (1).

Proof. First by using Proposition 3.2 and Proposition 3.3, we obtain

d

dt
V (x(t)) = 〈ẋ(t), ẋ(t)〉, a.e. on [0, τ ].

Therefore by integrating on [0, τ ], we get

V (x(τ))− V (x0) =

∫ τ

0

‖ ẋ(s) ‖2 ds. (9)

Now, by passing to the limit for n→∞ in (d) and using the continuity of the function
V on the ball B(x0, r), we obtain

V (x(τ))− V (x0) ≥ lim sup
n→+∞

∫ τ

0

‖ẋn(s)‖2ds

Moreover, by (9), we have ‖ẋ‖22 ≥ lim sup
n→+∞

‖ẋn‖22 and by the weak lower semi-

continuity of the norm ‖ẋ‖22 ≤ lim inf
n→+∞

‖ẋn‖22. Hence we get ‖ẋ‖22 = lim
n→+∞

‖ẋn‖22.
Finally, there exists a subsequence of (ẋn(.))n (still denoted (ẋn(.))n) converges point-
wisely to ẋ(.). Since ẋn(t) ∈ F (θn(t), T (θn(t))xn) + εnB, we have

dGr(F )(θn(t), T (θn(t))xn, ẋn(t)) ≤ εn,

hence

lim
n→+∞

dGr(F )(θn(t), T (θn(t))xn, ẋn(t)) = 0,

from which we conclude that dGr(F )(t, T (t)x, ẋ(t)) = 0 and so, as F has a closed graph,
we obtain ẋ(t) ∈ F (t, T (t)x) for almost every t ∈ [0, τ ]. The proof is complete. �
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