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A certain class of statistical convergence of martingale
sequences and its applications to Korovkin-type
approximation theorems
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Abstract. In this paper, we investigate and study the notions of statistical product conver-

gence and statistical product summability via deferred Cesàro and deferred Nörlund product
means for martingale sequences of random variables. We then establish an inclusion theorem

concerning the relation between these two beautiful and definitively useful concepts. Also,

based upon our proposed ideas, we demonstrate new thoughtful approximation of Korovkin-
type theorems for a martingale sequence over a Banach space. Moreover, we establish that our

theorems effectively extend and improve most (if not all) of the previously existing outcomes

(in statistical and classical versions). Finally, by using the generalized Bernstein polynomials,
we present an illustrative example of a martingale sequence in order to demonstrate that our

established theorems are quite stronger than the traditional and statistical versions of different

theorems existing in the literature.
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1. Introduction and motivation

Let (Xk) be a random variable defined over the probability measurable space (Ω,F,P).
Suppose that Fk ⊆ F (k ∈ N) be a monotonically increasing sequence of σ-fields of
measurable sets. Now, considering the random variable (Xk) with respect to measur-
able functions (Fk), we adopt a stochastic sequence (Xk,Fk; k ∈ N).

A given stochastic sequence (Xk,Fk; k ∈ N) is said to be a martingale sequence if
(i) E|Xk| <∞,

(ii) E(Xk+1|Fk) = Xk almost surely (a.s.) and

(iii) (Fk) is a measurable sequence of functions,
where E is the mathematical expectation.

We now recall the definition of convergence of martingale sequences of random
variables.
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Definition 1.1. A martingale sequence (Xk,Fk; k ∈ N) with E|Xk| is bounded and
Prob(Xk) = 1 (that is, with probability 1) is said to be convergent to a martingale
(X0,F0), if

lim
k→∞

(Xk,Fk) −→ (X0,F0) (E|X0| <∞).

In the study of sequence space, the classical convergence of sequences and series
has been achieved a high degree of development. Subsequently, a new concept, called
the statistical convergence has been merged into this field, and it is more general than
the ordinary convergence. Such a beautiful concept was introduced and studied in-
dependently by two eminent mathematicians, Fast [5] and Steinhaus [18]. Gradually,
by using this valuable concept with different settings, various researchers developed
many interesting and useful outcomes in several fields of mathematics such as Fourier
series, Approximation theory, Probability theory, Machine Learning, Signal Process-
ing, Measure theory, and so on. Moreover, the introduction of statistical probability
convergence has enhanced the glory of this development. For some recent research
works in this direction, see [2], [3], [4], [6], [7], [9], [11], [16] and [20].

Let Y ⊆ N and, let

Yk = {ϑ : ϑ 5 k and ϑ ∈ Y} (k ∈ N).

Then δ(Y) is the natural density of Y, defined by

δ(Y) = lim
k→∞

|Yk|
n

= η,

where η is a real finite number and |Yk| is the cardinality of Yk.

Definition 1.2. (see [5] and [18]) A given sequence (uk) is statistically convergent
to u if, for each ε > 0,

Yε = {ϑ : ϑ 5 k and |uϑ − u| = ε} (k ∈ N)

has zero natural density. Thus, for each ε > 0, we have

δ(Yε) = lim
k→∞

|Yε|
k

= 0.

We write
stat lim

k→∞
uk = u.

We now introduce the definition of statistical convergence of martingale sequence
of random variables.

Definition 1.3. A bounded martingale sequence (Xk,Fk; k ∈ N) having its proba-
bility 1 is said to be statistically convergent to a martingale (X0,F0) with E|X0| <∞
if, for all ε > 0,

Yε = {ϑ : ϑ 5 k and |(Xϑ,Fϑ)− (X0,F0)| = ε}
has zero natural density. This means that, for every ε > 0, we have

δ(Yε) = lim
k→∞

|Yε|
k

= 0.

We write
statmart lim

k→∞
(Xk,Fk) = (X0,F0).
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Example 1.1. Let (Fk, k ∈ N) be a monotonically increasing sequence of 0-mean
independent random variables over σ-fields. Also, let (Xk) ∈ Fk be such that

Xk =


1 (k = 2m; m ∈ N)

0 (otherwise).

It is easy to see that the martingale sequence (Xk,Fk; k ∈ N) is statistically convergent
to zero, but not simply martingale convergent.

Motivated essentially by the above-mentioned investigations, here we investigate
and study the notions of statistical product convergence and statistical product summa-
bility via deferred Cesàro and deferred Nörlund product means for martingale se-
quences of random variables. We then establish an inclusion theorem concerning the
relation between these two beautiful and definitively useful concepts. Also, based upon
our proposed ideas, we demonstrate new thoughtful approximation of Korovkin-type
theorems for a martingale sequence over a Banach space. Moreover, we establish that
our theorems effectively extend and improve most (if not all) of the previously exist-
ing outcomes (in statistical and classical versions). Finally, by using the generalized
Bernstein polynomials, we present an illustrative example of a martingale sequence
in order to demonstrate that our established theorems are quite stronger than the
traditional and statistical versions of different theorems existing in the literature.

2. A certain class of martingale sequences

Let (αk) and (βk) be sequences of non-negative integers such that αk < βk and

lim
k→∞

βk = +∞.

Then the deferred Cesàro mean for the martingale sequence (Xk,Fk; k ∈ N) is defined
by

Ck(Xk,Fk) =
(Xαk+1,Fαk+1) + (Xαk+2,Fαk+2) + · · ·+ (Xβk ,Fβk)

βk − αk

=
1

βk − αk

βk∑
i=αk+1

(Xi,Fi).

Similarly, let (pj) be a sequence of non-negative numbers such that

Pk =

βk∑
j=αk+1

pβk−j .

Then the deferred Nörlund mean for the martingale sequence (Xk,Fk; k ∈ N) of
random variables is defined by

Nk(Xk,Fk) =
1

Pk

bk∑
j=αk+1

pβk−j(Xj ,Fj).

We now define the product of deferred Cesàro and deferred Nörlund means for the
martingale sequence as follows:
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Ωk(Xk,Fk) = (CN)k =
1

βk − αk

βk∑
i=αk+1

(Ni)

=
1

βk − αk

βk∑
i=αk+1

1

Pi

βk∑
j=αk+1

pβk−j(Xj ,Fj).

We now present the definitions of the statistical deferred Cesàro and deferred
Nörlund product mean convergence (that is, DCN-mean convergence) and statisti-
cally deferred Cesàro and deferred Nörlund product mean summability (that is, DCN-
mean summability) for martingale sequences of random variables.

Definition 2.1. Let (αk) and (βk) be sequences of non-negative integers, and let (pϑ)
be a sequence of non-negative numbers. A bounded martingale sequence (Xk,Fk; k ∈
N) having probability 1 is statistically deferred Cesàro and deferred Nörlund product
convergent (DCN-mean convergent) to a martingale (X0,F0) with E|X0| < ∞ if, for
all ε > 0,

Yε = {ϑ : ϑ 5 (βk − αk)Pk and pβϑ−ϑ|(Xϑ,Fϑ)− (X0,F0)| = ε}

has zero natural density. This means that, for every ε > 0, we have

lim
k→∞

|{ϑ : ϑ 5 (βk − αk)Pk and pβϑ−ϑ|(Xϑ,Fϑ)− (X0,F0)| = ε}|
(βk − αk)Pk

= 0.

We write

Ωkstat lim
k→∞

(Xk,Fk) = (X0,F0).

Definition 2.2. Let (αk) and (βk) be sequences of non-negative integers. A bounded
martingale sequence (Xk,Fk; k ∈ N) having probability 1 is statistically deferred
Cesàro and deferred Nörlund product summable (DCN-mean summable) to a mar-
tingale (X0,F0) with E|X0| <∞ if, for all ε > 0,

Yε = {ϑ : αk < ϑ 5 βk and |Ωϑ(Xk,Fk)− (X0,F0)| = ε}

has zero natural density. This means that, for every ε > 0, we have

lim
k→∞

|{ϑ : αk < ϑ 5 βk and |Ωϑ(Xk,Fk)− (X0,F0)| = ε}|
βk − αk

= 0.

We write

statΩk lim
k→∞

Ωk(Xk,Fk) = (X0,F0).

We now establish an inclusion theorem concerning the above two new and interest-
ing notions that, every statistical DCN-product mean convergent martingale sequence
is statistically DCN-product mean summable, but the converse is not generally true.

Theorem 2.1. If a given martingale sequence (Xk,Fk; k ∈ N) is statistical DCN-
mean convergent to a martingale (X0,F0) with E|X0| < ∞, then it is statistically
DCN- mean summable to the same martingale, but not conversely.
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Proof. Suppose the given martingale sequence (Xk,Fk; k ∈ N) is statistically DCN-
mean convergent to a martingale (X0,F0) with E|X0| <∞. Then, by Definition 2.1,
we have

lim
k→∞

|{ϑ : ϑ 5 (βk − αk)Pk and pβϑ−ϑ|(Xϑ,Fϑ)− (X0,F0)| = ε}|
(βk − αk)Pk

= 0.

Now, for the following two sets:

Hε = {ϑ : ϑ 5 (βk − αk)Pk and pβϑ−ϑ|(Xϑ,Fϑ)− (X0,F0)| = ε}

and

Hcε = {ϑ : ϑ 5 (βk − αk)Pk and pβϑ−ϑ|(Xϑ,Fϑ)− (X0,F0)| < ε},
we find that

|Ωk(Xk,Fk)− (X0,F0)| =

∣∣∣∣∣∣ 1

βk − αk

βk∑
i=αk+1

1

Pi

βk∑
j=αk+1

pβϑ−ϑ(Xj ,Fj)− (X0,F0)

∣∣∣∣∣∣
5

∣∣∣∣∣∣ 1

βk − αk

βk∑
i=αk+1

 1

Pi

βk∑
j=αk+1

pβϑ−ϑ(Xj ,Fj)− (X0,F0)

∣∣∣∣∣∣
+

∣∣∣∣∣ 1

βk − αk

βk∑
i=αk+1

(X0,F0)− (X0,F0)

∣∣∣∣∣
5

1

(βk − αk)Pk

βk∑
i=αk+1
(ϑ∈Hε)

|(Xk,Fk)− (X0,F0)|

+
1

(βk − αk)Pk

βk∑
i=αk+1
(ϑ∈Hcε)

|(Xk,Fk)− (X0,F0)|

+ |(X0,F0)|

∣∣∣∣∣ 1

βk − αk

βk∑
λ=αk+1

−1

∣∣∣∣∣
5

1

(βk − αk)Pk
|Hε|+

1

(βk − αk)Pk
|Hcε | = 0.

Thus, clearly, we obtain

|Ωk(Xk,Fk)− (X0,F0)| < ε.

Therefore, the martingale sequence (Xk,Fk; k ∈ N) is statistically DCN-mean sum-
mable to the martingale (X0,F0) with E|X0| <∞.

Next, in support of the non-validity of the converse statement, we present here
an example demonstrating that a statistically DCN- mean summable of martingale
sequence is not necessarily statistically DCN- mean convergent.

Example 2.1. Let us set

αk = 2k βk = 4k and pk = k (k ∈ N).
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Also, let (Fk, k ∈ N) be a monotonically increasing sequence of 0-mean independent
random variables of σ-fields with (Xk) ∈ Fk such that for k is even

Xk =


1 (k = 2m; m ∈ N)

0 (otherwise)

and for k is odd

Xk =


−1 (k = 2m; m ∈ N)

0 (otherwise).

It is easy to see that, the martingale sequence (Xk,Fk; k ∈ N) is neither ordinar-
ily DCN- mean convergent nor statistically DCN- mean convergent; however, it is
statistically DCN- mean summable to 0.

�

3. Korovkin-type theorems for martingale sequence

Recently, a number of researchers worked toward extending (or generalizing) the ap-
proximation aspects of the Korovkin-type theorems in different fields of mathematics
such as (for example) sequence spaces, Probability space, Measurable space, and so
on. This concept is extremely valuable in Real Analysis, Functional Analysis, Har-
monic Analysis, and other related areas. Here, in this connection, we choose to refer
the interested readers to the recent works [12], [14] and [15].

We establish here the statistical versions of new approximation of Korovin-type
theorems for martingale sequences of positive linear operators via DCN product (that
is, deferred Cesàro and deferred Nörlund) mean.

Let C([0, 1]) be the space of all real-valued continuous functions defined on [0, 1]
under the norm ‖ · ‖∞. Also, let C[0, 1] be a complete norm linear space. Then, for
g ∈ C[0, 1], the norm of g denoted by ‖g‖ is given by

‖g‖∞ = sup{|g(x)| : x ∈ [0, 1]}.
We say that the operator Z is a martingale sequence of positive linear operators,
provided that

Z(g;x) = 0 whenever g = 0 with Z(g;x) <∞ and Prob
(
Z(g;x)

)
= 1.

Theorem 3.1. Let
Zi : C[0, 1]→ C[0, 1]

be a martingale sequence of positive linear operators. Then, for all g ∈ C[0, 1],

Ωkstat lim
i→∞

‖Zi(g;x)− g(x)‖∞ = 0 (1)

if and only if

Ωkstat lim
i→∞

‖Zi(1;x)− 1‖∞ = 0, (2)

Ωkstat lim
i→∞

‖Zi(2x;x)− 2x‖∞ = 0 (3)
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and

Ωkstat lim
i→∞

‖Zi(3x2;x)− 3x2‖∞ = 0. (4)

Proof. Since each of the following functions:

g0(x) = 1, g1(x) = 2x and g2(x) = 3x2

belong to C[0, 1] and are continuous, the implication given by (1) implies that the
conditions (2) to (4) is obvious.

In order to complete the proof of the Theorem 3.1, we first assume that the con-
ditions (2) to (4) hold true. If f ∈ C[0, 1], then there exists a constant V > 0 such
that

|g(x)| 5 V (∀ x ∈ [0, 1]).

We thus find that

|g(t)− g(x)| 5 2V (t, x ∈ [0, 1]). (5)

Clearly, for a given ε > 0, there exists δ > 0 such that

|g(t)− g(x)| < ε (6)

whenever
|t− x| < δ for all t, x ∈ [0, 1].

Let us choose
ϕ1 = ϕ1(t, x) = 4(t− x)2.

If |t− x| = δ, then we find that

|g(t)− g(x)| < 2V
δ2
ϕ1(t, x). (7)

Thus, from the equations (6) and (7), we get

|g(t)− g(x)| < ε+
2V
δ2
ϕ1(t, x),

which implies that

−ε− 2V
δ2
ϕ1(t, x) 5 g(t)− g(x) 5 ε+

2V
δ2
ϕ1(t, x). (8)

Now, since Zi(1;x) is monotone and linear, by applying the operator Zi(1;x) to this
inequality, we have

Zi(1;x)

(
−ε− 2V

δ2
ϕ1(t, x)

)
5 Zi(1;x)(g(t)− g(x))

5 Zi(1;x)

(
ε+

2V
δ2
ϕ1(t, x)

)
.

We note that x is fixed and so h(x) is a constant number. Therefore, we have

−εZi(1;x)− 2V
δ2

Zi(ϕ1;x) 5 Zi(g;x)− g(x)Zi(1;x)

5 εZi(1;x) +
2V
δ2

Zi(ϕ1;x). (9)

We also know that

Zi(g;x)− g(x) = [Zi(g;x)− g(x)Zi(1;x)] + g(x)[Zi(1;x)− 1]. (10)
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So, by using (9) and (10), we have

Zi(g;x)− g(x) < εZi(1;x) +
2V
δ2

Zi(ϕ1;x) + g(x)[Zi(1;x)− 1]. (11)

We now estimate Zi(ϕ1;x) as follows:

Zi(ϕ1;x) = Zi((2t− 2x)2;x) = Zi(2t
2 − 8xt+ 4x2;x)

= Zi(4t
2;x)− 8xZi(t;x) + 4x2Zi(1;x)

= 4[Zi(t
2;x)− x2]− 8x[Zi(t;x)− x] + 4x2[Zi(1;x)− 1].

Thus, by using (11), we obtain

Zi(g;x)− g(x) < εZi(1;x) +
2V
δ2
{4[Zi(t

2;x)− x2]

− 8x[Zi(t;x)− x] + 4x2[Zi(1;x)− 1]}+ f(x)[Zi(1;x)− 1].

= ε[Zi(1;x)− 1] + ε+
2V
δ2
{4[Zi(t

2;x)− x2]

− 8x[Zi(t;x)− x] + 4x2[Zi(1;x)− 1]}+ h(x)[Zi(1;x)− 1].

Since ε > 0 is arbitrary, we can write

|Zi(g;x)− g(x)| 5 ε+

(
ε+

8V
δ2

+ V
)
|Zi(1;x)− 1|

+
16V
δ2
|Zi(t;x)− x|+ 8V

δ2
|Zi(t2;x)− x2|

5 E(|Zi(1;x)− 1|+ |Zi(t;x)− x|+ |Zi(t2;x)− x2|), (12)

where

E = max

(
ε+

8V
δ2

+ V, 16V
δ2

,
8V
δ2

)
.

Now, for a given r > 0, there exists ε > 0 (ε < r), we get

Ai(x; r) = {i : i 5 (βk − αk)Pk and pβϑ−ϑ |Zi(g;x)− g(x)| = r} .

Furthermore, for j = 0, 1, 2, we have

Ai,j(x; r) =

{
i : i 5 (βk − αk)Pk and pβϑ−ϑ |Zm(g;x)− gj(x)| = r − ε

3E

}
,

so that

Ai(x; r) 5
2∑
j=0

Ai,j(x; r).

Clearly, we obtain

‖Ai(x; r)‖C[0,1]

(βk − αk)Pk
5

2∑
j=0

‖Ai,j(x; r)‖C[0,1]

(βk − αk)Pk
. (13)

Now, using the above assumption about the implications in (2) to (4) and, by Defi-
nition 2.1, the right-hand side of (13) tends to 0 as n→∞. Consequently, we get

lim
k→∞

‖Ai(x; r)‖C[0,1]

(βk − αk)Pk
= 0 (δ, r > 0).
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Therefore, the implication (1) holds true. This completes the proof of Theorem 3.1.
�

Next, by using Definition 2.2, we present the following theorem.

Theorem 3.2. Let Zi : C[0, 1] → C[0, 1] be a martingale sequence of positive linear
operators. Also, let g ∈ C[0, 1]. Then

statΩk lim
i→∞

‖Zi(g;x)− g(x)‖∞ = 0 (14)

if and only if

statΩk lim
i→∞

‖Zi(1;x)− 1‖∞ = 0, (15)

statΩk lim
i→∞

‖Zi(2x;x)− 2x‖∞ = 0 (16)

and

statΩk lim
i→∞

‖Zi(3x2;x)− 3x2‖∞ = 0. (17)

Proof. The proof of the Theorem 3.2 is similar to the proof of Theorem 3.1. We,
therefore, choose to skip the details involved. �

We present below an illustrative example for the martingale sequence of positive
linear operators that does not satisfy the conditions of the DCN- product mean of
statistical convergence versions of Korovkin-type approximation Theorem 3.1, and
also the results of Jena and Paikray et al. ([7], [8]), but it satisfies the conditions of
statistical DCN- product mean summability versions of our Korovkin-type approxi-
mation Theorem 3.2. Thus, clearly, our Theorem 3.2 is quite stronger than the results
asserted by Theorem 3.1 and also the results of Jena and Paikray et al. ([7], [8]).

We now recall the operator

τ(1 + τD)

(
D =

d

dτ

)
,

which was used by Al-Salam [1] and, more recently, by Viskov and Srivastava [19] (see
[13] and[17]). Here, in our Example 3.1 below, we use this operator in conjunction
with the Bernstein polynomials.

Example 3.1. Let us consider the Bernstein polynomials Bi(g; τ) on C[0, 1] given by

Bi(g; τ) =

k∑
i=0

g

(
i

k

)(
k

i

)
τ i(1− τ)k−i (τ ∈ [0, 1]). (18)

Next, we present the martingale sequences of positive linear operators on C[0, 1]
defined as follows:

Zi(g; τ) = [1 + (Xk,Fk)]τ(1 + τD)Bi(g; τ) (∀ g ∈ C[0, 1]) (19)

with (Xk,Fk) as already mentioned in above Example 2.1.

Now, by using our proposed operators (19), we calculate the values of the functions
1, 2τ and 3τ2 as follows:

Zi(1; τ) = [1 + (Xi,Fi)]τ(1 + τD)1 = [1 + (Xi,Fi)]τ,
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Zi(2τ ; τ) = [1 + (Xi,Fi)]τ(1 + τD)2τ = [1 + (Xi,Fi)]τ(1 + 2τ),

and

Zi(3τ
2; τ) = [1 + (Xi,Fi)]τ(1 + τD)3

{
τ2 +

τ(1− τ)

i

}
= [1 + (Xi,Fi)]

{
τ2

(
6− 9τ

i

)}
,

so that, we have

statΩk lim
i→∞

‖Zi(1; τ)− 1‖∞ = 0,

statΩk lim
i→∞

‖Zi(2τ ; τ)− 2τ‖∞ = 0

and

statΩk lim
i→∞

‖Zi(3τ2; τ)− 3τ2‖∞ = 0.

Consequently, the sequence Zi(g; τ) satisfies the conditions (15) to (17). Therefore,
by Theorem 3.2, we have

statΩk lim
i→∞

‖Zi(g; τ)− g‖∞ = 0.

Here clearly, the given martingale sequence (Xi,Fi) of functions in Example 2.1 is
statistically DCN- product mean summable but not DCN- product mean statistically
convergent. Thus, the martingale operators defined by (19) satisfy Theorem 3.2.
However, these operators do not satisfy Theorem 3.1.

4. Concluding remarks and observations

In this concluding section of our investigation, we present several further remarks and
observations concerning the various results which we have proved in this article.

Remark 4.1. Let (Xk,Fk; k ∈ N) be a martingale sequence given in Example 2.1.
Then, since

statΩk lim
i→∞

Xi =
1

2
on [0, 1],

we have

statΩk lim
i→∞

‖Zi(gj ;x)− gj(x)‖∞ = 0 (j = 0, 1, 2). (20)

Thus, by Theorem 3.2, we can write

statΩk lim
i→∞

‖Zi(g;x)− g(x)‖∞ = 0, (21)

where
g0(x) = 1, g1(x) = 2x and g2(x) = 3x2.

Here the martingale sequence (Xk,Fk; k ∈ N) is neither statistically convergent nor it
converges uniformly in the ordinary sense; thus, clearly, the classical and statistical
versions of Korovkin-type theorems do not work here for the operators defined by
(19). However, our Theorem 3.2 still works. Hence, this application indicates that
our Theorem 3.2 is a non-trivial generalization of the classical as well as statistical
versions of Korovkin-type theorems (see [5] and [10]).
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Remark 4.2. Let (Xk,Fk; k ∈ N) be a martingale sequence given in Example 2.1.
Then, since

statΩk lim
i→∞

Xi =
1

2
on [0, 1],

so (20) holds true. Now, by applying (20) and Theorem 3.2, the condition (21) also
holds true. However, since the martingale sequence (Xk,Fk; k ∈ N) is not statistically
DCN- product mean convergent, but it is statistically DCN- product mean summable.
Thus, Theorem 3.2 is certainly a non-trivial extension of Theorem 3.1. Therefore,
Theorem 3.2 is stronger than Theorem 3.1.
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