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A polynomial interpolation algorithm for estimating a
numerical function

Romulus Militaru

Abstract. We consider (n + 1) distinct numbers x0, x1, ..., xn and the values of the function
f at these (n + 1) given points. We study the problem of estimating f(x) at a point x = x∗,
within a given accuracy ε, using polynomial interpolation. Based on an analysis of the linear
interpolation and the error of interpolation, we present an algorithm which better exploits the
results of the calculus, contributing to a decrease in the amount of work involved, respectively
the computational cost necessary to approximate f(x∗) with a given error. The material also

presents numerical examples solved using this algorithm.

2000 Mathematics Subject Classification. 65D05.

Key words and phrases. polynomial interpolation, error estimating, numerical
approximation.

1. Introduction

Regardless of wheather we are talking about experimental results or about tables,
most of the functions are given only for a discrete set of points which make up a
sample. Obviously the cases in which the value of the function is present in the
table for the point that we need are seldom, and hence the necessity to call for the
interpolation, which is a basic tool for the approximation of a given function.

Consider that we are given the values of the function f at n + 1 distinct points
x0, x1, ..., xn. These are not necessarily equally spaced or even arranged in increasing
order, the only main restriction is that they must be distinct. Occasionally the values
of derivatives of f are also prescribed.

The polynomial interpolation, which is included in the principal class of the linear
interpolation, is the basis of several types of numerical integration formulas and is
used in the construction of extrapolation methods for integration and differential
equations, (see [2], [3], [8]).

The polynomial interpolation problem consists of determining a polynomial Pn

which takes the same values as f at the n + 1 points xi, i = 0, 1, ..., n, (see [5], [2]).
We could write that for the n + 1 given pairs of number (xk, fk), k = 0, 1, ..., n with
xi �= xj for i �= j

Pn(xk) = fk, k = 0, 1, ..., n

2. Problem statement

We consider the problem of estimating f(x) at a point x = x∗, within a given
accuracy, using polynomial interpolation at distinct points xi, i = 0, n, with a minimal
computational cost.
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The main problem is that estimating the size of the error f −Pn from a knowledge of
the values of f at x0, x1, ..., xn alone, would be highly unlikely. Further information
about f, such as bounds of his derivatives, are necessary, (see [7], [3]).
In consequence the degree of the polynomial needed for estimating f(x∗) within a
given accuracy ε is generally not known.
We will consider in the sequel the cases of the Lagrange, Newton and Hermite inter-
polating polynomial. Concerning the accuracy of polynomial interpolation, there is
the following result, (see [2], [5]):

Proposition 2.1. Let [a, b] be any interval which contains all n+1 points x0, x1, ..., xn.
Let f, f ′, ..., f (n) exist and be continuous on [a, b] and let f (n+1) exists for x ∈ (a, b).
Then, given any x ∈ [a, b] there exist a number ξ = ξ(x) in (a, b) so that

f(x) − P (x) =
f (n+1)(ξ)
(n + 1)!

ω(x) (1)

where ω(x) =
n∏

i=0

(x − xi), Pn denoting the interpolating polynomial at the points

xi, i = 0, n.

Corollary 2.1. Under the hypotheses of Proposition 2.1, if we denote by E(x) the
error of interpolation, then

‖ E ‖∞≤ 1
(n + 1)!

‖ f (n+1) ‖∞ ‖ ω ‖∞ (2)

where ‖ φ ‖∞= sup{|φ(t)|, t ∈ [a, b]}, (∀)φ : [a, b] → R continue.

One can minimize the right side of (2) by choosing the interpolating points xi, i = 0, n
as the zeros of the Cebyshev polynomials, (see [2],[5]),

Tn+1 : (−1, 1) → R, Tn+1(z) =
1
2n

cos[(n + 1)arccos(z)]

Of course, this can be done if we have access to the values of f at these zeros.

Remark 2.1. If the interpolating polynomial Pn(x) is used to approximate f(x) on

the interval [−1, 1] then one can chooses xi = cos
π(2i + 1)
2(n + 1)

, i = 0, 1, ..., n.

If Pn(x) is used to approximate f(x) on the interval [a, b] then one can chooses the

interpolating points given by xi =
a + b

2
+

b − a

2
cos

π(2i + 1)
2(n + 1)

, i = 0, 1, ..., n.

Remark 2.2. In practice the estimating problem of a function f(x) at a point x = x∗

presents itself mostly in the form: what is desired is the value f(x∗) approximated with
a given accuracy ε. Based on the above results, this tolerance ε should not be selected

smaller than
‖ f (n+1) ‖∞

(n + 1)!
‖ ω ‖∞ with respect to the zeros of the Cebyshev polynomials

Let Hn be the Hermite interpolating polynomial which satisfies{
d0(Hn) ≤ m − 1
H(k)

n = f (k)(xi), 0 ≤ i ≤ n, 0 ≤ k ≤ αi
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where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi, i = 0, n are the interpolating points,
αi, i = 0, n are positive integers,

m =
n∑

i=0

(αi + 1)

Hn is the polynomial of lowest degree with the property that it agrees with the
function f and with all its derivatives of order less than or equal to αi at xi, i = 0, n.

Remark 2.3. If αi = 0, i = 0, n, Hn(x) becomes the Lagrange polynomial which
interpolates the function f at the points xi, i = 0, n.

Denoting by E(x) = f(x) − Hn(x), x ∈ [a, b]− an intervall which contains all points
xi, i = 0, n. Similar to Proposition 2.1, we have:

E(x) =
f (m)(ξ)

m!
ωm(x), ξ = ξ(x), (∀)x ∈ [a, b] (3)

where ωm(x) =
n∏

i=0

(x − xi)αi+1 and f ∈ Cm[a, b].

Under some restrictive conditions one states the following result:

Proposition 2.2. Consider that f ∈ Cm[a, b] is an analytical one in the neighbour-

hood of h =
a + b

2
with a convergence radius given by rc >

3
2
(b − a). Then the

following statement holds:

‖ E ‖∞≤ A ·
(b − a

p

)m

·
(
1 + (2m+1 − 1)

b − a

2p − b + a

)
(∀)p ∈

(b − a

2
, rc

)

where A = A(p) is a constant, and the sequence (Hn)n≥1 of Hermite interpolating
polynomials converges uniformly to the function f.

Proof. f(x) =
∑
i≥0

ai(x − h)i, (∀)x ∈ (h − rc, h + rc)

Choosing p ∈
(b − a

2
, rc

)
, x = h + p then

∑
i≥0

aip
i converges.

In particular lim
i→∞

aip
i = 0. There is a constant A = A(p) so that |ai| ≤ A

pi
, i ≥ 0.

Thus it follows that

|f (m)(x)| ≤ A ·
∑
i≥m

1
pi

i!
(i − m)!

|x − h|i−m

(∀)x ∈ [a, b] ⊂ (h − rc, h + rc) so that |x − h| ∈ [0,
b − a

2
]

Based on (3) one obtains

‖ E ‖∞≤ (b − a)m

m!
‖ f (m) ‖∞ (4)

Taking into consideration that (∀)z ∈ [
0,

b − a

2
] ⊂ [0, p)



136 R. MILITARU

∑
i≥m

1
pi

i!
(i − m)!

zi−m =
( 1

1 − z
p

)(m)

≤ m! p
(p − b−a

2 )m+1
=

m!
pm

(
1 +

b − a

2p − b + a

)m+1

and using (4) one gets

‖ E ‖∞≤ A · (b − a)m

pm
·
( 2p

2p − b + a

)m+1

= A · p

p − b−a
2

·
( b − a

p − b−a
2

)m

If p ≥ 3
2
(b − a) ⇔ rc ≥ 3

2
(b − a) then ‖ f − Hn ‖∞→ 0 uniformly when m → ∞.

Using the inequality (1 + β)n ≤ 1 + (2n − 1)β, (∀)n ≥ 1, β ∈ [0, 1] it follows that

‖ E(x) ‖∞≤ A ·
(b − a

p

)m

·
(
1 + (2m+1 − 1)

b − a

2p − b + a

)

�

3. Choice of interpolating points

Taking into consideration that the amount of work necessary to approximate f(x)
at a point x = x∗ within a given accuracy ε, by means of the polynomial interpolation
is proportional to the degree of interpolating polynomial used, in order to have a
minimal computational cost one proposes the following technique:

Denote by Pk(x) the interpolating polynomial of degree≤ k which interpolates the
function f at distinct points xi, i = 0, k. We calculate successively Pi(x∗), i = 0, 1, ...,
increasing the number of interpolation points and hence the degree of the interpolating
polynomial, until the difference between two consecutive values becomes smaller than
ε, and thus a satisfactory approximation Pq(x∗) to f(x∗) has been found.
The main problem is how to choose the interpolating points for the successive con-
struction of the interpolating polynomials Pi(x), i = 0, 1, ....
In order to minimize the computational cost we start with the points xi, xi+1 so that
x∗ ∈ (xi, xi+1), considering that z0 = xi, z1 = xi+1 if x∗ is close to xi, or z0 = xi+1,
z1 = xi else.
The point z2 will by the nearest point xj , j ∈ {0, 1, ..., i − 1, i + 2, ..., n} to x∗ and so
on and so forth.
Thus we obtain a new set of points z0, z1, ..., zn which have the same values as
x0, x1, ..., xn and which are ordered by means of distance to the point x∗ :

|x∗ − zj | ≥ |x∗ − zk|, k = 0, 1, ..., j − 1, j = 0, 1, ..., n

In this way we can construct, successively, the interpolating polynomials Pi(x), i =
0, 1, ..., n associated to the interpolating points z0, z1, ..., zi, i = 1, 2, ..., n.

4. Practical implementation

Based on the above analysis one can derive the following polynomial interpolation
algorithm for estimating f(x) at a point x = x∗, with a given accuracy ε, using the
interpolation points xi, i = 0, n :

1. determination of interpolating points xp, xp+1 so that xp < x∗ < xp+1;

2. if |x∗ − xp| > |x∗ − xp+1| then
{

z0 = xp+1

z1 = xp
, else

{
z0 = xp

z1 = xp+1

3. calculus of P1(x∗), P1(x) being the chosen interpolating polynomial with respect
to the points z0, z1;
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4. determination of the following interpolation point z2 ∈ {x0, x1, ..., xp−1, xp+2, ..., xn}
so that

|x∗ − z2| = min
{|x∗ − xi|, i ∈ {0, 1, ..., p − 1, p + 2, ..., n}}

5. calculus of P2(x∗), P2(x) being the chosen interpolating polynomial with respect
to the points z0, z1, z2;

6. if |P1(x∗) − P2(x∗)| ≤ ε then f(x∗) ∼= P2(x∗);
if not the case, we follow the steps 4-6 again, in order to add the following
interpolation points zi, i = 3, 4, ... and to set up interpolating polynomials with
respect to these new points, until the stopping criterion is accomplished.

Remark 4.1. (i). If the successive differences |Pi(x∗)−Pi−1(x∗)| begin to increase as
i increases, one stops the algorithm concluding that ε was chosen unreasonably. In this
situation one may consider that f(x∗) ∼= Pi−1(x∗) represents a better approximation;
(ii). In order to obtain a minimal computational cost for the above algorithm we
have to take into consideration that the evaluation of the interpolating polynomials
Pk(x∗), k = 1, 2, ... must be done in a manner that uses the previous calculations to
as greater advantage as possible, (see [1]);
(iii). The algorithm can be used for evaluate f(x) at a sequence of points x∗

i , i =
0, 1, ..., r, r ∈ N∗.

5. Numerical examples

5.1 We consider the data
xi 0 0.1 0.2 0.3 0.4 0.78 1.33
fi -1 -0.620500 -0.283987 0.006601 0.248424 0.677713 -0.230627

We wish to approximate f(0.155), f(0.947) within a given accuracy ε.

Using the presented algorithm we obtain:

x∗ accuracy type of interpolating number of used approximate value
ε polynomial interpolating points of f(x∗)

0.155 1e-2 Lagrange 3 -0.4297343
1e-3 Lagrange 4 -0.4299099
1e-5 Lagrange 5 -0.4299075
2e-6 Lagrange 6 -0.4299082

0.947 3e-2 Newton 4 0.6035864
1e-3 Newton 6 0.6004708
1e-4 Newton 7 0.6005317

Remark 5.1. The exact values are
{

f(0.155) = −0.4299082
f(0.947) = 0.6005443

5.2 We consider the data

xi 1 1.2 1.5 1.65 2.3 2.8 4.3
fi 1 1.648721 2.718282 3.490343 7.389056 14.154040 20.085537
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We wish to approximate f(0.3), f(2.7) within a given accuracy ε.

Using the presented algorithm we obtain:

x∗ accuracy type of interpolating number of used approximate value
ε polynomial interpolating points of f(x∗)

0.3 1e-2 Newton 6 1.3485042
3e-3 Newton 6 1.3505583

2.7 1e-2 Lagrange 7 14.8815651
4e-4 Lagrangee 7 14.8798981

Remark 5.2. The exact values are
{

f(0.3) = 1.3498595
f(2.7) = 14.8797323

5.3 We consider the data

xi 1 1.2 1.5 1.65 2.3 2.8 4.3
fi 1.684370 2.199796 2.895113 3.223371 4.579691 5.592577 8.599632
f ′

i 2.742245 2.443303 2.221171 2.159282 2.041032 2.014902 2.000737

We wish to approximate f(1.8), f(3.1) within a given accuracy ε.

Using the presented algorithm we obtain:

x∗ accuracy type of interpolating number of used approximate value
ε polynomial interpolating points of f(x∗)

1.8 1e-3 Hermite 3 3.5438120
3e-5 Hermite 4 3.5438051
4e-7 Hermite 6 3.5438046

3.1 1e-3 Hermite 3 6.1959715
1e-4 Hermite 4 6.1959610

Remark 5.3. The exact values are
{

f(1.8) = 3.5438026
f(3.1) = 6.1959327

6. Conclusions

In this paper we present an algorithm for estimating a numerical function f(x) at
a specific point x = x∗, based on the polynomial interpolation and the accuracy of
interpolation.
Starting with an estimation of the size of the error we derive an algorithm which
purpose is to evaluate f(x∗) within a given accuracy and a minimal computational
cost.
The numerical experiments performed by practical implementation of the above al-
gorithm lead to the conclusion that this one offers a fast tool to evaluate f(x) at a
point x∗ with a given reasonable accuracy ε, by means of an interpolating polynomial
of suitable degree, and in consequence with a reduced amount of work.
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