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Boolean BL- algebra of fractions

Dumitru Buşneag and Dana Piciu

Abstract. In [4] we have introduced the notions of BL− algebra of fractions and maximal

BL− algebra of quotients. The scope of this paper is to prove that these algebras are Boolean
algebras (see Proposition 4.3, Corollary 4.1 and Remark 5.1) and to define the notions of BL
- algebra of fractions and maximal BL− algebra of quotients for a BL - algebra A relative
to a Boolean subalgebra B of A (B ⊆ B(A)).

In the last part of this paper, for a BL− algebra A and Boolean subalgebra B ⊆ A, is
proved the existence of a maximal BL - algebra of quotients for A relative to B (which is
a Boolean algebra, by Corollary 4.1) and we give explicit descriptions of this BL-algebra for
some classes of BL-algebras and particular Boolean subalgebras B of A. For B = B(A) we
obtain the results of [4]. If BL− algebra A is an MV − algebra we obtain the results of [5],
[6] (for MV − algebras).
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1. Introduction

The concept of maximal lattice of quotients for a distributive lattice was defined
by J.Schmid in [17], [18] taking as a guide-line the construction of complete ring
of quotients by partial morphisms introduced by G. Findlay and J. Lambek (see
[15], p.36). For the case of Hilbert algebras and MV -algebras see [2] and [5]. The
central role in this constructions is played by the concept of multiplier (defined for a
distributive lattice by W. H. Cornish in [11], [12]).

For some informal explanations of notion of fraction see [15], p. 37.
The paper is organized as follows.
In Section 2 we recall the basic definitions and put in evidence many rules of

calculus in BL-algebras which we need in the rest of paper.
In Section 3 we present the MV− center of a BL− algebra (defined by Turunen

and Sessa in [20]). This is a very important construction, which associates an MV -
algebra with every BL-algebra. In this way, many properties can be transfered from
MV -algebras to BL-algebras and backwards.

In Section 4 we define the notion of B−multiplier for a BL-algebra A relative to a
Boolean subalgebra B of B(A); also we put in evidence many results which we need
in the rest of the paper (especially in Section 5).

In Section 5 we define the notions of BL-algebra of fractions relative to B and
maximal BL-algebra of quotients relative to B for a BL-algebra A and a Boolean
subalgebra B of B(A).

In the last part of this paper for a BL− algebra A is proved the existence of the
maximal BL−algebra of quotients of A relative to a Boolean subalgebra B ⊆ B(A)
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2 D. BUŞNEAG AND D. PICIU

for a BL−algebra (Theorem 5.1) and we give explicit descriptions of this BL-algebra
for some classes of BL-algebras A (MV− algebras, local BL-algebras, BL-chains,
and Boolean algebras) and particular Boolean subalgebras B of A. For B = B(A)
we obtain the results of [4]. If in particular BL− algebra A is an MV− algebras we
obtain the results from [5] and [6].

2. Definitions and first properties

Definition 2.1. ([19]) An algebra (L,∧,∨,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called
a residuated lattice if (L,∧,∨, 0, 1) is a distributive lattice with 0 and 1, the operation
� is an isotone, associative and commutative binary operation on L, and for every
x, y, z ∈ L, x� y ≤ z iff x ≤ y → z.

Definition 2.2. A BL-algebra ([13], [19]) is an algebra

A = (A,∧,∨,�,→, 0, 1)
of type (2,2,2,2,0,0) satisfying the following:
(a1) (A,∧,∨, 0, 1) is a bounded lattice,
(a2) (A,�, 1) is a commutative monoid,
(a3) � and → form an adjoint pair, i.e. c ≤ a→ b iff a� c ≤ b for all a, b, c ∈ A,
(a4) a ∧ b = a� (a→ b),
(a5) (a→ b) ∨ (b→ a) = 1, for all a, b ∈ A.

The origin of BL-algebras is in Mathematical Logic; they where invented by Hájek
in [13] in order to study the ,,Basic Logic” (BL, for short) arising from the continuous
triangular norms, familiar in the framework of fuzzy set theory. They play the role of
Lindenbaum algebras from classical Propositional calculus. Apart from their logical
interest, BL-algebras have important algebraic properties (see [13], [14], [19]).

Remark 2.1. BL−algebras are exactly the commutative residuated lattices satisfying
a4, a5 (see Definition 2.1).

In order to simplify the notation, a BL-algebra A = (A,∧,∨,�,→, 0, 1) will be
referred by its support set, A. So, in the rest of this paper by A we denote a BL−
algebra.

A BL-algebra is nontrivial if 0 
= 1 . For any BL-algebra A, the reduct L(A) =
(A,∧,∨, 0, 1) is a bounded distributive lattice. A BL -chain is a totally ordered
BL-algebra, i.e. a BL-algebra such that its lattice order is total.

For any a ∈ A , we define a∗ = a→ 0 and denote (a∗)∗ by a∗∗. Clearly, 0∗ = 1.
We define a0 = 1 and an = an−1 � a for n ≥ 1. The order of a ∈ A, a 
= 1, in

symbols ord(a) is the smallest n ∈ ω such that an = 0; if no such n exists, then
ord(a) =∞.

A BL-algebra is called locally finite if all non unit elements in it have finite order.

Example 2.1. Define on the real unit interval I = [0, 1] the binary operations � and
→ by

x� y = max{0, x+ y − 1}
x→ y = min{1, 1− x+ y}.

Then (I,≤,�,→, 0, 1) is a BL-algebra (called )Lukasiewicz structure).
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Example 2.2. Define on the real unit interval I = [0, 1]

x� y = min{x, y}
x→ y = 1 iff x ≤ y and y otherwise.

Then (I,≤,�,→, 0, 1) is a BL-algebra (called Gődel structure ).

Example 2.3. Let � be the usual multiplication of real numbers on the unit interval
I = [0, 1] and x → y = 1 iff x ≤ y and y/x otherwise. Then (I,≤,�,→, 0, 1) is a
BL-algebra (called Product structure or Gaines structure ).

Remark 2.2. Not every residuated lattice, however, is a BL-algebra (see [19], p.16).
Consider, for example a residuated lattice defined on the unit interval, for all x, y, z ∈
I, such that

x� y = 0, iff x+ y ≤ 1
2
and x ∧ y elsewhere

x→ y = 1 if x ≤ y and max{1
2
− x, y} elsewhere.

Let 0 < y < x, x + y < 1
2 . Then y <

1
2 − x and 0 
= y = x ∧ y, but x � (x → y) =

x� ( 1
2 − x) = 0. Therefore a4 does not hold.

Example 2.4. If (A,∧,∨, �, 0, 1) is a Boolean algebra, then (A,∧,∨,�,→, 0, 1) is a
BL-algebra where the operation � coincide with ∧ and x→ y =�x∨y, for all x, y ∈ A.
Example 2.5. If (A,∧,∨,→, 0, 1) is a relative Stone lattice (see [1], p.176), then
(A,∧,∨,�,→, 0, 1) is a BL-algebra where the operation � coincide with ∧ .

Example 2.6. If (A,⊕,∗ , 0) is an MV -algebra (see [10]), then (A,∧,∨,�,→, 0, 1)
is a BL-algebra, where for x, y ∈ A :

x� y = (x∗ ⊕ y∗)∗,
x→ y = x∗ ⊕ y, 1 = 0∗,

x ∨ y = (x→ y)→ y = (y → x)→ x and x ∧ y = (x∗ ∨ y∗)∗.
Remark 2.3. ([19]) A BL− algebra A is anMV− algebra iff x∗∗ = x for all x ∈ A. If
in a BL− algebra, x∗∗ = x for all x ∈ A, and for x, y ∈ A we denote x⊕y = (x∗�y∗)∗
then (A,⊕,∗ , 0) is an MV− algebra.

Example 2.7. ([13]) From the logical point of view, the most important example
of a BL-algebra is the Lindenbaum-Tarski algebra LBL of the propositional Basic
Logic BL. The formulas in this logic are built up of denumerable many propositional
variables v1, ...vn with two operations & and → and one constant 0 as follows:
(i) every propositional variable is a formula;
(ii) 0 is a formula;
(iii) if φ, ψ are formulas, then φ&ψ and φ→ ψ are formulas.

Let us denote by Fmla the set of all formulas of BL. Further connectives can be
defined:

φ ∧ ψ := φ&(φ→ ψ),
φ ∨ ψ := ((φ→ ψ)→ ψ) ∧ ((ψ → φ)→ φ),

�φ := φ→ 0,
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ),

1 := 0→ 0.
The axioms of a BL are:
(A1) (φ→ ψ)→ ((ψ → χ)→ (φ→ χ)),
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(A2) (φ&ψ)→ φ,
(A3) (φ&ψ)→ (ψ&φ),
(A4) (φ&(φ→ ψ))→ (ψ&(ψ → φ)),
(A5) (φ→ (ψ → χ))→ ((φ&ψ)→ χ),
(A6) ((φ&ψ)→ χ)→ (φ→ (ψ → χ)),
(A7) ((φ→ ψ)→ χ)→ (((ψ → φ)→ χ)→ χ),
(A8) 0→ φ.

The deduction rule is modus ponens: if φ and φ → ψ then ψ. We say that φ is
a theorem and we denote by � φ if there is a proof of φ from A1 − A8 using modus
ponens. The completeness theorem for BL says that � φ if and only if φ is a tautology
in every standard BL-algebra .

On the set Fmla of all formulas we define the equivalence relation ≡ by:

φ ≡ ψ iff � φ↔ ψ.

Let us denote by [φ] the equivalence class of the formula φ, and LBL the set of all
equivalence classes. We define

0 := [0],

1 := [1],

[φ] ∧ [ψ] := [φ ∧ ψ],
[φ] ∨ [ψ] := [φ ∨ ψ],
[φ]� [ψ] := [φ&ψ],

[φ]→ [ψ] := [φ→ ψ].

Then (LBL,∧,∨,�,→, 0, 1) is a BL-algebra.

Example 2.8. A product algebra (or P-algebra) ([13]) is a BL-algebra A satisfying:
(P1) c∗∗ ≤ (a� c→ b� c)→ (a→ b),
(P2) a ∧ a∗ = 0.

Product algebras are the algebraic counterparts of propositional Product Logic [13].
The standard product algebra is the Product structure.

Example 2.9. A G-algebra ([13], Definition 4.2.12) is a BL-algebra A satisfying:
(G) a� a = a, for all a ∈ A.

G-algebras are the algebraic counterpart of Gödel Logic. The standard G-algebra is
the Gödel structure.

Example 2.10. If (A,∧,∨,�,→, 0, 1) is a BL-algebra and X is a nonempty set, then
the set AX becomes a BL-algebra (AX ,∧,∨,�,→, 0, 1) with the operations defined
pointwise. If f, g ∈ AX , then

(f ∧ g)(x) = f(x) ∧ g(x),
(f ∨ g)(x) = f(x) ∨ g(x),
(f � g)(x) = f(x)� g(x),
(f → g)(x) = f(x)→ g(x)

for all x, y ∈ X and 0, 1 : X → A are the constant functions associated with 0, 1 ∈ A.
Example 2.11. ([14], [16])

We give an example of a finite BL-algebra which is not an MV -algebra. Let A =
{0, a, b, c, 1}.
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Define on A the following operations:

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

,

� 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

.

We have, 0 ≤ c ≤ a, b ≤ 1, but a, b are incomparable, hence A is not a BL− chain.
We remark that x � y = x ∧ y for all x, y ∈ A, so ord(x) = ∞ for all x ∈ A, x 
= 0.
It follows also that x � x = x ∧ x = x for all x ∈ A, so A is a G-algebra. It is easy
to see that 0∗ = 1 and x∗ = 0 for all x ∈ A, x 
= 0, so 0∗∗ = 0 and x∗∗ = 1 for all
x ∈ A, x 
= 0. Thus, A is not an MV− algebra.

Example 2.12. ([14], [16])
We give an example of a finite MV -algebra which is not an MV -chain. The set

L3×2 = {0, a, b, c, d, 1} ≈ L3 × L2 = {0, 1, 2} × {0, 1} =

= {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}

organized as lattice as in figure

and as BL−algebra with the operation → and

x� y = min{z : x ≤ y → z} = (x→ y∗)∗, x∗ = x→ 0

as in the following tables, is a non-linearly ordered MV -algebra
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→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

,

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

We have in L3×2 the following operations:

⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

,
∗ 0 a b c d 1

1 d c b a 0

It is easy to see that 0∗ = 1, a∗ = d, b∗ = c, c∗ = b, d∗ = a, 1∗ = 0 and x∗∗ = x, for
all x ∈ A, hence L3×2 is an MV− algebra which is not chain.

In [3], [7], [13], [19] it is proved that if A is aBL-algebra and a, a′, a1, ..., an, b, b
′, c, bi ∈

A, (i ∈ I) then we have the following rules of calculus:
(c1) a� b ≤ a, b, hence a� b ≤ a ∧ b and a� 0 = 0,
(c2) a ≤ b implies a� c ≤ b� c,
(c3) a ≤ b iff a→ b = 1,
(c4) 1→ a = a, a→ a = 1, a ≤ b→ a, a→ 1 = 1,
(c5) a� a∗ = 0,
(c6) a� b = 0 iff a ≤ b∗,
(c7) a ∨ b = 1 implies a� b = a ∧ b,
(c8) a→ (b→ c) = (a� b)→ c = b→ (a→ c),
(c9) (a→ b)→ (a→ c) = (a ∧ b)→ c,
(c10) a→ (b→ c) ≥ (a→ b)→ (a→ c),
(c11) a ≤ b implies c→ a ≤ c→ b, b→ c ≤ a→ c and b∗ ≤ a∗,
(c12) a ≤ (a→ b)→ b , ((a→ b)→ b)→ b = a→ b,
(c13) a� (b ∨ c) = (a� b) ∨ (a� c),
(c14) a� (b ∧ c) = (a� b) ∧ (a� c),
(c15) a ∨ b = ((a→ b)→ b) ∧ ((b→ a)→ a),
(c16) (a∧ b)n = an ∧ bn, (a∨ b)n = an ∨ bn, hence a∨ b = 1 implies an ∨ bn = 1 for any

n ≥ 0,
(c17) a→ (b ∧ c) = (a→ b) ∧ (a→ c),
(c18) (b ∧ c)→ a = (b→ a) ∨ (c→ a),
(c19) (a ∨ b)→ c = (a→ c) ∧ (b→ c),
(c20) a→ b ≤ (b→ c)→ (a→ c),
(c21) a→ b ≤ (c→ a)→ (c→ b),
(c22) a→ b ≤ (a� c)→ (b� c),
(c23) a� (b→ c) ≤ b→ (a� c),
(c24) (b→ c)� (a→ b) ≤ a→ c,
(c25) (a1 → a2)� (a2 → a3)� ...� (an−1 → an) ≤ a1 → an,
(c26) a, b ≤ c and c→ a = c→ b implies a = b,
(c27) a ∨ (b� c) ≥ (a ∨ b)� (a ∨ c), hence am ∨ bn ≥ (a ∨ b)mn, for any m,n ≥ 0,
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(c28) (a→ b)� (a
′ → b

′
) ≤ (a ∨ a′

)→ (b ∨ b′),
(c29) (a→ b)� (a

′ → b
′
) ≤ (a ∧ a′

)→ (b ∧ b′),
(c30) (a→ b)→ c ≤ ((b→ a)→ c)→ c,
(c31) a� (

∧

i∈I

bi) ≤
∧

i∈I

(a� bi),
a� (

∨

i∈I

bi) =
∨

i∈I

(a� bi),
a→ (

∧

i∈I

bi) =
∧

i∈I

(a→ bi),

(
∨

i∈I

bi)→ a =
∧

i∈I

(bi → a)
∨

i∈I

(bi → a) ≤ (
∧

i∈I

bi)→ a,
∨
(

i∈I

a→ bi) ≤ a→ (
∨

i∈I

bi),

a ∧ (
∨

i∈I

bi) =
∨

i∈I

(a ∧ bi); if A is a BL-chain then a ∨ (
∧

i∈I

bi) =
∧

i∈I

(a ∨ bi),
(whenever the arbitrary meets and unions exist)

(c32) a ≤ a∗∗ , 1∗ = 0 , 0∗ = 1, a∗∗∗ = a∗, a∗∗ ≤ a∗ → a,
(c33) (a ∧ b)∗ = a∗ ∨ b∗ and (a ∨ b)∗ = a∗ ∧ b∗,
(c34) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ , (a ∨ b)∗∗ = a∗∗ ∨ b∗∗, (a � b)∗∗ = a∗∗ � b∗∗ , (a → b)∗∗ =

a∗∗ → b∗∗,
(c35) If a∗∗ ≤ a∗∗ → a, then a∗∗ = a,
(c36) a = a∗∗ � (a∗∗ → a),
(c37) a→ b∗ = b→ a∗ = a∗∗ → b∗ = (a� b)∗,
(c38) (a∗∗ → a)∗ = 0, (a∗∗ → a) ∨ a∗∗ = 1,
(c39) b∗ ≤ a implies a→ (a� b)∗∗ = b∗∗.

In the rest of this paper by A we denote a BL-algebra; by B(A) we denote the
Boolean algebra of all complemented elements in L(A) (hence B(A) = B(L(A))) and
by B ⊆ B(A) we denote a Boolean subalgebra of A.

Proposition 2.1. ([13], [19]) For e ∈ A, the following are equivalent:
(i) e ∈ B(A),
(ii) e� e = e and e = e∗∗,
(iii) e� e = e and e∗ → e = e,
(iv) e ∨ e∗ = 1.

Remark 2.4. If a ∈ A and e ∈ B, then e� a = e ∧ a, a→ e = (a� e∗)∗ = a∗ ∨ e; if
e ≤ a ∨ a∗, then e� a ∈ B.
Proposition 2.2. ([7]) For e ∈ A, the following are equivalent:
(i) e ∈ B(A),
(ii) (e→ x)→ e = e, for every x ∈ A.
Lemma 2.1. If e, f ∈ B and x, y ∈ A, then:
(c40) e ∨ (x� y) = (e ∨ x)� (e ∨ y),
(c41) e ∧ (x� y) = (e ∧ x)� (e ∧ y),
(c42) e� (x→ y) = e� [(e� x)→ (e� y)],
(c43) x� (e→ f) = x� [(x� e)→ (x� f)],
(c44) e→ (x→ y) = (e→ x)→ (e→ y).

Proof. (c40). We have

(e ∨ x)� (e ∨ y) c13= [(e ∨ x)� e] ∨ [(e ∨ x)� y] c13= [(e ∨ x)� e] ∨ [(e� y) ∨ (x� y)]
= [(e ∨ x) ∧ e] ∨ [(e� y) ∨ (x� y)] = e ∨ (e� y) ∨ (x� y) = e ∨ (x� y).
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(c41). We have

(e ∧ x)� (e ∧ y) = (e� x)� (e� y) = (e� e)� (x� y) = e� (x� y) = e ∧ (x� y).
(c42). By c22 we have x→ y ≤ (e�x)→ (e�y), hence e�(x→ y) ≤ e� [(e�x)→

(e�y)]. Conversely, e�[(e�x)→ (e�y)] ≤ e and (e�x)�[(e�x)→ (e�y)] ≤ e�y ≤ y
so e� [(e� x)→ (e� y)] ≤ x→ y. Hence e� [(e� x)→ (e� y)] ≤ e� (x→ y).

(c43).We have x� [(x�e)→ (x�f)] = x� [(x�e)→ (x∧f)] c31= x� [((x�e)→ x)
∧((x� e)→ f)] = x� [1∧ ((x� e)→ f)] = x� ((x� e)→ f) c8= x� [x→ (e→ f)] =
x ∧ (e→ f) = x� (e→ f).

(c44). Follows from c8 and c9 since e ∧ x = e� x.�
Definition 2.3. ([13], [19]) Let A and B be BL−algebras. A function f : A→ B is a
morphism of BL−algebras iff it satisfies the following conditions, for every x, y ∈ A :
(a6) f(0) = 0,
(a7) f(x� y) = f(x)� f(y),
(a8) f(x→ y) = f(x)→ f(y).

Remark 2.5. ([13], [19]) It follows that:

f(1) = 1,

f(x∗) = [f(x)]∗

f(x ∨ y) = f(x) ∨ f(y),
f(x ∧ y) = f(x) ∧ f(y),

for every x, y ∈ A.
If f is bijective then the morphism f is called an isomorphism of BL-algebras; in

this case we write A ≈ B.

Lemma 2.2. If a, b, x are elements of A and a, b ≤ x then
(c45) a� (x→ b) = b� (x→ a).

Proof. We have

a� (x→ b) = (x ∧ a)� (x→ b) = [x� (x→ a)]� (x→ b)

= [x� (x→ b)]� (x→ a) = (x ∧ b)� (x→ a) = b� (x→ a).�

3. MV-center of a BL-algebra

In this section we prezent theMV -center of a BL-algebra, defined by Turunen and
Sessa in [20]. This is a very important construction, which associates an MV -algebra
with every BL-algebra. In this way, many properties can be transfered from MV -
algebras to BL-algebras and backwards. We shall use more times this construction
in our paper.

As we saw in Example 2.6, MV -algebras are BL-algebras, and more, a BL-algebra
A is an MV -algebra iff a∗∗ = a for every a ∈ A.

The MV -center of a A, denoted by MV (A) is defined as

MV (A) = {a ∈ A : a∗∗ = a} = {a∗ : a ∈ A}.
Hence, a BL-algebras A is an MV -algebra iff A =MV (A).

By Proposition 2.1 follow that B(A) ⊆MV (A).
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Example 3.1. ([20]) If A is a product algebra or a G-algebra, then MV (A) is
a Boolean BL-algebra; If A is the Product structure or the Gődel structure, then
MV (A) = {0, 1};If A is the 5-element BL-algebra from Example 2.11, MV (A) =
{0, 1}.
Proposition 3.1. ([20]) If A be a BL-algebra and let us define for all a, b ∈ A,

a∗ ⊕ b∗ = (a� b)∗.
Then
(i) (MV (A),⊕,∗ , 0) is an MV -algebra,
(ii) the order ≤ of A agrees with the one of MV (A), defined by

a ≤MV b iff a∗ ⊕ b = 0, for all a, b ∈MV (A),
(iii) the residuum → of A coincides with the residuum →MV in MV (A), defined by

a→MV b = a∗ ⊕ b, for all a, b ∈MV (A),
(iv) the product �MV on MV (A) is such that

a�MV b = (a� b)∗∗ = a� b, for all a, b ∈MV (A),
(v) MV (A) is the largest MV− subalgebra of A.

Proposition 3.2. ([8]) If A be a BL− algebra, then B(A) = B(MV (A)).

4. B-Multipliers on a BL-algebra

Definition 4.1. Let (P,≤) an ordered set and I ⊆ P. I is an order ideal (alternative
terms include down-set or decreasing set) if, whenever x ∈ I, y ∈ P and y ≤ x, we
have y ∈ I. We denote by I(P ) the set of all order ideals of P ; clearly, I(P ) is closed
under arbitrary intersections. For a nonempty set M ⊆ P we denote by < M >P the
order ideal of P generated by M .

Remark 4.1. Is eassy to prove that for a nonempty set M ⊆ P,
< M >P= {x ∈ P : there exists a ∈M such that x ≤ a}.

We denote by Id(A) the set of all ideals of the lattice L(A) and by I(A) the set of
all order ideals of A, that is:

I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈ I}.
Remark 4.2. Clearly, Id(A) ⊆ I(A) and if I1, I2 ∈ I(A), then I1 ∩ I2 ∈ I(A). Also,
if I ∈ I(A), then 0 ∈ I.

By B ⊆ B(A) we denote a Boolean subalgebra of A.

Definition 4.2. By B− partial multiplier on A we mean a map f : I → A, where
I ∈ I(A), which verifies the next conditions:
(a9) f(e� x) = e� f(x), for every e ∈ B and x ∈ I,
(a10) f(x) ≤ x, for every x ∈ I,
(a11) If e ∈ I ∩B, then f(e) ∈ B,
(a12) x ∧ f(e) = e ∧ f(x), for every e ∈ I ∩B and x ∈ I.
Remark 4.3. For every e ∈ I∩B and x ∈ I, x∧f(e) = e∧f(x)⇔ x�f(e) = e�f(x).
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By dom(f) ∈ I(A) we denote the domain of f ; if dom(f) = A, we called f total.
To simplify the language, we will use multiplier instead B− partial multiplier using

total to indicate that the domain of a certain multiplier is A.
Examples
1. The map 0 : A → A defined by 0(x) = 0, for every x ∈ A is a total multiplier

on A; indeed if x ∈ A and e ∈ B, then 0(e� x) = 0 = e� 0 = e� 0(x) and 0(x) ≤ x.
Clearly, if e ∈ A∩B = B, then 0(e) = 0 ∈ B and for x ∈ A, x∧0(e) = e∧0(x) = 0.
2. The map 1 : A → A defined by 1(x) = x, for every x ∈ A is also a total

multiplier on A; indeed if x ∈ A and e ∈ B, then 1(e � x) = e � x = e � 1(x) and
1(x) = x ≤ x.

The conditions a11 − a12 are obviously verified.
3. For a ∈ B and I ∈ I(A), the map fa : I → A defined by fa(x) = a∧x, for every

x ∈ I is a multiplier on A (called principal). Indeed, for x ∈ I and e ∈ B, we have
fa(e�x) = a∧ (e�x) = a∧ (e∧x) = e∧ (a∧x) = e� (a∧x) = e� fa(x) and clearly
fa(x) ≤ x.

Also, if e ∈ I ∩B, fa(e) = e ∧ a ∈ B and x ∧ (a ∧ e) = e ∧ (a ∧ x), for every x ∈ I.
Remark 4.4. The condition a12 is not a consequence of a9 − a11. As example, f :
I → A, f(x) = x∧x∗ for every x ∈ I, verify a9−a11, but if e ∈ I ∩B and x ∈ I, then

x ∧ f(e) = x ∧ 0 
= e ∧ (x ∧ x∗) = e ∧ f(x).
Remark 4.5. In general, if consider a ∈ A, then fa : I → A verifies only a9, a10 and
a12 but does not verify a11.

If dom(fa) = A, we denote fa by fa ; clearly, f0 = 0.
For I ∈ I(A), we denote

M(I,A) = {f : I → A | f is a multiplier on A}
and

M(A) = ∪
I∈I(A)

M(I,A).

If necessary, we denote M(I,A) by MBL(I,A) to indicate that we work in BL−
algebras; for the case of MV− algebras we denote M(I,A) by MMV(I,A).

Remark 4.6. From Propositions 3.1 and 3.2 we deduce that for every I ∈ I(A) the
algebra of multipliers MBL(I,A) for a BL− algebras is in fact a generalization of the
algebra of multipliers MMV(I,A) for MV− algebras (see [5], [6]). Also, we deduce
that if A is an MV− algebra (that is A = MV (A)), then MBL(I,A) = MMV(I,A)
for every I ∈ I(A).
Definition 4.3. If I1, I2 ∈ I(A) and fi ∈M(Ii, A), i = 1, 2, we define f1∧f2, f1∨f2,
f1 � f2, f1 → f2 : I1 ∩ I2 → A by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x),
(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 � f2)(x) = f1(x)� [x→ f2(x)]
c45= f2(x)� [x→ f1(x)],

(f1 → f2)(x) = x� [f1(x)→ f2(x)].

for every x ∈ I1∩ I2.
Lemma 4.1. f1 ∧ f2 ∈M(I1 ∩ I2, A).
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Proof. If x ∈ I1∩ I2 and e ∈ B, then (f1 ∧ f2)(e � x) = f1(e � x) ∧ f2(e � x) =
(e�f1(x))∧(e�f2(x)) = (e∧f1(x))∧(e∧f2(x)) = e∧[f1(x)∧f2(x)] = e�(f1∧f2)(x).

Since fi ∈M(Ii, A), i = 1, 2, we have (f1 ∧ f2)(x) = f1(x) ∧ f2(x) ≤ x ∧ x = x, for
every x ∈ I1∩ I2 and if e ∈ I1 ∩ I2 ∩B, then

(f1 ∧ f2)(e) = f1(e) ∧ f2(e) ∈ B.
For e ∈ I1 ∩ I2 ∩B and x ∈ I1∩ I2 we have:

x ∧ (f1 ∧ f2)(e) = x ∧ f1(e) ∧ f2(e) = [x ∧ f1(e)] ∧ [x ∧ f2(e)] =
= [e ∧ f1(x)] ∧ [e ∧ f2(x)] = e ∧ (f1 ∧ f2)(x),

that is f1 ∧ f2 ∈M(I1 ∩ I2, A). �
Lemma 4.2. f1 ∨ f2 ∈M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B, then (f1 ∨ f2)(e � x) = f1(e � x) ∨ f2(e � x) =
(e� f1(x)) ∨ (e� f2(x)) c31= e� [f1(x) ∨ f2(x)] = e� (f1 ∨ f2)(x).

Since fi ∈M(Ii, A), i = 1, 2, we have (f1 ∨ f2)(x) = f1(x) ∨ f2(x) ≤ x ∨ x = x, for
every x ∈ I1∩ I2 and if e ∈ I1 ∩ I2 ∩B, then

(f1 ∨ f2)(e) = f1(e) ∨ f2(e) ∈ B.
For e ∈ I1 ∩ I2 ∩B and x ∈ I1∩ I2 we have:

x∧(f1∨f2)(e) = x∧ [f1(e)∨f2(e)] = [x∧f1(e)]∨ [x∧f2(e)] = [e∧f1(x)]∨ [e∧f2(x)] =
= e ∧ [f1(x) ∨ f2(x)] = e ∧ (f1 ∨ f2)(x),

that is f1 ∨ f2 ∈M(I1 ∩ I2, A). �
Lemma 4.3. f1 � f2 ∈M(I1 ∩ I2, A).

Proof. If x ∈ I1∩ I2 and e ∈ B, then
(f1�f2)(e�x) = f1(e�x)�[(e�x)→ f2(e�x)] = [e�f1(x)]�[(e�x)→ (e�f2(x))] =

= f1(x)� [e� ((e� x)→ (e� f2(x)))] c42= f1(x)� [e� (x→ f2(x))] =

= e� [f1(x)� (x→ f2(x))] = e� (f1 � f2)(x).
Clearly, (f1 � f2)(x) = f1(x)� [x→ f2(x)] ≤ f1(x) ≤ x, for every x ∈ I1∩ I2 and

if e ∈ I1 ∩ I2 ∩B, then by Remark 2.4 we have

(f1 � f2)(e) = f1(e)� [e→ f2(e)] = f1(e)� (e∗ ∨ f2(e)) ∈ B.
For e ∈ I1 ∩ I2 ∩B and x ∈ I1∩ I2 we have:

x ∧ (f1 � f2)(e) = x ∧ [f1(e)� (e→ f2(e))] =

= x� [f1(e)� (e→ f2(e))] = f1(e)� [x� (e→ f2(e))]
c43= f1(e)� [x� ((x� e)→ (x� f2(e)))] = (f1(e)� x)� ((x� e)→ (x� f2(e))) =
= (e� f1(x))� ((e� x)→ (e� f2(x))) = f1(x)� [e� ((e� x)→ (e� f2(x)))]

c42= f1(x)�[e�(x→ f2(x))] = e�[f1(x)�(x→ f2(x))] = e�(f1�f2)(x) = e∧(f1�f2)(x),
hence

x ∧ (f1 � f2)(e) = e ∧ (f1 � f2)(x),
that is f1 � f2 ∈M(I1 ∩ I2, A). �
Lemma 4.4. f1 → f2 ∈M(I1 ∩ I2, A).
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Proof. If x ∈ I1∩ I2 and e ∈ B, then
(f1 → f2)(e�x) = (e�x)�[f1(e�x)→ f2(e�x)] = (e�x)�[(e�f1(x))→ (e�f2(x))] =

= x� [e� ((e� f1(x))→ (e� f2(x)))] c42= x� [e� (f1(x)→ f2(x))] =
= e� [x� (f1(x)→ f2(x))] = e� (f1 → f2)(x).

Clearly, (f1 → f2)(x) = x � [f1(x) → f2(x)] ≤ x, for every x ∈ I1∩ I2 and if
e ∈ I1 ∩ I2 ∩B, then by Remark 2.4 we have

(f1 → f2)(e) = e� [f1(e)→ f2(e)] = e� [(f1(e))∗ ∨ f2(e)] ∈ B.
For e ∈ I1 ∩ I2 ∩B and x ∈ I1∩ I2 we have:

e ∧ (f1 → f2)(x) = e ∧ [x� (f1(x)→ f2(x))] =

= (e� x)� [f1(x)→ f2(x)] = x� [e� (f1(x)→ f2(x))]
c42= x� [e� ((e� f1(x))→ (e� f2(x)))] = x� [e� ((x� f1(e))→ (x� f2(e)))] =

= e� [x� ((x� f1(e))→ (x� f2(e)))] c43= e� [x� (f1(e)→ f2(e))] =
= x� [e� (f1(e)→ f2(e))] = x� (f1 → f2)(e) = x ∧ (f1 → f2)(e)

hence
x ∧ (f1 → f2)(e) = e ∧ (f1 → f2)(x),

that is f1 → f2 ∈M(I1 ∩ I2, A). �
Proposition 4.1. (M(A),∧,∨,�,→,0,1) is a BL-algebra.

Proof. See [4], Proposition 13. �
Remark 4.7. To prove that (M(A),∧,∨,�,→,0,1) is a BL-algebra it is sufficient
to ask for multipliers to verify only the axioms a9 and a10.

Proposition 4.2. If BL− algebra (A,∧,∨,�,→, 0, 1) is anMV− algebra (A,⊕,∗ , 0)
(i.e. x∗∗ = x, for all x ∈ A), then BL− algebra (M(A),∧,∨,�,→,0,1) is an MV−
algebra (M(A),�,∗ ,0), see [6]. If I1, I2 ∈ I(A) and fi ∈ M(Ii, A), i = 1, 2, we have
f1 � f2 : I1 ∩ I2 → A,

(f1 � f2)(x) = (f1(x)⊕ f2(x)) ∧ x,
for every x ∈ I1∩ I2; for I ∈ I(A) and f ∈M(I,A) we have f∗ : I → A

f∗(x) = (f → 0)(x) = x� (f(x)→ 0(x)) = x� (f(x)→ 0) = x� (f(x))∗,

for every x ∈ I.
Proof. To prove that BL− algebra M(A) is an MV− algebra let f ∈ M(I,A)

with I ∈ I(A).
Then

f∗∗(x) = [(f → 0)→ 0](x) = x� [(f → 0)(x)]∗ = x� [x� (f(x))∗]∗

= x� [(x� (f(x))∗)→ 0] c8= x� [x→ (f(x))∗∗] = x ∧ (f(x))∗∗ = x ∧ f(x) = f(x),
(since f(x) ∈ A which is an MV− algebra), for all x ∈ I.

So, f∗∗ = f and BL− algebra M(A) is an MV -algebra.
We have f1 � f2 = (f∗1 � f∗2 )∗ and f∗ = f → 0.
Clearly,

(f1 � f2)(x) = x� [f∗1 (x)� (x→ f∗2 (x))]
∗

= x� [x� (f1(x))∗ � (x→ x� (f2(x))∗)]∗ = x� [(f1(x))∗ � x� (x→ x� (f2(x))∗)]∗
a4= x� [(f1(x))∗ � (x ∧ x� (f2(x))∗)]∗ = x� [(f1(x))∗ � x� (f2(x))∗]∗
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= x� [x� (f1(x))∗ � (f2(x))∗]∗
c37= x� [x→ ((f1(x))∗ � (f2(x))∗)∗]

a4= x ∧ (f1(x)⊕ f2(x)),
for all x ∈ I1 ∩ I2. Then (M(A),�,∗ ,0) is an MV -algebra.�

Lemma 4.5. The map vA : B → M(A) defined by vA(a) = fa for every a ∈ B, is a
monomorphism of BL-algebras.

Proof. Clearly, vA(0) = f0 = 0. Let a, b ∈ B and x ∈ A. We have:

(vA(a) � vA(b))(x) = vA(a)(x)� (x→ vA(b)(x)) = (a ∧ x)� (x→ (b ∧ x))
= (a� x)� (x→ (b ∧ x)) = a� [x� (x→ (b ∧ x))] = a� [x ∧ (b ∧ x)]

= a ∧ [x ∧ (b ∧ x)] = a ∧ (b ∧ x) = (a ∧ b) ∧ x = (vA(a ∧ b))(x) = (vA(a� b))(x),
hence

vA(a� b) = vA(a) � vA(b).
Also,

(vA(a)→ vA(b))(x) = x� [vA(a)(x)→ vA(b)(x)] = x� [(a ∧ x)→ (b ∧ x)]

= x� [(x� a)→ (x� b)] c43= x� (a→ b) = x ∧ (a→ b)

(since a→ b ∈ B)
= vA(a→ b)(x),

hence
vA(a)→ vA(b) = vA(a→ b),

that is vA is a morphism of BL-algebras.
To prove the injectivity of vA let a, b ∈ B such that vA(a) = vA(b). Then a ∧ x =

b ∧ x, for every x ∈ A, hence for x = 1 we obtain that a ∧ 1 = b ∧ 1⇒ a = b.�

Definition 4.4. A nonempty set I ⊆ A is called regular if for every x, y ∈ A such
that x ∧ e = y ∧ e for every e ∈ I ∩B, then x = y.

For example A is a regular subset of A (since if x, y ∈ A and x∧ e = y∧ e for every
e ∈ A ∩B = B, then for e = 1 we obtain x ∧ 1 = y ∧ 1⇔ x = y).

More generally, every subset of A which contains 1 is regular.

We denote
R(A) = {I ⊆ A : I is a regular subset of A}.

Remark 4.8. The condition I ∈ R(A) is equivalent with the condition: for every
x, y ∈ A, if fx|I∩B = fy|I∩B , then x = y.

Lemma 4.6. If I1, I2 ∈ I(A) ∩R(A), then I1 ∩ I2 ∈ I(A) ∩R(A).
Proof. See [4], Lemma 15. �

Remark 4.9. By Lemma 4.6, we deduce that

Mr(A) = {f ∈M(A) : dom(f) ∈ I(A) ∩R(A)}
is a BL-subalgebra of M(A).

Proposition 4.3. Mr(A) is a Boolean subalgebra of M(A).
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Proof. Let f : I → A be a B-multiplier on A with I ∈ I(A) ∩R(A). Then
e ∧ [f ∨ f∗](x) = e ∧ [f(x) ∨ (x� (f(x))∗)] = [e ∧ f(x)] ∨ [e ∧ (x� (f(x))∗)]

a12= [x� f(e)] ∨ [x� e� (f(x))∗] c42= [x� f(e)] ∨ [x� e� (e� f(x))∗]
a12= [x� f(e)] ∨ [x� e� (x� f(e))∗] = [x� f(e)] ∨ [x� e� (x ∧ f(e))∗]

c33= [x� f(e)] ∨ [x� e� (x∗ ∨ (f(e))∗)] c13= [x� f(e)] ∨ [e� ((x� x∗) ∨ (x� (f(e))∗))]
c5= [x� f(e)] ∨ [e� (0 ∨ (x� (f(e))∗))] = [x� f(e)] ∨ [e� x� (f(e))∗]

= [x� f(e)] ∨ [x� (e� (f(e))∗)] c13= x� [f(e) ∨ (e� (f(e))∗)]
= x� [f(e) ∨ (e ∧ (f(e))∗)] = x� [(f(e) ∨ e) ∧ (f(e) ∨ (f(e))∗)]

a11= x� (e ∧ 1) = x� e = x ∧ e = 1(x) ∧ e,
hence (f ∨ f∗)(x) = 1(x), since I ∈ R(A), hence f ∨ f∗ = 1, that is Mr(A) is a
Boolean algebra. �
Remark 4.10. The axioms a11 and a12 are necessary in the proof of Proposition 4.3.

Definition 4.5. Given two multipliers f1, f2 on A, we say that f2 extends f1 if
dom(f1) ⊆ dom(f2) and f2|dom(f1) = f1; we write f1 ≤ f2 if f2 extends f1. A multiplier
f is called maximal if f can not be extended to a strictly larger domain.

Lemma 4.7. If f1, f2 ∈M(A), f ∈Mr(A) and f ≤ f1, f ≤ f2, then f1 and f2 agree
on the dom(f1) ∩ dom(f2).

Proof. See [4], Lemma 17. �
Lemma 4.8. Every multiplier f ∈Mr(A) can be extended to a maximal multiplier.

Proof. See [4], Lemma 17. �
Lemma 4.9. Each principal multiplier fa with a ∈ B and dom(fa) ∈ I(A) ∩ R(A)
can be uniquely extended to the total multiplier fa and each non-principal multiplier
can be extended to a maximal non-principal one.

Proof. See [4], Lemma 17. �
On the Boolean algebra Mr(A) we consider the relation ρA defined by

(f1, f2) ∈ ρA iff f1 and f2 agree on the intersection of their domains.

Lemma 4.10. ρA is a congruence on Boolean algebra Mr(A).

Proof. The same proof as in the case of BL− algebras (see [4], Lemma 18). �
Definition 4.6. For f ∈Mr(A) with I = dom(f) ∈ I(A)∩R(A), we denote by [f, I]
the congruence class of f modulo ρA and AB =Mr(A)/ρA .

Corollary 4.1. By Proposition 4.3 and Lemma 4.10 we deduce that AB is a Boolean
algebra.

Remark 4.11. If we denote by F = I(A) ∩R(A) and consider the partially ordered
systems {δI,J}I,J∈F,I⊆J (where for I, J ∈ F , I ⊆ J, δI,J : M(J,A) → M(I,A) is
defined by δI,J(f) = f|I), then by above construction of AB we deduce that AB is the
inductive limit

AB = lim−→
I∈F

M(I,A).

Lemma 4.11. Let the map vA : B → AB defined by vA(a) = [fa, A] for every a ∈ B.
Then
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(i) vA is an injective morphism of Boolean algebras,
(ii) For every a ∈ B, [fa, A] ∈ B(AB),
(iii) vA(B) ∈ R(AB).

Proof. (i). Follows from Lemma 4.5.
(ii). For a ∈ B and x ∈ A we have

(fa�fa)(x) = fa(x)�(x→ fa(x)) = (a∧x)� [x→ (a∧x)] = (a�x)� [x→ (a�x)] =

= a� [x� (x→ (a�x))] = a� [x∧ (a�x)] = a� (a�x) = a∧ (a∧x) = a∧x = fa(x),
and

(fa)∗∗(x) = x�[(fa)∗(x)→ 0(x)] = x�[(fa → 0)(x)→ 0(x)] = x�[x�(fa(x)→ 0)→ 0] =

= x�[x�(fa(x))∗]∗ = x�[x�(a∧x)∗]∗ c33= x�[x�(a∗∨x∗)]∗ c13= x�[(x�a∗)∨(x�x∗)]∗ c5=

c5= x� [(x� a∗) ∨ 0]∗ = x� [(x� a∗)]∗ =
(since a ∈ B)

= x� (x→ a) = x ∧ a = fa(x),
hence

fa � fa = fa

and

fa
∗∗

= fa,

that is [fa, A] ∈ B(AB).
(iii). To prove vA(B) ∈ R(AB), if by contrary there exist f1, f2 ∈ Mr(A) such

that [f1, dom(f1)] 
= [f2, dom(f2)] (that is there exists x0 ∈ dom(f1) ∩ dom(f2) such
that f1(x0) 
= f2(x0)) and [f1, dom(f1)] ∧ [fa, A] = [f2, dom(f2)] ∧ [fa, A] for every
[fa, A] ∈ vA(B) ∩B(AB) (that is by (ii) for every [fa, A] ∈ vA(B) with a ∈ B), then
(f1 ∧ fa)(x) = (f2 ∧ fa)(x) for every x ∈ dom(f1) ∩ dom(f2) and every a ∈ B ⇔
f1(x) ∧ a ∧ x = f2(x) ∧ a ∧ x for every x ∈ dom(f1) ∩ dom(f2) and every a ∈ B. For
a = 1 ∈ B and x = x0 we obtain that f1(x0) ∧ x0 = f2(x0) ∧ x0 ⇔ f1(x0) = f2(x0)
which is contradictory. �

Remark 4.12. Since by Lemma 4.11, for every a, b ∈ B, [ fa, A] = [ fb, A] iff a = b,
the elements of B can be identified with the elements of the sets {[fa, A] : a ∈ B} and
{fa : a ∈ B}. So, vA(B) ≈ vA(B) ≈ B (as BL− algebras).

Lemma 4.12. If [f, dom(f)] ∈ AB (with f ∈Mr(A) and I = dom(f) ∈ I(A)∩R(A)),
then

I ∩B ⊆ {a ∈ B : fa ∧ [f, dom(f)] ∈ vA(B)}.
Proof. Let a ∈ I ∩ B. Then for every x ∈ I, (fa ∧ f)(x) = fa(x) ∧ f(x) =

a∧ x∧ f(x) = a∧ f(x) = a� f(x) = f(a� x) = x� f(a) (by a12) = x∧ f(a), that is
fa ∧ f = ff(a) ∈ vA(B) (since f(a) ∈ B), that is, the required inclusion. �

Remark 4.13. The axiom a12 is necessary in the proof of Lemma 4.12.
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5. Boolean Maximal BL-algebra of quotients

Definition 5.1. A BL-algebra F is called BL-algebra of fractions of A relative to B
if:

(a13) B is a BL-subalgebra of F,
(a14) For every a′, b′, c′ ∈ F, a′ 
= b′, there exists e ∈ B such that e ∧ a′ 
= e ∧ b′ and

e ∧ c′ ∈ B.
So, BL-algebra B is a BL-algebra of fractions of itself (since 1 ∈ B).
As a notational convenience, we write A � F to indicate that F is a BL-algebra

of fractions of A relative to B.

Remark 5.1. If A � F , then F is a Boolean algebra. Indeed, if by contrary, then
there exists a′ ∈ F such that a′ 
= a′ � a′ or (a′)∗∗ 
= a′. If a′ 
= a′ � a′, since A � F ,
then there exists e ∈ B such that e ∧ a′ ∈ B and

e ∧ a′ 
= e ∧ (a′ � a′) = (e ∧ a′)� (e ∧ a′),
which is contradictory!.

If (a′)∗∗ 
= a′, since A � F , then there exists f ∈ B such that f ∧ a′ ∈ B and

f ∧ a′ 
= f ∧ (a′)∗∗ = (f ∧ a′)∗∗
which is contradictory!

Lemma 5.1. Let A � F ; then for every a′, b′ ∈ F, a′ 
= b′, and any finite sequence
c′1, ..., c

′
n ∈ F, there exists e ∈ B such that e∧a′ 
= e∧b′ and e∧c′i ∈ B for i = 1, 2, ..., n

(n ≥ 2).

Proof. See [4], Lemma 21. �

Lemma 5.2. Let A � F and a′ ∈ F. Then
Ia′ = {e ∈ B : e ∧ a′ ∈ B} ∈ I(B) ∩R(A).

Proof. Clearly, Ia′ ∈ I(B).
To prove Ia′ ∈ R(A), let x, y ∈ A such that e ∧ x = e ∧ y for every e ∈ Ia′ ∩ B. If

by contrary, x 
= y, since A � F , there exists e0 ∈ B such that e0 ∧ a′ ∈ B (that is
e0 ∈ Ia′) and e0 ∧ x 
= e0 ∧ y, which is contradictory. �

Theorem 5.1. For every BL− algebra A, the Boolean algebra AB in Definitin 4.6
has the following properties:
(i) vA(B) � AB ,
(ii) for every BL-algebra F such that A � F, there exists monomorphism of BL-

algebras i : F → AB which induces the canonical monomorphism vA of B into
AB.

Proof. The fact that vA(B) is a BL-subalgebra of AB follows from Lemma 4.11,
(i). To prove a14, let [f, dom(f)], [g, dom(g)], [h, dom(h)] ∈ AB with f, g, h ∈ Mr(A)
such that [g, dom(g)] 
= [h, dom(h)] (that is there exists x0 ∈ dom(g) ∩ dom(h) such
that g(x0) 
= h(x0)).

Put I = dom(f) ∈ I(A) ∩R(A) and
I[f,dom(f)] = {a ∈ B : fa ∧ [f, dom(f)] ∈ vA(B)}

(by Lemma 4.11, fa ∈ B(M(A)) if a ∈ B). Then by Lemma 4.12,

I ∩B ⊆ I[f,dom(f)].
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If we suppose that for every a ∈ I ∩ B, fa ∧ [g, dom(g)] = fa ∧ [h, dom(h)], then
[fa ∧ g, dom(g)] = [fa ∧ h, dom(h)], hence for every x ∈ dom(g) ∩ dom(h) we have
(fa ∧ g)(x) = (fa ∧ h)(x) i.e. a ∧ g(x) = a ∧ h(x).

Since I ∈ R(A) we deduce that g(x) = h(x) for every x ∈ dom(g) ∩ dom(h) so
[g, dom(g)] = [h, dom(h)], which is contradictory.

Hence, if [g, dom(g)] 
= [h, dom(h)], then there exists a ∈ I ∩ B, such that fa ∧
[g, dom(g)] 
= fa ∧ [h, dom(h)]. But for this a ∈ I ∩B we have

fa ∧ [f, dom(f)] ∈ vA(B)
(since by Lemma 4.12, I ∩B ⊆ I[f,dom(f)]).

To prove the maximally of AB , let F be a BL-algebra such that A � F ; thus
B ⊆ B(F )

A � F
↙i

AB

For a′ ∈ F, Ia′ = {e ∈ B : e ∧ a′ ∈ B} ∈ I(B) ∩R(A) (by Lemma 5.2).
Thus fa′ : Ia′ → A defined by fa′(x) = x ∧ a′ is a B−multiplier. Indeed, if e ∈ B

and x ∈ Ia′ , then

fa′(e� x) = (e� x) ∧ a′ = (e ∧ x) ∧ a′ = e ∧ (x ∧ a′) = e� (x ∧ a′) = e� fa′(x),

and
fa′(x) ≤ x,

hence a9 and a10 are verified.
To verify a11, let e ∈ Ia′ ∩B = Ia′ . Thus, fa′(e) = e ∧ a′ ∈ B (since e ∈ Ia′).
The condition a12 is obviously verified, hence [fa′ , Ia′ ] ∈ AB .
We define i : F → AB , by i(a′) = [fa′ , Ia′ ], for every a′ ∈ F. Clearly i(0) = 0.
For a′, b′ ∈ F and x ∈ Ia′ ∩ Ib′ , we have

(i(a′) � i(b′))(x) = (a′ ∧ x)� [x→ (b′ ∧ x)] =
= (a′ � x)� [x→ (b′ ∧ x)] = a′ � [x� (x→ (b′ ∧ x))]

= a′�[x∧(b′∧x)] = a′�(b′∧x) = a′�(b′�x) = (a′�b′)�x = (a′�b′)∧x = i(a′�b′)(x),
hence i(a′) � i(b′) = i(a′ � b′) and

(i(a′)→ i(b′))(x) = x� [i(a′)(x)→ i(b′)(x)]

= x� [(a′ ∧ x)→ (b′ ∧ x)] = x� [(x� a′)→ (x� b′)]
c43= x� (a′ → b′) = x ∧ (a′ → b′) = i(a′ → b′)(x),

hence i(a′)→ i(b′) = i(a′ → b′), that is i is a morphism of BL-algebras.
To prove the injectivity of i, let a′, b′ ∈ F such that i(a′) = i(b′). It follows that

[fa′ , Ia′ ] = [fb′ , Ib′ ] so fa′(x) = fb′(x) for every x ∈ Ia′ ∩ Ib′ .We get a′ ∧ x = b′ ∧ x for
every x ∈ Ia′ ∩ Ib′ . If a′ 
= b′, by Lemma 5.1 (since A � F ), there exists e ∈ B such
that e∧ a′, e∧ b′ ∈ B and e∧ a′ 
= e∧ b′ which is contradictory (since e∧ a′, e∧ b′ ∈ B
implies e ∈ Ia′ ∩ Ib′). �

The Theorem 5.1 provides the motivation for the following Definition:

Definition 5.2. For any BL− algebra A, AB is called a maximal BL− algebra of
quotients of A (which by Remark 5.1 is a Boolean algebra). To range with the tradition
([2], [5], [6], [17], [18]) we denote AB by QB(A).

Remark 5.2. If BL− algebra A is an MV− algebra, then we obtain the maximal
MV− algebra of quotients of A (see [6]).
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Remark 5.3. If A is a Boolean algebra, then B(A) = A. The axioms a9 − a12 are
equivalent with a9, hence QB(A) is in this case just the classical Dedekind-MacNeille
completion of A (see [18], p.687). In contrast to the general situation, the Dedekind-
MacNeille completion of a Boolean algebra is again distributive and, in fact, is a
Boolean algebra ([1], p.239).

Proposition 5.1. Let A be a BL - algebra. Then the following statements are equiv-
alent:
(i) Every maximal B−multiplier on A has domain A,
(ii) For every B-multiplier f ∈ M(I,A) there is a ∈ B such that f = fa (that is

f(x) = a ∧ x for every x ∈ I),
(iii) QB(A) ≈ B.

Proof. (i)⇒ (ii). Assume (i) and for f ∈M(I,A) let f ′ its the maximal extension
(by Lemma 4.7). By (i), we have f ′ : A → A. Put a = f ′(1) ∈ B (by a11), then for
every x ∈ I , f(x) = f(x) ∧ 1 a12= x ∧ f(1) = x ∧ a = fa(x), that is f = fa.

(ii)⇒ (iii). Follow from Lemma 4.11.
(iii)⇒ (i). Follow from Lemma 4.7 and Lemma 4.11.�

Definition 5.3. If A verify one of condition of Proposition 5.1, we call A rationnaly
complete.

Example 5.1. 1. If A is a BL− algebra, B = B(A) = {0, 1} = L2 and A � F
then F = {0, 1}, hence QB(A) = AB ≈ L2. Indeed, if a, b, c ∈ F with a 
= b,
then by a14 there exists e ∈ B such e ∧ a 
= e ∧ b (hence e 
= 0) and e ∧ c ∈ B.
Then, e = 1, hence c ∈ B, that is, F = B. As examples of BL− algebras with
this property we have local BL− algebras and BL− chains.

2. More general, if A is a BL− algebra, B is a finite Boolean subalgebra of A and
A � F, then F = B, hence in this case QB(A) = AB ≈ B. Indeed, since A � F
we have B ⊆ B(F ) ⊆ F. If consider a ∈ F, then there exists e ∈ B such that
e ∧ x ∈ B (for example e = 0). B being finite, there exists a largest element
ea ∈ B such ea ∧ a ∈ B. Suppose ea ∨ a 
= ea, then there would exists e ∈ B such
that e ∧ (ea ∨ a) 
= e ∧ ea and e ∧ a ∈ B. But e ∧ a ∈ B implies e ≤ ea and thus
we obtain e = e ∧ (ea ∨ a) 
= e ∧ ea = e, a contradiction. Hence ea ∨ a = ea,
so a ≤ ea, consequently a = a ∧ ea ∈ B, that is, F ⊆ B. Then F = B, hence
QB(A) ≈ B.

3. If B = B(A), then by Remark 5.3, QB(A) is the maximal BL− algebra of quo-
tients of A defined in [4] (Theorem 23).

Corollary 5.1. If consider MV− algebra L3×2, from Example 2.12, then B(A) =
{0, a, d, 1} is finite. Then we obtain:
1. If B = B(A) = {0, a, d, 1} then FB(A) = B(A) and QB = QB(A)(A) = B(A) =
{0, a, d, 1}.

2. If B = L2 = {0, 1} then FL2 = L2 and QL2(A) = L2.

Corollary 5.2. If consider BL− algebra A = {0, a, b, c, 1}, from Example 2.11, then
B(A) = {0, 1} = L2 is finite. Then we obtain B = L2 = {0, 1}, so FL2 = L2 and
QL2(A) = L2.
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