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Boolean BL- algebra of fractions

DUMITRU BUSNEAG AND DANA Piciu

ABSTRACT. In [4] we have introduced the notions of BL— algebra of fractions and maximal
BL— algebra of quotients. The scope of this paper is to prove that these algebras are Boolean
algebras (see Proposition 4.3, Corollary 4.1 and Remark 5.1) and to define the notions of BL
- algebra of fractions and mazximal BL— algebra of quotients for a BL - algebra A relative
to a Boolean subalgebra B of A (B C B(A)).

In the last part of this paper, for a BL— algebra A and Boolean subalgebra B C A, is
proved the existence of a mazimal BL - algebra of quotients for A relative to B (which is
a Boolean algebra, by Corollary 4.1) and we give explicit descriptions of this BL-algebra for
some classes of BL-algebras and particular Boolean subalgebras B of A. For B = B(A) we
obtain the results of [4]. If BL— algebra A is an MV — algebra we obtain the results of [5],
[6] (for MV — algebras).
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Key words and phrases. BL- algebra, MV- algebra, Boolean algebra, multiplier, BL-
algebra of fractions, maximal BL- algebra of quotients.

1. Introduction

The concept of mazximal lattice of quotients for a distributive lattice was defined
by J.Schmid in [17], [18] taking as a guide-line the construction of complete ring
of quotients by partial morphisms introduced by G. Findlay and J. Lambek (see
[15], p.36). For the case of Hilbert algebras and MV -algebras see [2] and [5]. The
central role in this constructions is played by the concept of multiplier (defined for a
distributive lattice by W. H. Cornish in [11], [12]).

For some informal explanations of notion of fraction see [15], p. 37.

The paper is organized as follows.

In Section 2 we recall the basic definitions and put in evidence many rules of
calculus in BL-algebras which we need in the rest of paper.

In Section 3 we present the MV — center of a BL— algebra (defined by Turunen
and Sessa in [20]). This is a very important construction, which associates an MV-
algebra with every BL-algebra. In this way, many properties can be transfered from
MYV -algebras to BL-algebras and backwards.

In Section 4 we define the notion of B—multiplier for a B L-algebra A relative to a
Boolean subalgebra B of B(A); also we put in evidence many results which we need
in the rest of the paper (especially in Section 5).

In Section 5 we define the notions of BL-algebra of fractions relative to B and
maximal BL-algebra of quotients relative to B for a BL-algebra A and a Boolean
subalgebra B of B(A).

In the last part of this paper for a BL— algebra A is proved the existence of the
maximal BL—algebra of quotients of A relative to a Boolean subalgebra B C B(A)
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for a BL—algebra (Theorem 5.1) and we give explicit descriptions of this BL-algebra
for some classes of BL-algebras A (MV — algebras, local BL-algebras, BL-chains,
and Boolean algebras) and particular Boolean subalgebras B of A. For B = B(A)
we obtain the results of [4]. If in particular BL— algebra A is an MV — algebras we
obtain the results from [5] and [6].

2. Definitions and first properties

Definition 2.1. ([19]) An algebra (L,A,V,®,—,0,1) of type (2,2,2,2,0,0) is called
a residuated lattice if (L, \,V,0,1) is a distributive lattice with 0 and 1, the operation
® 1is an isotone, associative and commutative binary operation on L, and for every
z,y,z€Licoy<ziffcr <y—z.

Definition 2.2. A BL-algebra ([13], [19]) is an algebra
A = (A7 /\7 \/a ®7 _)707 1)

of type (2,2,2,2,0,0) satisfying the following:

(a1) (A, /\ V,0,1) is a bounded lattice,

(a2) (A4, ) is a commutative monoid,

(az) ® andﬂ form an adjoint pair, i.e. c<a—biffa®c<b for alla,b,ce A,
(as) aNb=10a® (a —b),

(as)

as) (@ —0b)V(b—a)=1, for all a,b € A.

The origin of BL-algebras is in Mathematical Logic; they where invented by Hajek
in [13] in order to study the ,,Basic Logic” (BL, for short) arising from the continuous
triangular norms, familiar in the framework of fuzzy set theory. They play the role of
Lindenbaum algebras from classical Propositional calculus. Apart from their logical
interest, BL-algebras have important algebraic properties (see [13], [14], [19]).

Remark 2.1. BL—algebras are exactly the commutative residuated lattices satisfying
a4, as (see Definition 2.1).

In order to simplify the notation, a BL-algebra A = (A,A,V,®,—,0,1) will be
referred by its support set, A. So, in the rest of this paper by A we denote a BL—
algebra.

A BL-algebra is nontrivial if 0 # 1 . For any BL-algebra A, the reduct L(A) =
(A,A,V,0,1) is a bounded distributive lattice. A BL -chain is a totally ordered
BL-algebra, i.e. a BL-algebra such that its lattice order is total.

For any a € A , we define a* = a — 0 and denote (a*)* by a**. Clearly, 0* = 1.

We define a® = 1 and a® = a® ! ® a for n > 1. The order of a € A,a # 1, in
symbols ord(a) is the smallest n € w such that o™ = 0; if no such n exists, then
ord(a) = cc.

A BL-algebra is called locally finite if all non unit elements in it have finite order.

Example 2.1. Define on the real unit interval I = [0, 1] the binary operations ® and
— by

@y =max{0,z +y— 1}
z—y=min{l,1 —z +y}.
Then (I,<,®,—,0,1) is a BL-algebra (called Lukasiewicz structure).
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Example 2.2. Define on the real unit interval I = [0, 1]
x ©®y = min{xz,y}
r—y=1iffx <y andy otherwise.
Then (I,<,®,—,0,1) is a BL-algebra (called Gédel structure ).

Example 2.3. Let ® be the usual multiplication of real numbers on the unit interval
I=100,1] and x — y =1 iff < y and y/x otherwise. Then (I,<,©,—,0,1) is a
BL-algebra (called Product structure or Gaines structure ).

Remark 2.2. Not every residuated lattice, however, is a BL-algebra (see [19], p.16).
Consider, for example a residuated lattice defined on the unit interval, for all z,y,z €
I, such that

1
rOy=0, iﬁx+y§§ and x ANy elsewhere

1
r—y=1ifz <y and max{§ —x,y} elsewhere.

Let0<y<z az+y<s Theny<i-zand0#y=zAy butzo(z—y) =
m@(% — ) = 0. Therefore as does not hold.

Example 2.4. If (A, A,V,],0,1) is a Boolean algebra, then (A,A,V,®,—,0,1) is a
BL-algebra where the operation ® coincide with A and x — y =|zVy, for all x,y € A.

Example 2.5. If (A,A,V,—,0,1) is a relative Stone lattice (see [1], p.176), then
(A, N, V,®,—,0,1) is a BL-algebra where the operation ® coincide with A .

Example 2.6. If (A, ®,*,0) is an MV -algebra (see [10]), then (A, A, V,®,—,0,1)
is a BL-algebra, where for x,y € A :

rOy= (" 0y"),
r—y=z"dy,1=0"
zVy=(x—y)—y=@Yy—x) >z andzAy=(z*Vy")"

Remark 2.3. ([19]) A BL— algebra A is an MV — algebra iff 2** = x for allx € A. If
in a BL— algebra, ©** = x for allz € A, and for z,y € A we denote x®y = (x* Oy*)*
then (A, ®,*,0) is an MV — algebra.

Example 2.7. ([13]) From the logical point of view, the most important example
of a BL-algebra is the Lindenbaum-Tarski algebra Lpy of the propositional Basic
Logic BL. The formulas in this logic are built up of denumerable many propositional
variables vy, ...v, with two operations & and — and one constant 0 as follows:
(i) every propositional variable is a formula;

(i7) 0 is a formula;
(i4i) if ¢, are formulas, then p&tp and ¢ — ¢ are formulas.

Let us denote by F'mla the set of all formulas of BL. Further connectives can be
defined:

6 A= 3o — 1),
oV i=((¢ = ¢) =) A (¥ — ¢) — ),

16:=6—0,
¢ Y= (=)A= ),
1:=0—0.

The azioms of a BL are:

(A1) (¢ =) = (¥ = x) = (¢ = X)),
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(0 — 1)) = (P&(vp — ¢)),

(¥ — x)) = (#&y) — x),
(p&tp) — x) — (¢ — (¥ — X)),
(=) —=x) = (¥ = ¢) = x) = X),

P&y
P& ) <w&¢>>
2
¢ —

The deduction rule is modus ponens: if ¢ and ¢ — ¥ then . We say that ¢ is
a theorem and we denote by &= ¢ if there is a proof of ¢ from Ay — Ag using modus
ponens. The completeness theorem for BL says that & ¢ if and only if ¢ is a tautology
in every standard BL-algebra .

On the set F'mla of all formulas we define the equivalence relation = by:

d=viff Fo .

Let us denote by [9] the equivalence class of the formula ¢, and Lpy, the set of all
equivalence classes. We define

0:=[0],
1= 1},
(B A Y] =[P Ayl
[PV [¥]:= oVl
(0] © [¢] == [¢&et)],
(0] =[] :=[¢ — ]

Then (Lpr,N,V,®,—,0,1) is a BL-algebra.

Example 2.8. A product algebra (or P-algebra) ([13]) is a BL-algebra A satisfying:
(P)) ¢*<(a®c—bOc)— (a—b),
(P2) aNa*=0.

Product algebras are the algebraic counterparts of propositional Product Logic [13].
The standard product algebra is the Product structure.

Example 2.9. A G-algebra ([13], Definition 4.2.12) is a BL-algebra A satisfying:
(G) a®a=a, for alla € A.
G-algebras are the algebraic counterpart of Godel Logic. The standard G-algebra is

the Gaodel structure.

Example 2.10. If (A, A, V,®,—,0,1) is a BL-algebra and X is a nonempty set, then
the set AX becomes a BL-algebra (A%, A\, V,®,—,0,1) with the operations defined
pointwise. If f,g € AX, then

(f Ang)(x) = fz) Agla),
(fvg)(z) = f(z)Vy(z),
(fog)(x) = flz)©g(x),

(f = 9)(@) = f(x) — g()
forallz,y € X and 0,1 : X — A are the constant functions associated with 0,1 € A.

Example 2.11. ([14], [16])
We give an example of a finite BL-algebra which is not an MV -algebra. Let A =

{0,a,b,c,1}.



BOOLEAN BL- ALGEBRA OF FRACTIONS 5

1

Define on A the following operations:

— 10 ¢ a b 1 ®l0 ¢ a b 1
0|1 1 1 1 1 0(0 0O 0O 0 O
c|0 1 1 1 1 c|0 ¢ ¢ ¢ c
al0 b 1 b 1° al0 ¢ a ¢ a
b0 a a 1 1 b0 ¢ ¢ b b
110 ¢ a b 1 110 ¢ a b 1

We have, 0 < ¢ < a,b <1, but a,b are incomparable, hence A is not a BL— chain.
We remark that t @y = x Ay for all x,y € A, so ord(x) = co for allz € A,x # 0.
It follows also that x ©x = x ANx = x for all x € A, so A is a G-algebra. It is easy
to see that 0* =1 and z* = 0 for allx € A,z # 0, so 0** =0 and =** =1 for all
x €A x#0. Thus, A is not an MV — algebra.

Example 2.12. ([14], [16])
We give an example of a finite MV -algebra which is not an MV -chain. The set

L3><2 = {O,G,b,c,d,l} ~ L3 X L2 = {0,1,2} X {0,1} =

={(0,0),(0,1),(1,0),(1,1),(2,0), (2, 1)}

organized as lattice as in figure

0

and as BL—algebra with the operation — and
r@y=min{z:z2<y—z}=( -y )2 "=2—0

as in the following tables, is a non-linearly ordered MV -algebra
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=10 a b ¢ d 1 ®|0 a b ¢ d 1
o1 1 1 1 11 00 0O O O O O
al|ld 1 d 1 d 1 al0 a 0 a 0 a
ble ¢ 1 1 1 1, b|0 0 0 O b b
c|lb ¢ d 1 d 1 c|0 a 0 a b c
dla a ¢ ¢ 1 1 d|0 0 b b d d
1 {0 a b ¢ d 1 110 a b ¢ d 1
We have in L3y the following operations:

@10 a b ¢ d 1

00 a b ¢ d 1

ala a ¢ ¢ 1 1

blb ¢ d 1 d 1, *“f;bzd(l)
cle e 1111 | cvoa
dld 1 d 1 d 1

11 1 1 1 1 1

It is easy to see that 0* =1,a* =d,b* =c¢,c* =b,d* = a,1* =0 and =** = x, for
all x € A, hence Lzyo is an MV — algebra which is not chain.

In [3], [7], [13], [19] it is proved that if A is a BL-algebra and a, d’, a1, ..., an,b,b’, ¢, b; €
A, (i € T) then we have the following rules of calculus:
) a®b<a,bhencea®b<aAband a®0=0,
) a <bimpliesa®c<bOe,
Ja<biffa—b=1,
J1—-a=a,a—a=1a<b—aa—1=1,
) a®@a* =0,
) a®b=0iff a < b,
) aVb=11impliesa ®b=aAb,
cs) a—(b—c)=(a®b) -c=b— (a— ),
) (@—b) = (a—¢) = (anb) — c,
) a—(b—c) 2 (a—b) = (a— o)
) a <bimpliesc—a<c¢—bb—c<a—candb* <a*,
)
)
)
)
)

a®bVe)=(aob)V(a®ec),

ObA)=(@Ob) A(adc),

Vb= ((a—b) = b A(((b—a)—a),

(aAD)” =a™ AD™, (aVD)™ = a™Vb™, hence aVb =1 implies a” Vb =1 for any
c17) a— (bAc)=(a—b)A(
(bAhc)—a=(b—a)V(c— a),
(avb) mc=(a—c)A(b—c),
ca) a—=b< (b—c¢)— (a— ¢,

a—c),

a®(b—c)<b—(a®c),

b—=c)®(a—b) <a—c,

(a1 — a2) ® (a2 = a3) ® ... © (an—1 = apn) < a1 — ap,
a,b<cand ¢ — a=c— bimplies a = b,

)
)
)
)
)
ce) a—b<(a®c)— (bOc),
)
)
|
cor) aV (b®c) > (aVb)® (aVc), hence a™ V"™ > (aV b)™, for any m,n > 0,
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(co28) (a—>b)®(a, — bl) (a\/al) (b\/bj)7
(c29) (a—>b)®(a —>b) (a/\a) (bAb),
(cs0) (@a—=b) = c<((b—a)—c)—c
(c1) a® (,/E\I bi) < /e\z (a®b;),
a@(‘ej b;) :‘\e/l (a®b),
= (Ab)=A (a=b),
(e A
'\e/l(b —a) < (/G\Ib)
i 20Ty
an(V b)=V (anb);if Ais a BL-chain then aV (A b)) =A (aVb;),
i€l iel iel iel

(whenever the arbitrary meets and unions exist)
(cz2) a<a™ 1*=0,0*=1,a"" =a*,a*™ <a* — q,
(ca3) (@Ab)* =a*VDd* and (aVb)* =a* Ab*,

a** N b**

(c35) If a** < a** — a, then a** = a,
(c3g) a=a™ © (a* — a),
(cs7) a—=b"=b—a*=a" -0 =(a®b)*,
( )(** )_0(**_)a)\/a**:1’
(

*k — b**

€38
c39) b* < a implies a — (a ® b)

In the rest of this paper by A we denote a BL-algebra; by B(A) we denote the
Boolean algebra of all complemented elements in L(A) (hence B(A) = B(L(A))) and
by B C B(A) we denote a Boolean subalgebra of A.

Proposition 2.1. ([13], [19]) For e € A, the following are equivalent:
(i) e € B(A),

(ii) e®@e=e and e = e**

(i) e@e=e and e* — e =,

(iv) eve* =1.

Remark 2.4. Ifa€ Aande € B, thene®a=eAa,a—e=(a®e*)* =a*Ve; if
e<aVa*, thene®a € B.
Proposition 2.2. ([7]) For e € A, the following are equivalent:
(1) e € B(4),
(15) (e = x) — e=e, for every x € A.

Lemma 2.1. Ife, f € B and x,y € A, then:

(ca0) eV (zOy) = (eVa)O(eVy),

(ca1) eN(zOy) = (eAz)O (e Ny),
(ca2) eO(x —y)=eO[(cOz) = (cOy)],
(ca3) 20 (e = f) =z O[(xOe) = (0O f)],
(caa) e = (x = y) = (e = 2) = (e = ).

Proof. (cy49). We have
(eva)o(evy) Elleva)oeVieve) oyl E[(eva)odVieoy) V(zoy)
=[eva)relV]eoy) V(@oy|=eV(eoy V(@oy =eV(zoy).
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(ca1). We have
(enz)O(eny) =(e0r)0(e0y)=(e0e)O(rOy)=ed(r0y)=eN(z0yY)
(cs2). By coo we have v — y < (e®z) — (e®y), hence e® (x — y) < e®[(e@x) —
(e®@y)]. Conversely, e®[(e@z) — (e@y)] < eand (e®z)O[(eGx) — (eQy)] < ey <y
soe@[eozr)— (e@y)<z—y Henceed[eOz) = (e0y)) <ed® (z—1y).
(ca3). We have 2@ [(z0e) — (20 f)] = 20[(x@e) = (A f)] 2 20[(z0e) — z)
NEoe) = Hl=20[1A (@0 — N =26 (o) — f) 220 — (e — f)] =
zA(e— fl=z0 (e — f).
(ca4). Follows from cg and ¢g since e Az =e © z.l

Definition 2.3. ([13], [19]) Let A and B be BL—algebras. A function f : A — Bisa
morphism of BL—algebras iff it satisfies the following conditions, for every x,y € A :
(as) f(0) =0,

(a7) f(zOy) = f(x) © f(y),

(as) f(z—y)=f(z) = fy).

Remark 2.5. ([13], [19]) It follows that:

for every x,y € A.

If f is bijective then the morphism f is called an isomorphism of BL-algebras; in
this case we write A = B.

Lemma 2.2. Ifa,b,z are elements of A and a,b < x then
(ca5) a @ (x —=b) =b0 (z — a).

Proof. We have
a®(x—=b=@ANa)O(x—b)=x0(x—a)]e(x—0b)
=zo@—-b]o(x—a)=EAd)O(@—a)=b0(z—a)ll

3. MV-center of a BL-algebra

In this section we prezent the MV -center of a BL-algebra, defined by Turunen and
Sessa in [20]. This is a very important construction, which associates an MV -algebra
with every BL-algebra. In this way, many properties can be transfered from MV-
algebras to BL-algebras and backwards. We shall use more times this construction
in our paper.

As we saw in Example 2.6, MV -algebras are BL-algebras, and more, a BL-algebra
A is an MV-algebra iff a** = a for every a € A.

The MV-center of a A, denoted by MV (A) is defined as

MV(A)={acA:a"" =a} ={a" :a € A}.

Hence, a BL-algebras A is an MV-algebra iff A = MV (A).
By Proposition 2.1 follow that B(A) C MV (A).
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Example 3.1. ([20]) If A is a product algebra or a G-algebra, then MV (A) is
a Boolean BL-algebra; If A is the Product structure or the Gddel structure, then
MV (A) = {0,1};If A is the 5-element BL-algebra from Example 2.11, MV (A) =
{0,1}.

Proposition 3.1. ([20]) If A be a BL-algebra and let us define for all a,b € A,
a" @b =(a®b)".

Then
(i) (MV(A),®,*,0) is an MV -algebra,
(i3) the order < of A agrees with the one of MV (A), defined by

a<yy biffa*®b=0, foralla,be MV (A),
(7ii) the residuum — of A coincides with the residuum — prvin MV (A), defined by
a—py b=a"®b, forall a,b e MV (A),
() the product ©pry on MV (A) is such that
a@Opuyb=(a®b)™ =a0b, foralabe MV(A),
(v) MV (A) is the largest MV — subalgebra of A.
Proposition 3.2. ([8]) If A be a BL— algebra, then B(A) = B(MV (A)).

4. B-Multipliers on a BL-algebra

Definition 4.1. Let (P, <) an ordered set and I C P. I is an order ideal (alternative
terms include down-set or decreasing set) if, whenever x € I,y € P and y < x, we
have y € I. We denote by I(P) the set of all order ideals of P; clearly, I(P) is closed
under arbitrary intersections. For a nonempty set M C P we denote by < M >p the
order ideal of P generated by M.

Remark 4.1. Is eassy to prove that for a nonempty set M C P,

< M >p={z € P : there exists a € M such that x < a}.

We denote by Id(A) the set of all ideals of the lattice L(A) and by I(A) the set of
all order ideals of A, that is:

IA)={ICA:ifz,yce Ajx <yand y € I,then x € I}.

Remark 4.2. Clearly, Id(A) C I(A) and if I,I € I(A), then Iy NIy € I(A). Also,
if I € I(A), then 0 € I.

By B C B(A) we denote a Boolean subalgebra of A.

Definition 4.2. By B— partial multiplier on A we mean a map f : I — A, where
I € I(A), which verifies the next conditions:
(ag) fle®z)=e® f(x), for every e € B and x € I,
(a10) f(z) <=z, for every x € I,
(a11) If e € IN B, then f(e) € B,
(a12) A f(e) =eA f(x), for everye e INB and x € I.

Remark 4.3. For everye € INB andx € I, A f(e) = eAf(z) & 2O f(e) = e® f(x).
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By dom(f) € I(A) we denote the domain of f; if dom(f) = A, we called f total.

To simplify the language, we will use multiplier instead B— partial multiplier using
total to indicate that the domain of a certain multiplier is A.

Examples

1. The map 0 : A — A defined by 0(z) = 0, for every x € A is a total multiplier
on A; indeed if x € Aand e € B, then 0(e©z) =0=e®0=e©0(z) and 0(z) < z.

Clearly, ife € ANB = B, then 0(e) =0 € B and for z € A, xA0(e) = eAO(z) = 0.

2. The map 1 : A — A defined by 1(z) = =z, for every x € A is also a total
multiplier on A; indeed if x € A and e € B, then 1(e® ) = e®z = e ® 1(z) and
1(z) =z < x.

The conditions a1; — a2 are obviously verified.

3. Fora € Band I € I(A), the map f, : I — A defined by f,(z) = a Az, for every
x € I is a multiplier on A (called principal). Indeed, for z € T and e € B, we have
faleOz)=an(eOz)=aN(ehz)=eN(aNz)=ecO(aNx) =e® fo(x) and clearly
fa(x) <z

Also,ife€ INB, fo(e) =eANac Band xA(aNe)=eA (aAx), for every x € I.

Remark 4.4. The condition a2 is not a consequence of ag — a11. As example, f :
I— A, f(x) =xzAz* for every x € 1, verify ag — a1, but ife € INB and x € I, then

zAfle)=xzAN0£eA(zAz™)=eA f(z).

Remark 4.5. In general, if consider a € A, then f, : I — A wverifies only ag,a19 and
a1z but does not verify ayy.

If dom(f,) = A, we denote f, by f, ; clearly, fo = 0.
For I € I(A), we denote

M(I,A)={f:1— A| fis a multiplier on A}
and
M(A) = M(1,A).
(4) =, o, MUA)

If necessary, we denote M (I, A) by Mpc(I, A) to indicate that we work in BL—
algebras; for the case of MV — algebras we denote M (I, A) by My (I, A).

Remark 4.6. From Propositions 3.1 and 3.2 we deduce that for every I € I(A) the
algebra of multipliers Mg, (I, A) for a BL— algebras is in fact a generalization of the
algebra of multipliers My (I, A) for MV — algebras (see [5], [6]). Also, we deduce
that if A is an MV — algebra (that is A = MV (A)), then Mpc(I,A) = Mymy(I, A)
for every I € I(A).

Definition 4.3. If I, I € I(A) and f; € M(1;, A),i = 1,2, we define f1 A fo, f1V fa,
HBfe, fi—for LNl — Aby

(fu A fo)(x) = filz) A fa(z),
(frV fo)(z) = fi(z) V fa(z),
(18 f2)(2) = fi(2) © [z — fo(2)] F folx) © [z — fi(2)],
(f1 = f2)(@) =2 O [fi(z) — fo(z)].

for every x € 1N Is.
Lemma 4.1. fi A fo € M(I; N1y, A).
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Proof. If x € 1N I, and e € B, then (fi A f2)(e®z) = fi(e® z) A fale @ x) =
(e@ fi(@))A(e® f2(x)) = (eN fi(z)) AleAfa(x)) = enlfi(@) A fo(z)] = e@(fi A f2) ().

Since f; € M(I;, A),i = 1,2, we have (f1 A f2)(z) = fi(z) A fa(x) <z Az =z, for
every x € I1N Iy and if e € I1 N I3 N B, then

(fi A f2)(e) = fi(e) A fa(e) € B.
Foree I NnIobN B and x € I1N Iy we have:
e A(finhf2)(e) =z A fie) A fale) = [z A file)] Az A fa(e)] =
=lenfil@)]AleA fa(x)] =eA(f1 A f2)(2),

that is f1 A fo € M(Il n IQ,A). |

Lemma 4.2. f1V f5 € M(Il n IQ,A).

Proof. If x € 1N Iy and e € B, then (f1 V f2)(e

o) =
(e® fi() V(€O fa(z)) Z eo [fi(z) V fala)] = e O (f V fa

Since f; € M(I;, A),i = 1,2, we have (f1 V fa)(z) = f1(z)
every x € [N I, and ife € I ﬁIQ N B, then

(f1V f2)(e) = fi(e) V fa(e) € B.
ForeeI1 NI, N B and z € I;N I, we have:
e A(f1V fa)(e) =z A[fi(e)V fa(e)] = [z A fi(e)]V]z A fa(e)] = [eA f1(x)]V]eA fa(z)] =

=eN[fi(z)V fa(x)] = e A (f1V f2)(z),
that is f1 V fo € M(Il ﬁIQ,A). |

Lemma 4.3. fiH fy € M(I; N5, A).

file@x)V fale O ) =
)(@).

V fa(x) <z Vaz =z, for

Proof. If z € I1N I, and e € B, then
(/1B8f2)(e®r) = fi(e@r)O[(e®r) — fo(e®r)] = [e® f1(2)]O[(eOz) — (e® f2(z))] =
= h@)oleo((e0r) = (e fox)] ZE filz) © e O (x — folx))] =

)
=e0[fi(z) O (z — fa(z))] = e© (1 T f2)(2).
Clearly, (f1 & fo)(z) = fi(z) © [z — fa(2)] < fi(z) < z, for every x € I1N I3 and
if e € I1 N I; N B, then by Remark 2.4 we have

(AT L)) = fi(e) Ofe — f2(e)] = fi(e) @ (€ V fole)) € B.
Foree I1; NI, N B and x € I1N Is we have:
A (fr B f2)(e) =z A [file) © (e — fale))] =
=z O [fi(e) © (e = fa(e))] = file) © [z © (e — fa(e))]
Zfile)oro(zoe) = (z0 f2le)] = (file) ©2) © (2 @ ) ( © fa(e))) =
=(e0 @) o(e0z) = (O f2(2) = filz) Ofe© ((e® (e ® fa(x)))]
= [i(@)0[eo(r — f2())] = eolfi(2)0(z — fo(2))] = ®(f1Df2)( ) = en(fildf2)(x),

hence

rA(fiEf2)(e) =en(f1 O fa)(z),
that is f1 3 fo € M(I, N I, A). B

Lemma 4.4. f1 — f2 (S M(Il N IQ,A).
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Proof. If z € I1N I, and e € B, then
(1 = f2)(e0z) = (e0z)O[f1(e0x) — f2(eOz)] = (eOZ)O[(® f1(2)) — (€O fa2(x))] =
=200 (0 fi(z) = (€0 f2(2) Fzoleo (fi(z) = fo(x)] =
=e0 [z (filr) = fa(@))] =0 (fi = f2)(2).
Clearly, (f1 — f2)(x) = 2z @ [fi(z) — f2(x)] < =, for every z € 1N I and if
e € Iy N 1o N B, then by Remark 2.4 we have
(f1 = f2)(e) =e @ [file) = fale)] = e O [(fi(e))" V fa(e)] € B.
Foree I1 NIs N B and x € I;1N I; we have:
eN(fi = fo)(x) =eA[z O (fi(z) — fa(2))] =
=(e02)0[fi(z) = fo(r)] =z O [e O (fi(z) — fo())]
L2l (e filz)) = (e fo(a)] =200 ((z0 file)) — (z O fa(e))] =
=c@[z0 (20 fi(e)) = (20 fa(e)] F e @ [z © (fi(e) = fa(e))] =
=z0[eo (file) = fale) =z © (fi = f2)(e) =z A (f1 — f2)(e)

hence

z A (fr = fo)le) =en(fi — f2)(2),
that is f1 — f5 € M(Il ﬂIQ,A). |

Proposition 4.1. (M(A),A,V,H,—,0,1) is a BL-algebra.
Proof. See [4], Proposition 13. B

Remark 4.7. To prove that (M(A),A,V,[0,—,0,1) is a BL-algebra it is sufficient
to ask for multipliers to verify only the axioms ag and aig.
Proposition 4.2. If BL— algebra (A, \,V,®,—,0,1) is an MV — algebra (A, ®,* ,0)
(i.e. x** =z, for all x € A), then BL— algebra (M (A),A,V,[,—,0,1) is an MV —
algebra (M (A),B,*,0), see [6]. If I,I> € I(A) and f; € M(I;,A),i = 1,2, we have
HhBferhiNnly— A

(frB f2)(z) = (f1(z) ® f2(x)) Az,
for every x € N Iy; for I € T(A) and f € M(I, A) we have f*:1 — A

[f@)=(f—0)(z) =20 (f(z) = 0(x)) =20 (f(x) = 0) =z 0 (f(z))",
for every x € 1.
Proof. To prove that BL— algebra M(A) is an MV — algebra let f € M(I, A)
with I € Z(A).
Then
[P =1f = 0) = 0j(z) =z [(f - 0)(@)]" =20 [z o (f(z))]"

=20 [(z0 (f(2)) =02z — (f@)"]=2A(f(2))" =2 f(z) = f(z),

(since f(z) € A which is an MV — algebra), for all z € I.

So, f** = f and BL— algebra M(A) is an MV -algebra.

We have f1 B fo = (ff D f3)* and f* = f — 0.

Clearly,

(LB L)z) =z [fi(@)o (@ — f3@)]
=200 (fi(x) O —z0(f(2))]" =2z0[(fi() ©0z0 (@ =20 (f2(x))]
]

220((L@)" O @@Aze (f(2))] =20 [(fi(2)) © 20 (f2(2)]"
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=200 (fi(2)) © (@) F ol — ((fi(2) © (f(2)))]
LA (filz)® fa(2)),
for all x € I; N Iy. Then (M(A),H,*,0) is an MV-algebra.ll

Lemma 4.5. The map va : B — M(A) defined by va(a) = f, for every a € B, is a
monomorphism of BL-algebras.

Proof. Clearly, v4(0) = fo = 0. Let a,b € B and € A. We have:

(va(a) Hva(0)(x) = vala)(z) © (x = va(b)(z)) = (a A 2) O (x — (bAx))
=(aoz)0(x—bAz)=a0z0(x— (bAZ))]=a0[xA(bA1)]
=aNfzADAz)=an(bAz)=(aAb) ANz = (valaAD))(z)= (vala®D))(x),

hence
vala®b) =va(a) Dva(b).
Also,
(va(a) = va(0))(z) = 2 © [va(a)(z) = va(b)(z)] =z O [(a N z) = (DA )]

C43

=20[(z0a) = (20b)] Zxo(a—=b=xA(a—0D)
(since a — b € B)
=wva(a — b)(z),
hence
va(a) — va(b) =va(a — b),

that is v is a morphism of BL-algebras.
To prove the injectivity of v4 let a,b € B such that va(a) = va(b). Then a Az =
b A x, for every x € A, hence for x = 1 we obtain that a A1 =0A1=a =00

Definition 4.4. A nonempty set I C A is called regular if for every xz,y € A such
that t Ne =y Ne for everye € INB, then z = y.

For example A is a regular subset of A (since if z,y € A and x Ae = y Ae for every
e€ ANB =B, thenfore=1weobtainzAl=yAlsz=y).
More generally, every subset of A which contains 1 is regular.

We denote
R(A) ={I C A:Iis aregular subset of A}.

Remark 4.8. The condition I € R(A) is equivalent with the condition: for every
T,y € Aa iffw\IﬂB = fy|IﬂBa then x = Y.

Lemma 4.6. If I1,Io € I(A) N R(A), then Iy NI, € I(A) N R(A).
Proof. See [4], Lemma 15. B
Remark 4.9. By Lemma 4.6, we deduce that
M, (A) = {f € M(A) : dom(f) € I(A) N R(A)}
is a BL-subalgebra of M(A).
Proposition 4.3. M,.(A) is a Boolean subalgebra of M(A).
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Proof. Let f: I — A be a B-multiplier on A with I € Z(A) NR(A). Then
eNfV @) =en[f@)V(zo (f@))] =leAf@)]Ven(zo(f(z))
LrofEVEoeo (f@)]ZE o fleVizoeo (o f(z)]
LloflElViEoeo (o fe)]=kofle)V[oeo (@A f(e)]
FofElVizoeo @V (f(e))NZF ko felVeo(zor") V(e (f(e)))

2o fVeo OV o (fe)N=[zofle]Veozo (fle)]
=[zofle)Vx ( (f(e ))*)]C:$®[f(€)\/(€®(f(€))*)]
=z 0 [f(e)V(en(f(e))] =z [(fle)Ve)A(fle)V(f(e))]

aélx@(e/\l):x@e:a:/\ezl()/\e,

hence (f V f*)(x) = 1(x), since I € R(A), hence fV f* = 1, that is M,(A) is a
Boolean algebra. B

Remark 4.10. The azioms a11 and a12 are necessary in the proof of Proposition 4.3.

Definition 4.5. Given two multipliers f1, fo on A, we say that fo extends f1 if
dom(f1) C dom(f2) and fajaom(s,) = f1; we write fi < fo if fo extends fi. A multiplier
f is called mazimal if f can not be extended to a strictly larger domain.

Lemma 4.7. If f1, fo € M(A), f € M.(A) and f < f1, f < fa, then f1 and fo agree
on the dom(f1) N dom(f2).

Proof. See [4], Lemma 17. B
Lemma 4.8. Every multiplier f € M, (A) can be extended to a mazimal multiplier.
Proof. See [4], Lemma 17. B

Lemma 4.9. Each principal multiplier f, with a € B and dom(f,) € I(A) N R(A)
can be uniquely extended to the total multiplier f, and each non-principal multiplier
can be extended to a maximal non-principal one.

Proof. See [4], Lemma 17. B
On the Boolean algebra M,.(A) we consider the relation p4 defined by
(f1, f2) € pa iff f1 and fo agree on the intersection of their domains.
Lemma 4.10. p4 is a congruence on Boolean algebra M, (A).
Proof. The same proof as in the case of BL— algebras (see [4], Lemma 18). B

Definition 4.6. For f € M,.(A) with I = dom(f) € I(A) N R(A), we denote by [f, I]
the congruence class of f modulo pa and Ag = M,.(A)/pa .

Corollary 4.1. By Proposition 4.3 and Lemma 4.10 we deduce that Ap is a Boolean
algebra.

Remark 4.11. If we denote by F = Z(A) NR(A) and consider the partially ordered
systems {01 s}1.0er,1cy (where for I,.J € F , I C J 655 M(J,A) — M(I,A) is
defined by o1, 5(f) = fi1), then by above construction of Ap we deduce that Ap is the
mductive limit

Ap = lim M(I, A).
IeF

Lemma 4.11. Let the map 74 : B — Ap defined by v4(a) = [fa, A] for every a € B.
Then
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(i) Ta is an injective _morphism of Boolean algebras,
( ) For every a € Ba [fa7A] € B(AB)a
(t4i) Ta(B) € R(Ap).
Proof. (i). Follows from Lemma 4.5.
(#4). For a € B and x € A we have

(falfa)(@) = fa(@)O (2 = fa(2)) = (aA2) Ol — (aA2)] = (a®2) Oz — (aO2)] =

=a0z0(z — (a02)) =a0zA(a0z) =a®(a®z) =aA(aAz) =arz = f,(z),

and

(fa)™ (@) = 20[(fa)" (z) — 0(x)] = 20[(fa — 0)(z) — 0(x)] = 2O[zO(fa(z) — 0) — 0] =

* ('33 Cs

= 20[0(fu(2))]" = 20po(ar2)"]" Z 20[26(a"Va")]" F 20[(z0a")V (z02")]" =

C5

Z220[(zed) VO =20 [(zroad)]* =
(since a € B)

=20 (r—a)=xNa= f,(v),
hence
foOfa=fa

and

——%k3k

fa _fa7

that is [f,, A] € B(Ap).

(#i). To prove v4(B) € R(Ap), if by contrary there exist f1, fo € M,(A) such
that [f1,dom(f1)] # [f2,dom(f2)] (that is there exists xg € dom(f1) N dom(fz2) such
that fi(zo) # fa(2o)) and [f1,dom(f1)] A [fa, A] = [f2, dom(f2)] A [fa, A] for every
[fa, A] € TA(B) N B(Ap) (that is by (i7) for every [f,, A] € va(B) with a € B), then
(fi A fa)(@) = (f2 A fa)() for every x € dom(f1) N dom(f2) and every a € B <
filx) Nanz = fa(x) ANa Ax for every x € dom(f1) N dom(fs) and every a € B. For
a=1¢€ B and x = xg we obtain that fi(xo) A zg = fa(z0) A 2o & fi(zo) = fa(zo)
which is contradictory. B

Remark 4.12. Since by Lemma 4.11, for every a,b € B,[ fa, Al = [ fo, A] iff a =,
the elements of B can be identified with the elements of the sets {[fa,A] : a € B} and
{fa:a € B}. So, va(B) = v4(B) = B (as BL— algebras).

Lemma 4.12. If[f,dom(f)] € Ap (with f € M,(A) and I = dom(f) € I(A)NR(A)),
then
INBC{ac B: f, \|f,dom(f)] € va(B)}.
Proof. Let a € I N B. Then for every = € I,(fu A f)(x) = fu(x) A f(x) =

aNzAf(z)=aA f(x)=a0 f(z) = fla®z) =20 f(a) (by a12) = z A f(a), that is
faNf= T@) € va(B) (since f(a) € B), that is, the required inclusion. B

Remark 4.13. The aziom a1z is necessary in the proof of Lemma 4.12.
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5. Boolean Maximal BL-algebra of quotients

Definition 5.1. A BL-algebra F is called BL-algebra of fractions of A relative to B
if:
(a13) B is a BL-subalgebra of F,
(a14) For every o', b',c € F,a' £V, there exists e € B such that e ANa' # e AV and
eNcd € B.

So, BL-algebra B is a BL-algebra of fractions of itself (since 1 € B).
As a notational convenience, we write A < F' to indicate that F' is a BL-algebra
of fractions of A relative to B.

Remark 5.1. If A < F, then F is a Boolean algebra. Indeed, if by contrary, then
there exists ' € F such that a’ #a’ ®a’ or (/) #£ad'. If ' £d ©d/, since A< F,
then there exists e € B such that e Na' € B and

eNd #eA(d ©d)=(eNnd)®(end),

which is contradictory!.
If (a')** £ d/, since A X F, then there exists f € B such that f Na' € B and

which is contradictory!

Lemma 5.1. Let A < F ; then for every a’,b' € F,a' £V, and any finite sequence
ey, € F, there exists e € B such that eNa’ # eAY and eNc; € B fori=1,2,...,n
(n>2).

Proof. See [4], Lemma 21. B
Lemma 5.2. Let A< F and a’' € F. Then
Io={e€eB:end € B} € I(B)NR(A).

Proof. Clearly, I, € I(B).

To prove I, € R(A), let x,y € A such that e Az = e Ay for every e € I, N B. If
by contrary, x # y, since A < F, there exists eg € B such that eg A @’ € B (that is
eo € I) and ey Az # eg Ay, which is contradictory. B

Theorem 5.1. For every BL— algebra A, the Boolean algebra Ap in Definitin 4.6
has the following properties:
(ii) for every BL-algebra F such that A =< F, there exists monomorphism of BL-

algebras i : F — Ap which induces the canonical monomorphism 4 of B into
Ap.

Proof. The fact that 74 (B) is a BL-subalgebra of Ap follows from Lemma 4.11,
(7). To prove aiq, let [f,dom(f)], [g,dom(g)], [h,dom(h)] € Ap with f,g,h € M, (A)
such that [g,dom(g)] # [h,dom(h)] (that is there exists xg € dom(g) N dom(h) such

that g(z0) # h(zo)
Put I =dom(f) € I(A) N R(A) and

I[f,dom(f)] = {a’ €B: E/\ [f7 dom(f)] € W(B)}
(by Lemma 4.11, f, € B(M(A)) if a € B). Then by Lemma 4.12,
IN B C Iifdom(s)-
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If we suppose that for every a € I N B, f, A [g,dom(g)] = fa A [h, dom(h)], then
[fa A g,dom(g)] = [fa A h,dom(h)], hence for every x € dom(g) N dom(h) we have
(Gu A 9)(&) = (o AR)(@) ie. a A g(z) = anh(z).

Since I € R(A) we deduce that g(z) = h(x) for every z € dom(g) N dom(h) so
[g, dom(g)] = [h, dom(h)], which is contradictory.

Hence, if [g, dom(g)] # [h,dom(h)], then there exists a € I N B, such that f, A
[g, dom(g)] # fa A [h,dom(R)]. But for this a € I N B we have

fa N[f,dom(f)] € Da(B)

(since by Lemma 4.12, I N B C I, 4om(s)])-

To prove the mazimally of Ap, let F' be a BL-algebra such that A < F'; thus
B C B(F)

A <X F
i
Ap

Fora' € F,I, ={e€ B:eNa € B} € I(B)N R(A) (by Lemma 5.2).

Thus f, : I, — A defined by fo./(z) = z A d’ is a B—multiplier. Indeed, if e € B
and x € I/, then

fole@z)=(e@z)Nd =(eAz)Nd =eN(zAhd)=e®(xNd)=e® fu(x),
and
fa’ (.’E) S x,
hence ag and a1 are verified.
To verify ayq, let e € I,y N B = . Thus, fo(e) =eAd € B (since e € I,/).
The condition ajo is obviously verified, hence [f,/, Io/] € Ap.
We define i : F' — Ap , by i(a') = [for, Io/], for every o’ € F. Clearly i(0) = 0.
For a/,b' € F and z € I, N Iy, we have
('( NBi)(z) = (d' Aa) oz — (V' A)] =
=doxr)or—VAx))=doze (@ — (b Ax))
=d oA Ax)] =d O Ar) =d Ol ox) = (d'OV)ox = (d/ OV )Ax = i(d b)) (x),
hence i(a") L i(V) = z( ©b) and
(i(a') = i(V))(2) = z O [i(a')(z) — i(t')(2)]
=z0[(drz) > W AD)]=20(z0d)— (z0V)]
Lro =)=z —=V)=ild —V)(z),
hence i(a’) — i(b') = i(a’ — V'), that is ¢ is a morphism of BL-algebras.
To prove the injectivity of 4, let a/,b’ € F such that i(a’) = i(d'). It follows that
[fa’aIa’] = [fb’aIb/] SO fa/(:v) = fb’ (l‘) for every T € Ia/ ﬁ[b/. We get a' Nz =b Az for
every € I, NIy. If o’ # b, by Lemma 5.1 (since A < F'), there exists e € B such

that eAa’,e ANV € B and e Aa’ # e Ab which is contradictory (since e Aa’,e AV € B
impliese € Iy N I,y). A

The Theorem 5.1 provides the motivation for the following Definition:

Definition 5.2. For any BL— algebra A, Ap is called a mazimal BL— algebra of
quotients of A (which by Remark 5.1 is a Boolean algebra). To range with the tradition
(12], 5], [6], [17], [18]) we denote A by Qp(A).

Remark 5.2. If BL— algebra A is an MV — algebra, then we obtain the mazximal
MYV — algebra of quotients of A (see [6]).



18 D. BUSNEAG AND D. PICIU

Remark 5.3. If A is a Boolean algebra, then B(A) = A. The axzioms ag — a12 are
equivalent with ag, hence Qp(A) is in this case just the classical Dedekind-MacNeille
completion of A (see [18], p.687). In contrast to the general situation, the Dedekind-
MacNeille completion of a Boolean algebra is again distributive and, in fact, is a
Boolean algebra (1], p.239).

Proposition 5.1. Let A be a BL - algebra. Then the following statements are equiv-
alent:
(i) Fvery mazimal B—multiplier on A has domain A,
(i3) For every B-multiplier f € M(I,A) there is a € B such that f = f, (that is
f(x) =aAx for every x € ),
(1i1) Qp(A) ~ B.

Proof. (i) = (ii). Assume (i) and for f € M (I, A) let f’ its the maximal extension
(by Lemma 4.7). By (i), we have f': A — A. Put a = f/(1) € B (by a11), then for
every x € I, f(z) = f(zx) A1 B A f(l)=xANa= f,(x), that is f = f,.

(#4) = (i4i). Follow from Lemma 4.11.

(#4i) = (4). Follow from Lemma 4.7 and Lemma 4.11.1

Definition 5.3. If A verify one of condition of Proposition 5.1, we call A rationnaly
complete.

Example 5.1. 1. If A is a BL— algebra, B = B(A) = {0,1} = Ly and A <X F
then F' = {0,1}, hence Qp(A) = Ap = L. Indeed, if a,b,c € F with a # b,
then by a4 there exists e € B such e Aa #eANb (hence e £ 0) and e A ¢ € B.
Then, e = 1, hence ¢ € B, that is, F = B. As examples of BL— algebras with
this property we have local BL— algebras and BL— chains.

2. More general, if A is a BL— algebra, B is a finite Boolean subalgebra of A and
A < F, then F = B, hence in this case Qp(A) = Ap = B. Indeed, since A X F
we have B C B(F) C F. If consider a € F, then there exists e € B such that
e Nz € B (for example e = 0). B being finite, there exists a largest element
eq € B such eq ANa € B. Suppose e, V a # eq, then there would exists e € B such
that e A (e Va) #eNe, and e Na € B. But e Aa € B implies e < e, and thus
we obtain e = e A (e, V a) # e Aeq, = e, a contradiction. Hence e, V a = eq,
so a < ey, consequently a = a Ne, € B, that is, F C B. Then F = B, hence

3. If B = B(A), then by Remark 5.3, Qp(A) is the mazimal BL— algebra of quo-
tients of A defined in [4] (Theorem 23).

Corollary 5.1. If consider MV — algebra Lsxa, from Ezample 2.12, then B(A) =
{0,a,d,1} is finite. Then we obtain:
1. If B = B(A) = {0,a,d,1} then Fpay = B(A) and Qp = Qpa)(A) = B(A) =
{0,a,d,1}.
2. If B=1Ly={0,1} then F, = Ly and Qp,(A) = La.

Corollary 5.2. If consider BL— algebra A ={0,a,b,c,1}, from Example 2.11, then
B(A) = {0,1} = Ly is finite. Then we obtain B = Ly = {0,1}, so Fr, = Lo and
Qr,(A) = Ls.
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