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Abstract. In this paper, we study the existence of mild solutions of Hilfer fractional sto-
chastic differential inclusions driven by sub fractional Brownian motion in the cases when the

multivalued map is convex and non convex. The results are obtained by using fixed point
theorem. Finally an example is given to illustrate the obtained results.
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1. Introduction

A differential inclusion is a generalization of the notion of an ordinary differential
equation, which is often used to deal with differential equations with a discontinuous
right-hand side or an inaccurately known right-hand side [19], [2]. Differential equa-
tion and inclusion with fractional order arise in many mathematics models you can
see in [18], [36], [28], [22]. Basic theory of differential equation involving Caputo and
Riemann-Liouville fractional derivatives can be found in [31], [30], [17], [13], [15], [16],
[38]. Hilfer proposed a general operator for fractional derivative called “Hilfer frac-

tional derivative”. The two parameter family of Hilfer fractional derivative Dα,β
a+ of

order α and type β permits to combine between the Caputo and Riemann derivatives.
the two parameters gives extra degree of feedom on the initial conditions and produces
more type of stationary states. Models with Hilfer fractional derivatives are discussed
in [6], [13]. Sandev et al. [35] derived the existence results of fractional diffusion
equation with Hilfer fractional derivative which attained in terms of Mittag Leffer
functions. Mahmudov and Mc Kibben [27] studied the controllability of fractional
dynamical equation with generalized Riemann-Liouville fractional derivative by using
Schauder fixed point theorem and fractional calculus. Recently, Gu and Trujillo [10]
reported the existence results of fractional differential equations with Hilfer derivative
based on non compact measure method.

the deterministic models often fluctuate due to noise. Naturally, the extension of
such models is necessary to consider stochastic models, where the related parameters
are considered as appropriate Brownian motion and stochastic process. The modeling
of most problems in real situations is described by stochastic differential equations
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rather than deterministic equations. Thus, it is of great importance to design sto-
chastic effects in the study of fractional order dynamical systems.

Chen and Li [29] reported the existence results of fractional stochastic integrod-
ifferential equations with nonlocal initial conditions in Hilbert space. Wang [13] in-
vestigated the existence results of fractional stochastic differential equation by using
Picard type approximation. Lu and Liu [25] studied the controllability of fractional
stochastic hemivariational inequalities based on multivalued maps and fixed point
theorem.

To the best of our knowledge, there is no work reported on stochastic differential
inclusion driven by sub-fractional Brownian motion with Hilfer fractional derivative.
Inspired by the previously mentioned works, in this article, we aim to study this
interesting problem. We prove the existence of PCγ-mild solutions for stochastic
differential inclusion driven by sub-fractional Brownian motion with Hilfer fractional
derivative of the form{

Dα,β
0+ x(t) ∈ Ax(t) + F (t, xt) + g(t)

dSHQ
dt , t ∈ J = [0, b],

(I1−γ
0 x)(t)|t=0 = ϕ ∈ B.

(1)

Where Dα,β
0+ is the generalized Hilfer fractional derivative of orders α ∈ (0, 1) and

type β ∈ [0, 1]. A is the infinitesimal generator of strongly continuous semigroup of
bounded linear operator {T (t)}t≥0.
Assume that F : J ×H → P(H) is a bounded, closed and convex multivalued map,
g : J → L0

Q(K,H), K is another real separable Hilbert space with product 〈., .〉K.

Here L0
Q(K,H) denotes the space of all Q-Hilbert-Schmidt operators from K into H

and SHQ is an Q-sub-fBm with Hurst parameter H ∈ ( 1
2 , 1).

I1−γ
0 is the fractional integral of orders 1− γ (γ = α+ β − αβ).

The plan of this paper is as follows. In section 2 we introduce some notations,
definitions and preliminary facts about sub-fractional Brownian motion and fractional
calculus which are useful throughout the paper. In section 3 we prove the existence of
PCγ-mild solutions for problem 1 under both convexity and nonconvexity conditions
of multivalued right-hand side. Finally an example is given to illustrate our result in
section 4.

2. Preliminaries

In this section, we give some basic definitions, notations, lemmas and some basic facts
about sub-fractional Brownian motion and fractional calculus.
Let (H, ‖ . ‖H, (., .)H) and (K, ‖ . ‖K, (., .)K) be the separable Hilbert spaces. The
notation C(J,H) stand for the Banach space of continuous functions from J to H with
supremum norm i.e., ‖ x ‖J= sup

t∈J
‖ x(t) ‖ and L1(J,H) denotes the Banach space of

function x : J → H which are Bochner integrable normed by ‖ x ‖L1=
∫ b

0
‖ x(t) ‖ dt,

for all x ∈ L1(J,H). A measurable function x : J → H is Bochner integrable if and
only if ‖ x ‖ is Lebesgue integrable.

Let (Ω,F ,P) be a complete probability space equipped with a normal filtration
{Ft}t≥0 satisfying the usual conditions (i.e., right continuous and F0 containing all

P-null sets).
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Definition 2.1. The sub-fractional Brownian motion (sub-fBm in short) with Hurst
parameter H ∈ (0, 1) is a mean zero Gaussian process SH =

{
SHt : t ≥ 0

}
with

S0
H = 0 and the covariance

CH(t, s) = E
[
SHt S

H
s

]
= s2H + t2H − 1

2

[
(s+ t)2H+ | t− s |2H

]
, (2)

for all, s, t ≥ 0.

For H = 1
2 , SH coincides with the standard Brownian motion B. SH is neither

semimartingale nor a Markov process when H 6= 1
2 . The sub-fBm SH has properties

analogous to those of fBm (self-similarity, long-range dependence, Holder paths), but
it does not have stationary increments. More works for sub-fBm can be found in
Bojdecki et al. [33], [34], Tudor [4], Shen et al. [8].

The sub-fractional Brownian motion satisfies the following estimates:[
(2− 22H−1) ∧ 1

]
| t−s |2H E | SH(t)−SH(s) |26

[
(2− 22H−1) ∧ 1

]
| t−s |2H . (3)

Thus, Kolmogorov’s continuity criterion implies that sub-fBm is holder continuous of
order γ for any γ < H on any finite interval. Therefore, if y is a stochastic process
with Holder continuous trajectories of order β > 1−H then the pathwise Riemann-

Stieltjes integral
∫ b

0
yt(ω)dSH(t)(ω) exists for all b ≥ 0. In particular, if H > 1

2 , the

pathwise integral
b∫
0

f
′
(SHt )dSHt exists for all f ∈ C2(R), and

f(SHb )− f(0) =

b∫
0

f
′
(SHt )dSHt . (4)

However, when H < 1
2 the pathwise Riemann-Stieltjes integral

∫ b
0
f
′
(SHt )dSHt (ω) does

not exist. For more details, we refer the reader to [8], [23], [24].
Now we aim at introducing the Wiener integral with respect to one dimensional sub-
fBm SH . Fix a time interval [0, b]. We denote by Λ the linear space of R-valued step
functions on [0, b], that is, y ∈ Λ if

y(t) =

n−1∑
i=1

xi1[ti,ti+1](t),

Where t ∈ [0, b], xi ∈ R and 0 = t1 < t2 < ... < tn = b. For y ∈ Λ we define its
Wiener integral with respect to SH as

b∫
0

y(s)dSHQ (s) =

n−1∑
i=1

xi(S
H
ti+1 − SHti ).

Let HSH be the canonical Hilbert space associated to the sub-fBm SH . That is HSH
is the cloture of the linear span Λ with respect to the scalar product(

1[0,t], 1[0,s]

)
HSH

= CH(t, s).

We know that the covariance of sub-fBm can be written as

E
[
SHt S

H
s

]
=

∫ t

0

∫ s

0

ηH(u, v)dudv = CH(t, s), (5)
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where ηH(u, v) = H(2H − 1)
(
| u− v |2H−2 −(u+ v)2H−2

)
.

Equation (5) implies that

(y, z)HSH
=

∫ t

0

∫ s

0

yuzvηH(u, v)dudv, (6)

for any pair step functions y and z on [0, b]. Consider the kernel

KH(t, s) =
21−H√π
Γ(H − 1

2 )
s3/2−H

(∫ t

0

(x2 − s2)H−3/2ds

)
1[0,t](s), (7)

By Dzhaparidze and Van Zanten [20], we have

CH(t, s) = c2H

∫ t∧s

0

KH(t, u)KH(s, u)du (8)

where

c2H =
Γ(1 + 2H)sin(πH)

π
.

Then, (8) implies that CH(s, t) is non-negative definite. Consider the linear operator
K∗H : Λ→ L2([0, b]) defined by

(K∗Hy) (s) = cH

∫ r

s

yr
∂KH

∂r
(r, s)dr.

Using (6) (8) we have

(K∗Hy,K
∗
Hz)L2([0,b]) = c2H

∫ b

0

(∫ b

s

yr
∂KH

∂r
(r, s)dr

)(∫ b

s

zu
∂KH

∂u
(u, s)du

)
ds

= c2H

∫ b

0

∫ b

0

(∫ r∧u

0

∂KH

∂r
(r, s)

∂KH

∂u
(u, s)ds

)
yrzudrdu

= c2H

∫ b

0

∫ b

0

∂2KH

∂r∂u
(u, s)yrzudrdu

= H(2H − 1)

∫ b

0

∫ b

0

(
| u− r |2H−2 −(u+ r)2H−2

)
yrzudrdu

= (y, z)HSH .

(9)

As a consequence, the operator K∗H provides an isometry between the Hilbert space
HSH and L2([0, b]). Hence, the process W defined by W (t) := SH((K∗H)−1(1[0,t])) is

a Wiener process, and SH has the following Wiener integral representation:

SH(t) = cH

∫ t

0

KH(t, s)dW (s)

because (K∗H)(1[0,t])(s) = cHKH(t, s). By [20], we have

W (t) =

∫ t

0

ZH(t, s)dSH(s),

where

ZH(t, s) =
sH−

1
2

Γ( 3
2 −H)

[
tH−

3
2 (t2 − s2)

1
2−H −

(
H − 3

2

)∫ t

s

(x2 − s2)
1
2−HxH−

3
2 dx

]
(1[0,t])(s).
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In addition, for any y ∈ HSH ,∫ b

0

y(s)dSH(s) =

∫ b

0

(K∗Hy)(t)dW (t)

if and only if K∗Hy ∈ L2([0, b]).
Also, denoting L2

HSH
([0, b]) =

{
y ∈ HSH ,K∗Hy ∈ L2([0, b])

}
. Since H > 1

2 , we have

by (9) and lemma 2.1 of [11],

L2([0, b]) ⊂ L 1
H ([0, b]) ⊂ L2

HSH ([0,b]). (10)

Lemma 2.1. [5] For y ∈ L 1
H ([0, b]),

H(2H − 1)

∫ b

0

∫ b

0

| yr || yu || u− r |2H−2 drdu ≤ CH ‖ y ‖
L

1
H ([0,b])

,

where CH =
(

H(2H−1)

β(2−2H,H− 1
2 )

)1/2

, with β denoting the beta function.

Let L(K,H) denote the space of all bounded linear operators from K into H with
the usual norm ‖.‖L(K,H). Let Q ∈ L(K,H) be a non-negative self-adjoint operator.

Denote by L0
Q(K,H) the space of all ξ ∈ L(K,H) such that ξQ

1
2 is a Hilbert-Schmidt

operator. The norm is given by

‖ξ‖2L0
Q(K,H) = ‖ξQ 1

2 ‖2HS = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to H. Let {SHn (t)}n∈N be
a sequence of one-dimensionnal standard sub-fractional Brownian motions mutually
independent over (Ω,F ,P).
Set

SHQ (t) =

∞∑
n=1

SHn (t)Q
1
2 en, t ≥ 0,

where {en}n∈N is a complete orthonormal basis in K.
If Q is a non-negative self-adjoint trace class operator, then the above K-valued sto-
chastic process SHQ (t) is called Q-cylindrical sub-fractional Brownian motion with
covariance operator Q.

Lemma 2.2. [5] For any y : [0, b] −→ L0
Q(K,H) such that

∞∑
n=1
‖yQ 1

2 en‖
L

1
H ([0,b],H)

<

∞ holds, and for any u, v ∈ [0, b] with u > v,

E
∥∥ ∫ u

v

y(s)dSHQ (s)
∥∥2

H ≤ CH(u− v)2H−1
∞∑
n=1

∫ u

v

‖y(s)Q
1
2 en‖2Hds.

If, in addition,

∞∑
n=1

‖y(s)Q
1
2 en‖2H is uniformly convergent for t ∈ [0, b],

then

E
∥∥∫ u

v

y(s)dSHQ (s)
∥∥2

H ≤ CH(u− v)2H−1

∫ u

v

‖y(s)‖2L0
Q(K,H)ds.
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We suppose that Ft = σ{SHQ ; 0 ≤ s ≤ t} is the σ-algebra generated by the K-valued
Q-cylindrical sub-fractional Brownian motion, Fb = F .

Definition 2.2. [1] The fractional integral of order α > 0 with the lower limit zero
for a function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α ds, t > 0, α > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ(.) is the gamma
function.

Definition 2.3. The Riemann-Liouville fractional derivative of order α > 0
n− 1 < α < n, n ∈ N, is defined as

(R−L)Dα
0+f(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

0

(t− s)n−1−αf(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 2.4. [32] The Hilfer fractional derivative of order 0 ≤ α ≤ 1 and 0 < β < 1
for a function f is defined by

Dα,β
0+ f(t) = I

α(1−β)
0+

d

dt
I

(1−α)(1−β)
0+ f(t).

Remark 2.1. When α = 0, 0 < β < 1, the Hilfer fractional derivative coincides with
classical Riemann-Liouville farctional derivative

D0,β
0+ f(t) =

d

dt
I1−β
0+ f(t) =L Dβ

0+f(t).

When α = 1, 0 < β < 1, the Hilfer fractional derivative coincides with classical
Caputo fractional derivative

D1,β
0+ f(t) = I1−β

0+

d

dt
f(t) =c Dβ

0+f(t).

We suppose that the phase space (B, ‖.‖B) is a seminormed linear space of F0-
measurable function mapping (−∞, 0] into H, and satisfying the following fundamen-
tal axioms due to Hale and Kato [9].

i. If x : (−∞, b) → H, b > 0, is continuous on (0, b] and x0 in B, then for every
t ∈ [0, b) the following conditions hold:
(a) xt is in B;

(b) ‖ x(t) ‖β≤ H̃ ‖ xt ‖B;

(c)‖ xt ‖B≤ K(t) sup{‖ x(s) ‖β : 0 ≤ s ≤ t} + M(t) ‖ x0 ‖B, where H̃ ≥ 0 is a

constant; K,M : [0,∞) → [0,∞), K is continuous, M is locally bounded, and H̃, K,
M are independent of x(.).

ii. For the function x(.) in i., xt is a B-valued function [0, a).

iii. The space B is complete.
The following result is a consequence of the phase space axioms.
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Lemma 2.3. [39] Let x : (−∞, b]→ H be an Ft-adapted measurable process such that
the F0-adapted process x0 = ϕ(t) ∈ L0

2(Ω,B) and the restriction x : J → LF2 (Ω,B) is
continuous, then

‖ xs ‖B≤MbE ‖ ϕ ‖B +Kb sup
0≤s≤b

E ‖ x(s) ‖B,

where Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.

We denote

Pcl(H) = {Y ∈ P(H) : Y is closed}, Pbd(H) = {Y ∈ P(H) : Y is bounded},

Pcv(H) = {Y ∈ P(H) : Y is convex}, Pcp(H) = {Y ∈ P(H) : Y is compact}.
A multi-valued map G : H → P(H) is convex (closed) valued if G(H) is convex (closed)
for all x ∈ H. G is bounded on bounded sets if G(B) =

⋃
x∈B
G(x) is bounded in H for

any bounded set B of H, that is, sup
x∈B
{sup ‖y‖H : y ∈ G(x)} <∞.

G is called upper semi continuous (u.s.c) on H if, for each x ∈ H, the set G(x) is
nonempty closed subset of H and if, for each open set V of H containing G(x), there
exists an open neighborhood N of x such that G(N) ⊆ V .
G is said to be completely continuous if G(B) is relatively compact, for every bounded
subset B of H. If the multi-valued map G is completely continuous with nonempty
compact values, then G is u.s.c, if and only if G has closed graph i.e. xn → x∗, yn →
y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

Definition 2.5. The multivalued map F : J × H −→ P(H) is said to be L2-
Carathéodory if

i) t −→ F (t, v) is measurable for each v ∈ H,
ii) t −→ F (t, v) is u.s.c for almost all t ∈ J ,

iii) for each q > 0, there exists hq ∈ L1(J,R+) such that ‖F (t, v)‖2 = sup
f∈F (t,v)

E‖f‖2 ≤

hq(t), for all ‖v‖2H ≤ q and for a.e. t ∈ J .

Lemma 2.4. Let I be a compact interval and H be a Hilbert space. Let F be an L2-
Carathéodory multivalued map with SF,x 6= ∅ and let Γ be a linear continuous mapping
from L2(J,H) to C(J,H). Then the operator F ◦ SF : C(J,H) −→ Pcp,cv(H), x −→
(Γ ◦ SF )(x) = Γ(SF,x) is a closed graph operator in C(J,H)×C(J,H), where SF,x is
known as the selectors set from F and given by

f ∈ SF,x = {f ∈ L2([0, t],H) : f(t) ∈ F (t, x) for a.e. t ∈ [0, T ]}.

Now we introduce the space PC formed by all Ft-adapted measurable square inte-
grableH-valued stochastic process {x(t) : t ∈ [0, b]} with norm ‖x‖2PC = sup

t∈[0,b]

E‖x(t)‖2,

then (PC, ‖.‖PC) is a Banach space.

We define PCγ = {x : (−∞, b] −→ H : t1−γx(t) ∈ PC} with norm ‖.‖PCγ defined
by

‖.‖2PCγ = sup
t∈[0,b]

E‖t1−γx(t)‖2.
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Obviously, PCγ is a Banach space.
Let us define the operators {Sα,β(t) : t ≥ 0} and {Pβ(t) : t ≥ 0} by

Sα,β(t) = I
α(1−β)
0+ Pβ(t),

Pβ(t) = tβ−1Tβ(t),

Tβ(t) =

∫ ∞
0

βθΨβ(θ)T (tβθ)dθ;

where

Ψβ(θ) =

∞∑
n=1

(−θ)n−1

(n− 1)Γ(1− nβ)
, 0 < β < 1, θ ∈ (0,∞)

is a function of wright type which satisfies∫ ∞
0

θξΨβ(θ)dθ =
Γ(1 + ξ)

Γ(1 + βξ)
, ξ ∈ (−1,∞).

Lemma 2.5. [10] The operator Sα,β and Pβ have the following properties
i) For any fixed t ≥ 0, Sα,β(t) and Pβ are bounded linear operators, and

‖Pβ(t)x‖2 ≤M t2(β−1)

(Γ(β))2
‖x‖2 and

‖Sα,β(t)x‖2 ≤M t2(α−1)(1−β)

(Γ(α(1− β) + β))2
‖x‖2.

ii) {Pβ(t) : t ≥ 0} is compact if {T (t) : t ≥ 0} is compact.

Remark 2.2. D
α(1−β)
0+ Sα,β(t) = Pβ(t).

Definition 2.6. An H-valued stochastic process {x(t)} is said to be mild solution of
system 1 if the process x satisfies the following equation:

x(t) = Sα,β(t)ϕ+

∫ t

0

Pβ(t− s)F (s, x(s))ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s), t ∈ J.

3. Existence of mild solution

3.1. The convex case. In this section, we will show the existence results of mild
solutions for convex case of system 1.
So we impose the following assumptions to show the main results:
(H1) The operator A i the infinitesimal generator of a strongly continuous of bounded
linear operators {S(t)}t≥0 which is compact for t > 0 in H such that ‖ S(t) ‖2≤ M
for each t ∈ [0, b].
(H2)The maps F : J ×H −→ Pcp,cv(H) is an L2-Caratheodory function and for any
t ∈ [0, b] the multifunction t −→ F (t, x(t)) is measurable.
(H3) There exists a function hq ∈ L2(J,H) such that

‖ F (t, x) ‖2≤ hq(t).

(H4) There exist a constant k ≥ 0 such that

‖ F (t, x2(t))− F (t, x1(t)) ‖2≤ K ‖ x2 − x1 ‖2 .
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(H5) There exist a constant p > 1
2β−1 such that g : J −→ L0

2(J,H) satisfies
b∫
0

‖g(s)‖2p
L0

2
ds <

∞.

Theorem 3.1. If the assumptions (H1)-(H4) are satisfied then system 1 has a unique
mild solution on PCγ provided that

M̃b2(β−γ)+1

(Γ(β))2(2β − 1)
< 1.

Proof. For an arbitrary x, we define the operator Φ on PCγ as follows

(Φx)(t) = Sα,β(t)ϕ+

∫ t

0

Pβ(t− s)F (s, x(s))ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s).

We will prove that Φ has a fixed point on PCγ , the proof will be given in serval steps.
Step1: We show that Φ maps PCγ into itself.
We divide the proof into two claims
Claim1: from lemma 2.5, Holder’s inequality and hypotheses (H1)-(H4), we have

E
∥∥t1−γx(t)

∥∥2

= E

∥∥∥∥t1−γSα,β(t)ϕ+ t1−γ
∫ t

0

Pβ(t− s)F (s, x(s))ds+ t1−γ
∫ t

0

Pβ(t− s)g(s)dSHQ (s)

∥∥∥∥2

≤ 3E
∥∥t1−γSα,β(t)ϕ

∥∥2
+ 3E

∥∥∥∥t1−γ ∫ t

0

Pβ(t− s)F (s, x(s))ds

∥∥∥∥2

+ 3E

∥∥∥∥t1−γ ∫ t

0

Pβ(t− s)g(s)dSHQ (s)

∥∥∥∥2

≤ I1 + I2 + I3.

I1 : = 3E
∥∥t1−γSα,β(t)ϕ

∥∥2

≤ 3t2(1−γ)M
t2(γ−1)

(Γ(γ))2
E‖ϕ‖2≤ 3

M

(Γ(γ))2
E‖ϕ‖2.

I2 : = 3E

∥∥∥∥t1−γ ∫ t

0

Pβ(t− s)F (s, x(s))ds

∥∥∥∥2

≤ 3b2(1−γ)E

(∫ t

0

‖Pβ(t− s)F (s, x(s))‖ds
)2

≤ 3b2(1−γ) M

(Γ(β))2
E

(∫ t

0

(t− s)(β−1)‖F (s, x(s))‖ds
)2

≤ 3Mb2α(β−1)

(Γ(β))2(2β − 1)
E

∫ t

0

‖F (s, x(s))‖2ds

≤ 3Mb2α(β−1)

(Γ(β))2(2β − 1)
E

∫ t

0

hq(s)ds.
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I3 : = 3E

∥∥∥∥t1−γ ∫ t

0

Pβ(t− s)g(s)dSHQ (s)

∥∥∥∥2

≤ 3t2(1−γ)cH(−t)2H−1

∫ t

0

‖Pβ(t− s)g(s)‖2L0
Q(K,H)ds

≤ 3b2(1−γ)cH(−b)2H−1 M

(Γ(β))2

∫ t

0

(t− s)2(β−1)‖g(s)‖2L0
Q(K,H)ds

≤ 3b2(1−γ)cH(−b)2H−1 M

(Γ(β))2

(∫ t

0

(t− s)
2p(β−1)
p−1 ds

) p−1
p
(∫ t

0

‖g(s)‖2p
L0
Q(K,H)

ds

) 1
p

≤ 3b1−2γ+2HcH
M

(Γ(β))2

(∫ t

0

(t− s)
2p(β−1)
p−1 ds

) p−1
p
(∫ t

0

‖g(s)‖2p
L0
Q(K,H)

ds

) 1
p

.

Therefore Φ maps PCγ into itself.
Claim2: We prove that (Φx)(t) is continuous on J for any x ∈ PCγ .
Let ε > 0 and t ∈ J , then

‖ (Φx)(t+ ε)− (Φx)(t) ‖2PCγ= sup
0≤t≤b

E ‖ t(1−γ)((Φx)(t+ ε)− (Φx)(t)) ‖2

= sup
0≤t≤b

t2(1−γ)E ‖ (Φx)(t+ ε)− (Φx)(t) ‖2

≤ sup
0≤t≤b

t2(1−γ)E ‖ Sα,β(t+ ε)ϕ+

∫ t+ε

0

Pβ(t+ ε− s)F (s, x(s))ds

+

∫ t+ε

0

Pβ(t+ ε− s)g(s)dSHQ (s)− Sα,β(t)ϕ−
∫ t

0

Pβ(t− s)F (s, x(s))ds

−
∫ t

0

Pβ(t− s)g(s)dSHQ (s) ‖2

≤3 sup
0≤t≤b

t2(1−γ)E ‖ Sα,β(t+ ε)ϕ− Sα,β(t)ϕ ‖2

+ 3 sup
0≤t≤b

t2(1−γ)E ‖
∫ t+ε

0

Pβ(t+ ε− s)F (s, x(s))ds−
∫ t

0

Pβ(t− s)F (s, x(s))ds ‖2

+ 3 sup
0≤t≤b

t2(1−γ)E ‖
∫ t+ε

0

Pβ(t+ ε− s)g(s)dSHQ (s)−
∫ t

0

Pβ(t− s)g(s)dSHQ (s) ‖2 .

By Lemma 2.5 and hypothesis (H1)-(H4), we deduce that the right hand side of the
above inequality tends to zero as ε −→ 0, then (Φx)(t) is continuous.
Step2: (Φx) is convex for each x ∈ PCγ .
If ρ1, ρ2 ∈ Φ(x), then we have

ρi = Sα,β(t)ϕ+

∫ t

0

Pβ(t− s)F (s, xi(s))ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s).
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Let 0 ≤ δ ≤ 1, then for each t ∈ [0, b] we have

(δρ1 + (1− δ)ρ2)(t) = δSα,β(t)ϕ+ δ

∫ t

0

Pβ(t− s)F (s, x1(s))ds+ δ

∫ t

0

Pβ(t− s)g(s)dSHQ (s)

+ (1− δ)Sα,β(t)ϕ+ (1− δ)
∫ t

0

Pβ(t− s)F (s, x2(s))ds+ (1− δ)
∫ t

0

Pβ(t− s)g(s)dSHQ (s)

=Sα,β(t)ϕ+

∫ t

0

Pβ(t− s)(δF (s, x1(s)) + (1− δ)F (s, x2(s))ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s)

F (t, x) has a convex values, then δρ1 + (1− δ)ρ2 ∈ Φ(x).
Step3: Φ is a contraction.
For any x1 and x2 ∈ PCγ , we have

(Φx1)(t) = Sα,β(t)ϕ+

∫ t

0

Pβ(t− s)F (s, x1(s))ds−
∫ t

0

Pβ(t− s)g(s)dSHQ (s).

‖(Φx2)(t)− (Φx1)(t)‖2PCγ = sup
0≤t≤b

E
∥∥t1−γ ((Φx2)(t)− (Φx1)(t))

∥∥2

≤ sup
0≤t≤b

t2(1−γ)E ‖((Φx2)(t)− (Φx1)(t)) ‖2

≤ sup
0≤t≤b

t2(1−γ)E ‖
∫ t

0

Pβ(t− s)(F (s, x2(s))− F (s, x1(s))ds ‖2

≤ sup
0≤t≤b

t2(1−γ)E

∫ t

0

‖ Pβ(t− s)(F (s, x2(s))− F (s, x1(s)) ‖2 ds

≤b2(1−γ) M

(Γ(β))2
‖ F (s, x2(s))− F (s, x1(s)) ‖2

∫ t

0

(t− s)2(β−1)ds

≤ M̃

(Γ(β))2(2β − 1)
b2(β−γ)+1 ‖ x2 − x1 ‖2 .

Step4: Φ(x) is closed for each x ∈ PCγ .
Let {hn}n≥0 ∈ Φ(x) such that hn −→ h in PCγ . Then h ∈ PCγ and there exist
{vn} ∈ SF,x such that for each t ∈ J

hn(t) = Sα,β(t)ϕ+

∫ t

0

Pβ(t− s)vn(s)ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s).

Due to the fact that F has compact values, we may pass to a subsequence if necessary
to get that vn converges to v in L2(J,H) and hence v ∈ SF,x. Then for each t ∈ J

hn(t) −→ h(t) = Sα,β(t)ϕ+

∫ t

0

Pβ(t− s)v(s)ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s).

Thus, h ∈ Φ(x).
�

3.2. The non convex case. In this section, we give a non convex version of system
(1).
Let A be a subset of J × B. A is L ⊗ D measurable if A belongs to the σ-algebra
generated by all sets of the form J ×B, where J is Lebesgue measurable in J and B is
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Borel measurable in B. A subset A of L2(J,H) is decomposable if for all w, v ∈ A and
J ∈ J measurable, wXJ + vXJ−J ∈ A, where X denotes the characteristic function.
Let F : J ×H −→ Pcp(H). Assign to F the multivalued operator

F : C(J,H) −→ P(L2(J,H)),

Let F(x) = SF,x = {f ∈ L2(J,H) : f(t) ∈ F (t, x(t)) for a.e t ∈ J}. The operator F
is called the Niemytzki operator associated to F.

Definition 3.1. [26] Let Y be a separable metric space and let N : Y −→ P(L2(J,H))
be a multivalued operator. We say that N has property (BC) if

1) N is lower semi continuous;
2) N has nonempty closed and decomposable values .

Definition 3.2. [26] F : J×H −→ Pcp(H) be a multivalued function with nonempty
compact values. We say that F is lower semi continuous type (l.s.c type) if its as-
sociated Niemytski operator F is l.s.c and has nonempty closed and decomposable
values.

Consider Hd : P(H)× P(H) −→ R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = inf
a∈A

d(a, b).

Now, we give a selection theorem due to Bressan and Colombo [3].

Theorem 3.2. Let Y be a separable metric space and let N : Y −→ P(L2(J,H)) be
a multivalued operator which has property (BC). Then N has a continuous selection,
i.e. there exists a continuous function (single-valued) g̃ : Y −→ L2(J,H) such that
g̃(y) ∈ N(y) for every y ∈ Y .

Lemma 3.3. Let (X, d) be a complete metric space. If the multivalued operator
G : X −→ Pcl(X) is a contraction then G has at least one fixed point.

Now, we introduce the following hypothesis
(H6) F : J ×H −→ P(H) is nonempty compact valued multifunction map such that

a) (t, y) −→ F (t, y) is L × D measurable and for every t ∈ J , the multifunction
t −→ F (t, yt) is measurable,
b) (t, y) −→ F (t, y) is lower semi continuous for a.e.t ∈ J .

Theorem 3.4. Under assumption (H1)-(H6), the problem 1 has at least one PCγ-
mild solution.

Proof. the proof is given in serval steps.
Consider the problem (1) on [0, b]{

Dα,β
0+ x(t) ∈ Ax(t) + F (t, xt) + g(t)

dSHQ
dt , t ∈ J = [0, b],

(I1−γ
0 x)(t)|t=0 = ϕ ∈ B.

(11)

Let PCγ = {x : (−∞, b] −→ H : t1−γx(t) ∈ PC}, with ‖ x ‖PCγ= (sup
t∈J

E ‖ t1−γx(t) ‖2

)
1
2 . Thus (PCγ , ‖ . ‖PCγ ) is a Banach space.

Let D = B ∩ PCγ .
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We transform the problem into fixed point theorem. Consider the multivalued oper-
ator Φ : D −→ P(D) defined by

Φ(x) = {ρ ∈ D : ρ(t) = Sα,β(t)ϕ+

t∫
0

Pβ(t−s)F (s, x(s))ds+

t∫
0

Pβ(t−s)g(s)dSHQ (s)}.

Let φ̂ : [0, b] −→ H be a function defined by φ̂(t) = Sα,β(t)ϕ. Then φ̂(t) is an element

of D. Let x(t) = z(t) + φ̂(t) for t ∈ [0, b], with z(t) =
t∫

0

Pβ(t− s)f(s)ds +
t∫

0

Pβ(t−

s)g(s)dSHQ (s), where

f(s) ∈ F (t, zt + φ̂t) for a.e. t ∈ [0, b].

Let consider the operator Φ̂ : PCγ −→ P(PCγ) defined by

Φ̂(z) = {ρ̂ ∈ PCγ : ρ̂(t) =

∫ t

0

Pβ(t− s)f(s)ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s)}.

Now we show that Φ̂ satisfies the assumption of Lemma 3.3.
Step1: Φ̂(t) ∈ P(PCγ) for each z ∈ PCγ .

Let zn ∈ Φ̂(z) and ‖ zn − z ‖2PCγ−→ 0 for z ∈ PCγ and there exist fn ∈ SF,z+φ̂ such

that

zn(t) =

∫ t

0

Pβ(t− s)fn(s)ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s).

Since F (t, z(t) + φ̂(t)) is compact values and from hypothesis (H6), we pass to a
subsequence if necessary to get that fn converges to f in L2(J,H).
Then for each t ∈ [0, b],

E ‖ zn(t)−
∫ t

0

Pβ(t− s)f(s)ds−
∫ t

0

Pβ(t− s)g(s)dSHQ (s) ‖−→ 0 as n −→ 0,

so there exist a f(.) ∈ SF,zt+φ̂ such that z(t) =
t∫

0

Pβ(t − s)f(s)ds +
t∫

0

Pβ(t −

s)g(s)dSHQ (s).

Step2: There exist δ < 1 such that EH2
d(Φ̂(z1), Φ̂(z2)) ≤ δ ‖ z1−z2 ‖PCγ for any z1, z2 ∈

PCγ .

Since for all h1 ∈ Φ̂(z1), there exist f1(.) ∈ SF,z1+φ̂ such that

h1(t) =

∫ t

0

Pβ(t− s)f1(s)ds+

∫ t

0

Pβ(t− s)g(s)dSHQ (s).

We have Hd(F (t, z1(t)) + φ̂(t), F (t, z2(t)) + φ̂(t)) ≤ l(t) ‖ z1 − z2 ‖, so there exist

h2(t) =
t∫

0

Pβ(t− s)f2(s)ds+
t∫

0

Pβ(t− s)g(s)dSHQ .
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We have

‖h2(t)− h1(t)‖2PCγ = ‖
∫ t

0

Pβ(t− s)(f2(s)− f1(s))ds ‖2PCγ

≤ sup
0≤t≤b

t2(1−γ)E

∫ t

0

‖ Pβ(t− s)(f2(s)− f1(s)) ‖2 ds

≤b2(1−γ) M

(Γ(β))2
lf (t) ‖ z2(t)− z1(t) ‖2

∫ t

0

(t− s)2(β−1)ds

≤ Mlf (t)

(Γ(β))2(2β − 1)
b2(β−γ)+1 ‖ z2 − z1 ‖2

≤l̃(t) ‖ z1 − z2 ‖2 .

with l̃(t) = b2β−2γ+1

(2β−1)(Γ(β))2Mlf (t).

EH2
d(Φ̂(z1) − Φ̂(z2)) ≤ l̃(t) ‖ z2 − z1 ‖2 . So we conclude that Φ̂ is a contraction,

and thus by Lemma 3.3, Φ̂ has a fixed point so the problem admit at least one mild
solution. �

4. An example

Consider the following stochastic differential inclusion
D

1
2 ,

1
4

0+ y(t, ξ) ∈ ∂2y(t,ξ)
∂ξ2 + F (t, xt) + g(t)

dSHQ
dt , t ∈ J = [0, b], ξ ∈ [0, π],

(I1−γ
0 y)(0) = y0,

y(t, 0) = y(t, π) = 0.

Where D
1
2 ,

1
4

0+ denotes the Hilfer fractional derivative.

Let H = L2([0, π],R), F : [0, b] ×H −→ P(H) is bounded, closed and convex multi-
valued map and satisfies the condition (H1)-(H3).
The operator A : D(A) ⊂ H −→ H is defined by

D(A) = {y ∈ H/y, y
′
are obsolutely continuous, x

′′
∈ H|y(0) = y(π) = 0}.

SHQ is Q-sub fractional Brownian motion with Hurst parameter H ∈ ( 1
2 , 1).

I1−γ
0 is the fractional integral of orders 1− γ.

Ay = y
′′

then Ay =
∞∑
n=1

n2 < y, yn > yn. where yn(t) =
√

2
n sin(nt) n = 1, 2, ...

We see that A generates a compact analytic semi group {T (t)}t>0 in H.
We assume that fi : [0, b]×H −→ H, i = 1, 2 such that

i) f1 and f2 are u.s.c.
ii) f1 < f2.

iii) For every s > 0 there exists a function hq ∈ L2([0, b] × H) such that fi(t, x) ≤
hq(t).

Let g : J −→ L0
2([0, 4],H) such that

4∫
0

sin(t)

t
1
3
ds <∞, p > − 1

2 .

We take F (t, x) = [f1(t, x), f2(t, x)].
All the assumptions in theorem 3.1 are verified thus this inclusion has a mild solution.
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