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Abstract. The concept of quasi-ordered residuated system was introduced in 2018 by Bonzio
and Chajda. The author introduced and analyzed the concept of filters as well as some types

of filters in such an algebraic system. Additionally, the author also dealt with a strong quasi-

ordered residuated system in which he determined prime and irreducible filters. In this paper,
the author introduce three types of prime filters in a strong quasi-ordered residuated system

and analyze their interconnections.
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1. Introduction

The concept of residuated relational systems ordered under a quasi-order relation, or
quasi-ordered residuated systems (briefly, QRS), was introduced in 2018 by S. Bonzio
and I. Chajda [2]. Previously, this concept was discussed in [1]. The author introduced
and developed the concepts of ideals [15] and filters [9] in this algebraic structure
as well as several types of filters such as implicative [11], weakly implicative [16],
associated [10] and comparative filters [12]. In [12], it is shown that every comparative
filter of a quasi-ordered residuated system A is an implicative filter of A and the reverse
it need not be valid. The concept of a strong quasi-ordered residuated system was
introduced and discussed in [13]. In such systems, comparative and implicative filters
are coincide. The specificity of strong QRS’s is that they allow us to determine the
least upper bound for each their two elements.

In paper [14], as a continuation of the previous articles, the fundamental properties
of the least upper bound in such systems are discussed. In addition, the concepts of
prime and irreducible filters in strong quasi-ordered residuated systems have been
introduced and some their important properties have been recognized. It is shown
that each prime filter in a strong quasi-ordered residuated system is an irreducible
filter.

For the purposes of this article, we recognize the concept of prime filter of a QRS
as a ’prime filter of the first type’ (Definition 3.1). In what follows in this article, we
introduce two more types of prime filters in strong quasi-ordered relational systems.
We introduce the concepts of ’prime filters of the second type’ (Definition 3.2) and
’prime filters of the third type’ (Definition 3.3) in a strong QRS. In addition to the
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above, the links between these three types of prime filters in a strong quasi-ordered
residuated system are considered. Thus it is shown that each prime filter of the second
type is a prime filter of the first type (Theorem 3.1) and a prime filter of the thitd
type (Theorem 3.6) and that the reverse does not have to be (Example 3.5, Example
3.6 and Example 3.7).

We use the opportunity to draw the potential reader’s attention to the fact that
the results obtained in this and previous research on strong quasi-ordered residual
systems differ from the results about ideals and filters of commutative residuated
lattice ordered under a (quasi-)order (see, for example [5, 6]).

2. Preliminaries

2.1. Quasi-ordered residuated systems. In article [2], S. Bonzio and I. Chajda
introduced and analyzed the concept of residual relational systems.

Definition 2.1 ([2], Definition 2.1). A residuated relational system is a structure
A = 〈A, ·,→, 1, R〉, where 〈A, ·,→, 1〉 is an algebra of type 〈2, 2, 0〉 and R is a binary
relation on A and satisfying the following properties:

(1) (A, ·, 1) is a commutative monoid;
(2) (∀x ∈ A)((x, 1) ∈ R);
(3) (∀x, y, z ∈ A)((x · y, z) ∈ R⇐⇒ (x, y → z) ∈ R).

We will refer to the operation · as multiplication, to→ as its residuum and to condition
(3) as residuation.

The basic properties for residuated relational systems are subsumed in the following

Theorem 2.1 ([2], Proposition 2.1). Let A = 〈A, ·,→, 1, R〉 be a residuated relational
system. Then

(4) (∀x, y ∈ A)(x→ y = 1 =⇒ (x, y) ∈ R);
(5) (∀x ∈ A)((x, 1→ 1) ∈ R);
(6) (∀x ∈ A)((1, x→ 1) ∈ R);
(7) (∀x, y, z ∈ A)(x→ y = 1 =⇒ (z · x, y) ∈ R);
(8) (∀x, y ∈ A)((x, y → 1) ∈ R).

Recall that a quasi-order relation ′ 4 ′ on a set A is a binary relation which is
reflexive and transitive.

Definition 2.2 ([2], Definition 3.1). A quasi-ordered residuated system is a residuated
relational system A = 〈A, ·,→, 1,4〉, where 4 is a quasi-order relation in the monoid
(A, ·)

Example 2.1. Let A = {1, a, b, c, d} and operations ’·’ and ’→’ defined on A as
follows:

· 1 a b c d
1 1 a b c d
a a a d c d
b b d b d d
c c c d c d
d d d d d d

and

→ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1
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Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the relation ’4’ is
defined as follows

4:= {(1, 1), (a, 1), (b, 1), (c, 1), (d, 1), (b, b), (a, a), (c, c), (d, d), (c, a), (d, a), (d, b), (d, c)}.

Example 2.2. For a commutative monoid A, let P(A) denote the powerset of
A, ordered by set inclusion, and ’·’ the usual multiplication of subsets of A. Then
〈P(A), ·,→, A,⊆〉 is a quasi-ordered residuated system in which the residuum are
given by

(∀X,Y ∈ P(A))(Y → X := {z ∈ A : Y z ⊆ X}).

Example 2.3. Let R be a field of real numbers. Define a binary operations ’·’ and
’→’ on A = [0, 1] ⊂ R by

(∀x, y ∈ [0, 1])(x · y := max{0, x + y − 1}) and x→ y := min{1, 1− x + y}).

Then, A is a commutative monoid with the identity 1 and 〈A, ·,→,6, 1〉 is a quasi-
ordered residuated system.

Example 2.4. Any commutative residuated lattice 〈A, ·,→, 0, 1,∧,∨, R〉 where R is
a lattice quasi-order is a quasi-ordered residuated system.

Remark 2.1. Quasi-ordered residauted system, generally speaking, differs from the
commutative residuated lattice 〈A, ·,→, 0, 1,u,t, R〉 where R is a lattice quasi- order.
First, our observed system does not have to be limited from below. Second, the
observed system does not have to be a lattice. However, the difference between a
quasi-ordered relational system and a CRPM (Example 2.4) is only in order relations
since a quasi-order relation does not have to be antisymmetric. More about this
last-mentioned algebraic structure can be found in [8].

The following proposition shows the basic properties of quasi-ordered residuated
systems.

Proposition 2.2 ([2], Proposition 3.1). Let A be a quasi-ordered residuated system.
Then

(9) (∀x, y, z ∈ A)(x 4 y =⇒ (x · z 4 y · z ∧ z · x 4 z · y));
(10) (∀x, y, z ∈ A)(x 4 y =⇒ (y → z 4 x→ z ∧ z → x 4 z → y));
(11) (∀x, y ∈ A)(x · y 4 x ∧ x · y 4 y).

2.2. Filters in QRS. In this subsection we give some notions that will be used in
this article.

Definition 2.3 ([9], Definition 3.1). For a non-empty subset F of a quasi-ordered
residuated system A we say that it is a filter of A if it satisfies conditions

(F2) (∀u, v ∈ A)((u ∈ F ∧ u 4 v) =⇒ v ∈ F ), and
(F3) (∀u, v ∈ A)((u ∈ F ∧ u→ v ∈ F ) =⇒ v ∈ F ).

It is shown ([9], Proposition 3.4 and Proposition 3.2) that if a non-empty subset
F of a quasi-ordered system A satisfies the condition (F-2), then it also satisfies the
conditions

(F- 0): 1 ∈ F and
(F-1): (∀u, v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F )).
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If F(A) is the family of all filters in a QRS A, then F(A) is a complete lattice ([9],
Theorem 3.1).

Notions and notations that are used but not previously determined in this paper
can be found in [2, 9, 10, 13].

Remark 2.2. In implicative algebras, the term ’implicative filter’ is used instead of
the term ’filter’ we use (see, for example [3, 17]) because in the structure we study the
concept of filter is determined more complexly than requirements (F3). It is obvious
that our filter concept is also a filter in the sense of [3, 4, 17]. The term ’special
implicative filter’ is also used in the aforementioned sources if the implicative filter in
the sense of [17] satisfies some additional condition.

2.3. Strong QRS. In this subsection we analyze the concept of strong quasi-ordered
residuated systems. This concept was introduced and analyzed in [13]. Considering
the fact that the quasi-order relation ’4’, which appears in the determination of this
algebraic system, does not have to be antisymmetric, the following definition gets
a clearer meaning. It is generally known that a quasi-order relation 4 on a set A
generates a equivalence relation ≡4:=4 ∩ 4−1 on A. Due to properties (9) and
(10), this equivalence is compatible with the operations in A. Thus, the relation ≡4

is a congruence on A.

Definition 2.4 ([13], Definition 6). For a quasi-ordered residuated system A it is
said to be a strong quasi-ordered residuated system if the following holds

(14) (∀u, v ∈ A)((u→ v)→ v ≡4 (v → u)→ u).

The following is an example of a non strong QRS:

Example 2.5. Let A = {1, a, b} and the operations ’·’ and ’→’ be defined on A as
follows:

· 1 a b
1 1 a b
a a a a
b b a b

and

→ 1 a b
1 1 a b
a 1 1 1
b 1 1 a

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the relation ’4’ is
defined as follows

4:= {(1, 1), (a, a), (b, b), (a, 1), (b, 1), (a, b)}.

It can be easily checked that A is a quasi-ordered residuated system. Since

(a→ b)→ b = 1→ b = b and (b→ a)→ a = a→ a = 1,

we have (a→ b)→ b 4 (b→ a)→ a but ¬((b→ a)→ a 4 (a→ b)→ b). Thus, A is
not a strong quasi-ordered residuated system.

Now, we give an example of strong quasi-ordered residuated system.

Example 2.6. Let A = {1, a, b, c} and operations ’·’ and ’→’ defined on A as follows:
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· 1 a b c
1 1 a b c
a a a a a
b b a b a
c c a a c

and

→ 1 a b c
1 1 a b c
a 1 1 c 1
b 1 c 1 c
c 1 b b 1

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the relation ’4’ is
defined as follows

4:= {(1, 1), (a, 1), (b, 1), (c, 1), (a, a), (b, b), (c, c), (a, c)}.
Direct verification it can prove that A is a strong quasi-ordered residuated system.

In this paper, we shall investigate the structure of strong quasi-ordered residuated
systems. In [13], Theorem 5, it is shown that comparative and implicative filters in
such algebraic systems are coincide. Some of the propositions made in this article have
already been shown in [13] such as Theorem 2.3 and Theorem 2.5. We are re-enclose
them in this paper in order to achieve greater consistency of the material presented
in it.

Theorem 2.3. Let A be a strong quasi-ordered residuated system. Then the following
holds

(15) (∀u, v ∈ A)(u 4 v =⇒ v ≡4 (v → u)→ u).

Corollary 2.4. Let A be a strong quasi-ordered residuated system. Then the following
holds

(16) (∀x, y ∈ A)(y → x ≡4 ((y → x)→ x)→ x) and
(17) (∀x, y ∈ A)((y → x)→ x ≡4 (((y → x)→ x)→ x)→ x).

The following theorem shows that in a strong quasi-ordered residuated system we
can construct the least upper bound for each pair of elements.

Theorem 2.5. Let A be a strong quasi-ordered residuated system. For any u, v ∈ A,
the element

u t v := (v → u)→ u ≡4 (u→ v)→ v

is the least upper bound of u and v.

Example 2.7. Let A = {1, a, b, c, d} and operations ’·’ and ’→’ defined on A as
follows:

· 1 a b c d
1 1 a b c d
a a a a a a
b b a b a a
c c a a c d
d d a a d d

and

→ 1 a b c d
1 1 a b c d
a 1 1 1 1 1
b 1 c 1 d 1
c 1 b d 1 1
d 1 d d d 1

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the relation ’4’ is
defined as follows 4:= {(1, 1), (a, 1), (b, 1), (c, 1), (d, 1), (a, a), (b, b), (c, c), (d, d), (a, b),
(a, c), (a, d), (b, d), (c, d)}. Direct verification it can prove that A is a strong quasi-
ordered residuated system. In this example, to illustrate, we see that for the incom-
parable elements b and c we have

b t c = (b→ c)→ c = (c→ b)→ b = d.
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Theorem 2.6 ([13], theorem 7). Let A be a strong quasi-ordered residuated system.
Then (A,t) is a distributive upper semi-lattice in the following sense

(∀x, y, z ∈ A)((x t y) t z ≡4 (x t z) t (y t z)).

Proposition 2.7 ([14], Proposition 2). Let A b4 a strong quasi-ordered residuated
system. Then

(a) (∀u, v ∈ A)(u t 1 = 1 t u = 1 and u t v = v t u),
(b) (∀x, y, z ∈ A)((z · x) t (z · y) 4 x t y),
(c) (∀x, y, z ∈ A)((x t y)→ z 4 (x→ z) t (y → z)),
(d) (∀x, y, z ∈ A)((z → x) t (z → y) 4 z → (x t y)),
(e) (∀, y ∈ A)(x t y 4 (y → x) t (x→ y)),
(f) (∀x, y ∈ A)((x t y) t x ≡4 x t y).

3. Three types of prime filters in QRS

The following definition gives the concept of prime filters of the first type in QRS’s.

Definition 3.1. ([14]) Let F be a filter of a strong quasi-ordered residuated system
A. Then F is said to be a prime filter of the first type in A if the following holds

(PF1) (∀u, v ∈ A)(u t v ∈ F =⇒ (u ∈ F ∨ v ∈ F )).

Example 3.1. Let A = {1, a, b, c} and operations ’·’ and ’→’ defined on A as follows:

· 1 a b c
1 1 a b c
a a a a a
b b a a a
c c b a a

and

→ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 c 1 1
c 1 b c 1

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the relation ’4’ is
defined as follows

4:= {(1, 1), (a, 1), (b, 1), (c, 1), (a, a), (b, b), (c, c), (a, b), (a, c), (b, c)}.
Direct verification it can prove that A is a strong quasi-ordered residuated system.
The only proper filter in this system is the subset F := {1}. It is easily concluded by
directly checking that F is a prime filter of the first type.

Example 3.2. Let A be as in the Example 2.6. Then the subsets {1}, {1, b} and
{1, c} are filters in A. It can be checked that F1 := {1, b} and F2 := {1, c} are prime
filters of the first type in A while the filter {1} is not prime of the first type because
we have b t c = 1 ∈ {1} but b /∈ {1} and c /∈ {1}.

We first show one important feature of prime filters in strong QRSs.

Proposition 3.1. Let F be a prime filter of the first type in a strong quasi-ordered
residuated system A. Then

(∀x, y ∈ A)(x t y ∈ F =⇒ (x→ y ∈ F ∨ y → x ∈ F )).

Proof. The proof of this proposition follows directly from the claim (e) of Proposition
2.7, (F-2) and (PF1). �
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The result of the previous proposition is the motive for introducing the notion of
prime filters of the second type in a strong quasi-ordered residuated system.

Definition 3.2. A filter F of a strong quasi-ordered residuated system A is a prime
filter of the second type if the following holds

(PF2) (∀x, y ∈ A)(x→ y ∈ F ∨ y → x ∈ F ).

Example 3.3. Let A be as in the Example 2.6. Subsets {1, c} is a prime UP-filter
of the second type of A. The subset F := {1, b} is a prime UP-filter of the first
type but it is not a prime UP-filter of the second type because, for example, holds
a→ b = c /∈ F and b→ a = c /∈ F .

In the previous example it was shown that a filter of a quasi-ordered residuated
system can be a prime filter of the first type but it does not have to be a prime
filter of the second type. However, the following theorem shows that if F satisfies the
condition (PF2), then it satisfies the condition (PF1) also, i.e. any prime filter of the
second type of a strong quasi-ordered residuated system A is a prime filter of the first
type of A.

Theorem 3.2. If F is s filter of the second type in a strong quasi-ordered residuated
system A, then F is a prime filter of the first type in A.

Proof. Let A be a strong quasi-ordered residuated system and assume that a filter
F in A satisfies the condition (PF2). Let x t y ∈ F be holds for elements x, y ∈ A,
i.e. let (x → y) → y ≡4 (y → x) → x ∈ F be holds. Then from x → y ∈ F and
(x → y) → y ∈ F it follows y ∈ F , and from y → x ∈ F and (y → x) → x ∈ F it
follows x ∈ F according to (F-3). Therefore, F is a prime filter of the first type in
A. �

Theorem 3.3 (Extension property for prime filters of the second type). Let A be
a strong quasi-ordered residuated system and let F and G be filter of A such that
F ⊆ G. If F is a prime filter of the second type, then G is a prime filter of the
second kind also.

Proof. Since F is a prime filter of the second type of A, i.e. since it satisfies the con-
dition (PF2), it follows that the filter G also satisfies the condition (PF2). Therefore
G is a prime filter of the second type of A. �

The following theorem gives one sufficient condition that a filter of first type in a
strong quasi-ordered residuated system be a filter of the second type.

Theorem 3.4. Let a strong quasi-ordered residuated system A satisfies the condition
(U) (∀x, y ∈ A)((x→ y) t (y → x) = 1).

Then any prime filter of the first type in A is a prime filter of the second type.

Proof. Let F be a prime filter of the first type in a strong quasi-ordered residuated
system A. If A satisfy the condition (U), then from (x → y) t (y → x) = 1 ∈ F it
follows x→ y ∈ F or y → x ∈ F because F is a prime filter of the first type in A. So
F is a prime filter of the second type in A. �

Our next theorem gives one important property of prime filters of the second type
in a strong QRS.
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Theorem 3.5. If the relation 4 in a strong quasi-ordered residuated system A is a
linear relation in the following sense

(∀x, y ∈ A)(x 4 y ∨ y 4 x),

then every filter in A is a prime filter of the second type.

Proof. Let x, y ∈ A be arbitrary elements. Then x 4 y or y 4 x by hypothesis. Thus
1 4 x → y or 1 4 y → x by (3). If F is a filter in A, then x → y ∈ F or y → x ∈ F
by (F-0) and (F-2). Hence F is a prime filter of the second type in A. �

Example 3.4. Let A be as in the Example 3.1. The relation 4 is linear and the
subset F := {1} is a prime filter in A.

One connection between the linearity of the relation 4 and the requirement that
the filter {1} be a prime filter (of the first type) in a strong quasi-ordered residuated
system is given by the following theorem.

Theorem 3.6. If {1} is a prime filter of the first type in a strong quasi-ordered
residuated system A, then holds

(∀x, y ∈ A)(x t y = 1 =⇒ (x 4 y ∨ y 4 x)).

Proof. Let {1} be a prime fin A and let x, y ∈ A be such that x t y ∈ {1}. Then
x ∈ {1} or y ∈ {1}. Thus y → x ∈ {1} or x → y ∈ {1} by (F-2). Hence x 4 y or
y 4 x by (4). �

Obviously, if F is a prime filter of the second type of a strong quasi-ordered resid-
uated system A, then it holds

(∀x, y ∈ A)((x→ y) t (y → x) ∈ F ).

Indeed, from x → y ∈ F or y → x ∈ F it follows (x → y) t (y → x) ∈ F because
x→ y 4 (x→ y) t (y → x) or y → x 4 (x→ y) t (y → x) with respect to (F-2).

The procedure exposed in the previous analysis is the motive for introducing the
concept of prime filter of the third type in a strong quasi-ordered residuated system.

Definition 3.3. A prime filter F of the third type of a strong quasi-ordered residated
system A is a filter of A satisfying

(PF3) (∀x, y ∈ A)((x→ y) t (y → x) ∈ F ).

From the definitions it is also clear that a prime filters of the third type has the
following two properties. Therefore, we will state the following two theorems without
proof.

Theorem 3.7. Any prime filter of the second type is a prime filter of the third type.

Theorem 3.8 (Extension property for prime filters of the third type). Let A be a
strong quasi-ordered residuated system and let F and G be filter of A such that F ⊆ G.
If F is a prime filter of the third type, then G is a prime filter of the third type also.

Corollary 3.9. If {1} is a prime filter of the third type of a strong quasi-ordered
residuated system A, then every filter in A is a prime filter of the third type in A.

The following example shows that a prime filter of the first type does not have to
be a prime filter of the third type.
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Example 3.5. Let A be as in Example 2.6. The subset F2 := {1, c} is a prime filter
of the second type of A. Thus, F2 is a prime filter of the third type of A also, by
Theorem 3.6. On the other side, F1 := {1, b} is a prime filter of the first type but it is
not a prime filter of the second type (see Example 3.1). Direct verification it can show
that F1 is not a prime filter of the first third type, too. Indeed, for example, for x = a
and y = b, we have a→ b = c and b→ a = c but (x→ y)t (y → x) = ct c = c /∈ F1.

The following example shows that a prime filter of the third type of a strong quasi-
ordered residuated system does not have to be a prime filter of the second type. Also,
this example shows that a prime filter of the third type of a strong quasi-ordered
residuated system does not have to be a prime filter of the first type.

Example 3.6. Let A = {1, a, b, c, d} and operations ’·’ and ’→’ defined on A as
follows:

· 1 a b c d
1 1 a b c d
a a a a a a
b b a a a a
c c a a a a
d d a a a a

and

→ 1 a b c d
1 1 a b c d
a 1 1 1 1 1
b 1 b 1 1 1
c 1 c c 1 d
d 1 d d c 1

Then A = 〈A, ·,→, 1〉 is a quasi-ordered residuated systems where the relation ’4’ is
defined as follows 4:= {(a, 1), (a, a), (a, b), (a, c), (a, d), (b, 1), (b, b), (b, c), (b, d), (c, 1),
(c, c), (d, 1), (d, d)}. Direct verification it can prove that A is a strong quasi-ordered
residuated system. Here it is (c → d) → d = d → d = 1, and (d → c) → c = c →
c = 1. Subset F := {1} is a filter of A. So c t d = 1. Obviously, this filter is not a
prime filter of the first type because c t d = 1 ∈ F but c /∈ F and d /∈ F . It can be
shown by direct verification that F is a prime filter of the third type of A. Also, this
filter is not a prime filter of the second type, because for x = c and y = d we have
x→ y = c→ d = d /∈ F and y → x = d→ c = c /∈ F .

Of course, at the end of the section in the following example we show that there is
a filter in a strong quasi-ordered residuated system that it is not a prime filter of any
kind listed in this article.

Example 3.7. Let A be as in Example 2.7. Subset F := {1} is a filter in A. But:
(i) F is not a prime filter of the first type of A because c t d = 1 ∈ F but c /∈ F

and d /∈ F .
(ii) F is not a prime filter of the second type of A because for example, we have

b→ c = d /∈ F and c→ b = d /∈ F .
(iii) The filter F is not a prime filter of the third type of A because for example,

we have (b→ c) t (c→ b) = d /∈ F .

4. Conclusion

The concept of quasi-ordered residuated system was introduced in [2] by Bonzio and
Chajda. The concept of filters in this algebraic structure as well as various types
of filters were introduced by the author ([9, 10, 11, 12, 16]). The notion strong
quasi-ordered residuated systems it is designed to form an environment in which
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implicative and comparative filters coincide ([13]). In such algebraic structure, the
author designed the notions of prime and irreducible filters ([14]).

In this paper, as a continuation of previous research, the author has dealt with
the possibility of establishing three different concepts of prime filters in a strong
quasi-ordered residuared system. The situation with prime filters in commutative
residuated lattice (A, ·,→,∧,∨, 0, 1,4), where 4 is a quasi-ordered on A is different
from the situation presented here. To this end, in order to gain insight into the types
of prime filters in commutative residuated lattice, the reader can look at articles [5, 7].

In further research of these algebraic structures, one could, among other things,
pay attention to the conditions that would lead to some of the types of prime filters
coincide. Judging by the results obtained in this and some of the previous research,
more attention should be paid to strong quasi-ordered residuated systems in which 4
is a linear relation.

It is possible to design an algebraic structure (A, ·,→, 1,t,4) which has the fol-
lowing properties

(a) (A, ·, 1) is a commutative monoid;
(b) (∀x, y, z ∈ A)(x 4 z ⇐⇒ x 4 y → z);
(c) (A,t, 1) is a distributive upper semi-lattice; and
(d) (∀x, y ∈ A)((x→ y) t (y → x) = 1).

Thus, it is an algebraic structure in which the last lower bound for a pair of elements
does not have to be determined and it does not have to be bounded from below. The
algebraic structure designed in this way is reminiscent of the determination of MTL-
algebra in which the constraint requirements on the underside are omitted and, and
moreover, it does not have to be a lower semi-lattice. Thus, an algebraic structure
designed in this way would be an incomplete MTL-algebra. This reasoning could be
accepted as a justification for studying such algebraic structures. Of course, it would
be a generalization of MTL-algebra. In such an algebraic structure, any filter would
be a prime filter of the third type. At the same time, each a prime filter of the first
type would be a prime filter of the second type.

Acknowledgement. The author thanks the reviewer(s) for helpful suggestions.
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78000 Banja Luka, Bosnia and Herzegovina. ORCID ID 0000-0003-1148-3258

E-mail address: daniel.a.romano@hotmail.com, bato49@hotmail.com

https://doi.org/10.7251/BIMVI2003529R
https://doi.org/10.7251/BIMVI2003529R
https://doi.org/10.47443/cm.2020.0010
http://dx.doi.org/10.22199/issn.0717-6279-2021-02-0025
https://doi.org/10.7251/BIMVI2101177R
https://doi.org/10.30538/oms2021.0146
https://doi.org/10.30538/oms2021.0154
https://doi.org/10.47443/cm.2021.0025
http://dx.doi.org/10.22199/issn.0717-6279-4332

	1. Introduction
	2. Preliminaries
	2.1. Quasi-ordered residuated systems
	2.2. Filters in QRS
	2.3. Strong QRS

	3. Three types of prime filters in QRS
	4. Conclusion
	References

